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Problème n◦1 : Solénoïde en régime variable

On considère un solénoïde in�ni d'axe Oz, de rayon a, comportant n spires par unité de longueur parcourues

par un courant d'intensité i(t) = I0 exp

(
− t

τ

)
avec τ ≈ 10µs.
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A. Calcul du champ magnétique

1. Préciser ce qu'on appelle l'approximation des régimes quasi-stationnaires et justi�er dans le cas présent
qu'on peut se placer dans cette approximation.

Déterminer alors l'équation de Maxwell-Ampère. En déduire que le théorème d'Ampère de la magné-
tostatique peut s'appliquer.

2. En considérant que le champ magnétique est nul à l'extérieur de solénoïde, déterminer le champ
−→
B

dans le solénoïde (on utilisera bien sûr les symétries et invariances du problème).

B. Champ électrique

On cherche le champ électrique en coordonnées cylindriques sous la forme
−→
E (M, t) = E(r, t)

−→
uθ . Déterminer

−→
E en utilisant les équations de Maxwell.

Montrer qu'on obtient �nalement :
−→
E =

r

2τ
B(t)

−→
uθ

où B(t) est la norme de
−→
B .

C. Bilan d'énergie local

Dans cette partie et la suivante, on pourra exprimer les diverses grandeurs en fonction de B(t) .

1. Déterminer l'énergie volumique électromagnétique. Montrer que l'énergie électrique est négligeable
devant l'énergie magnétique.

2. Déterminer et représenter sur un dessin le vecteur de Poynting
−→
Π . Interpréter son sens.

3. Montrer qu'on retrouve l'équation de conservation locale de l'énergie électromagnétique à l'intérieur
du solénoïde.
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D. Bilan d'énergie global

1. Intégrer l'équation de conservation locale de l'énergie électromagnétique pour obtenir le bilan d'énergie
macroscopique. Donner la signi�cation physique des di�érents termes.

2. Déterminer l'énergie électromagnétique contenue dans une longueur h du solénoïde (selon z). En
déduire l'inductance L du solénoïde.

3. Exprimer le �ux du vecteur de Poynting à travers un cylindre de rayon a et de longueur h.

4. Retrouver le bilan global d'énergie électromagnétique dans ce cas particulier.

Problème n◦2 : condensateur en régime variable

Les armatures d'un condensateur plan, constituées de deux disques
conducteurs, de surface S = πa2 et de rayon a, de meme axe Oz et
séparés d'une distance e.
Initialement le condensateur est chargé Q0. A un instant quelconque
où la tension à ses bornes vaut V(t), ses armatures portent respec-
tivement les charges q(t) = CV(t) et −q(t) où C = ε0S/e est la
capacité du condensateur. On néglige les e�ets de bord, de telle
sorte qu'en coordonnées cylindriques le champ électromagnétique
dans le condensateur est en première approximation de la forme :

−→
E = E(t)

−→
uz et

−→
B = B(r, t)

−→
uθ

Le champ électrique est nul à l'extérieur du condensateur.
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1. Le condensateur se décharge dans une résistance R. Exprimer q(t) en introduisant une constante de
temps τ qu'on utilisera dans la suite.

2. A un instant quelconque déterminer E(t) à l'intérieur du condensateur en fonction des données.

3. Montrer à l'aide du théorème d'Ampère généralisé que, dans le condensateur,

B(r, t) = −µ0Q0e
−t/RC

2RCS
r

4. En déduire le vecteur de Poynting dans le condensateur. Dessiner
−→
E ,

−→
B et

−→
Π sur un dessin. Interpréter

qualitativement le sens de
−→
Π .

5. En déduire la puissance électromagnétique P sortant du condensateur.

6. Déduire de cette équation, l'énergie électromagnétique Uem(t) emmagasinée par le condensateur. Mon-
trer qu'on retrouve l'expression classique de l'énergie emmagasinée dans un condensateur.

7. Justi�er que l'enérgie magnétique est négligeable devant l'énergie électrique dans l'ARQS.

8. Retrouver Uem(t) en utilisant la densité d'énergie électromagnétique uem.

III. Cristallographie

On dé�nit en thermodynamique 3 coe�cients thermoélastiques :

• Le coe�cient de dilatation isobare : α =
1

V

(
∂V

∂T

)
p

• le coe�cient de compression isochore : β =
1

p

(
∂p

∂T

)
V
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• Le coe�cient de compressibilité isotherme : χT = − 1

V

(
∂V

∂p

)
T
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