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17Mathématiques 2

TSI
4 heures Calculatrices autorisées

Ce sujet comporte deux parties indépendantes.

I Étude des torseurs
Les torseurs sont des outils mathématiques utilisés en mécanique du solide indéformable.
On considère un solide indéformable Σ. Si 𝐴 est un point de ce solide et si ⃗𝑉 (𝐴)ℛ désigne la vitesse du point
𝐴 ∈ Σ dans le référentiel galiléen ℛ, il est bien connu que, pour tous points 𝐴 et 𝐵 de Σ, on a

⃗𝑉 (𝐵)ℛ = ⃗𝑉 (𝐴)ℛ + ⃗⃗⃗ ⃗⃗ΩΣ/ℛ ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵

où ⃗⃗⃗ ⃗⃗ΩΣ/ℛ est un vecteur (un pseudo-vecteur en réalité) appelé vecteur instantané de rotation du solide Σ par
rapport au référentiel ℛ.
L’application 𝐴 ↦ ⃗𝑉 (𝐴)ℛ est appelé torseur cinématique.
Cette partie se propose de dégager la théorie liée aux torseurs.
Notations
− ℰ désigne l’ensemble des points de l’espace géométrique orienté usuel de dimension 3 et on considère 𝑂 un

point fixé de ℰ.
− On note ⃗ℰ l’ensemble des vecteurs de ℰ et on considère ℬ = ( ⃗𝑒1, ⃗𝑒2, ⃗𝑒3) une base orthonormée directe de ⃗ℰ.
− Le produit scalaire de deux vecteurs 𝑢⃗ et ⃗𝑣 de ⃗ℰ est noté 𝑢⃗ ⋅ ⃗𝑣.
− Le produit vectoriel de deux vecteurs 𝑢⃗ et ⃗𝑣 de ⃗ℰ est noté 𝑢⃗ ∧ ⃗𝑣.
On appelle torseur toute application ℳ : ℰ → ⃗ℰ pour laquelle il existe un vecteur ⃗𝑟 tel que que la relation
ℳ(𝐵) = ℳ(𝐴) + ⃗𝑟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 est vérifiée pour tous points 𝐴 et 𝐵 de ℰ.

I.A – L’espace 𝒯 des torseurs
I.A.1) Soit ⃗𝑟 un vecteur de ⃗ℰ. Montrer que l’application ℳ : 𝐴 ↦ ⃗𝑟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝐴 est un torseur.
I.A.2) Montrer que l’ensemble 𝒯 des torseurs est un sous-espace vectoriel du ℝ-espace vectoriel ℱ(ℰ, ⃗ℰ) des
applications de ℰ dans ⃗ℰ.
I.A.3)
a) Soient 𝑢⃗ et ⃗𝑣 deux vecteurs de l’espace. Rappeler, sans démonstration, une condition géométrique nécessaire
et suffisante pour que 𝑢⃗ ∧ ⃗𝑣 = ⃗0.
b) Soit ℳ un torseur. Montrer que le vecteur ⃗𝑟 de la définition est unique.

Il s’appelle la résultante du torseur ℳ. On admet que l’application { 𝒯 → ⃗ℰ
ℳ ↦ ⃗𝑟 est linéaire.

I.A.4) Vérifier qu’une application constante de ℰ dans ⃗ℰ est un torseur et en donner la résultante. Un tel
torseur s’appelle un couple. Montrer que l’ensemble 𝒞 des couples est un sous-espace vectoriel de 𝒯 et que

l’application { 𝒞 → ⃗ℰ
ℳ ↦ ℳ(𝑂) est un isomorphisme.

En déduire la dimension de 𝒞.
I.A.5) On appelle glisseur tout torseur qui s’annule en au moins un point de ℰ.
a) Soit 𝑂1 un point de ℰ distinct de 𝑂 et ⃗𝑟 un vecteur non nul et non colinéaire à ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑂1. On note 𝑔0 : 𝐴 ↦ ⃗𝑟∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝐴
et 𝑔1 : 𝐴 ↦ ⃗𝑟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂1𝐴.
Montrer que 𝑔0 et 𝑔1 sont des glisseurs, mais que 𝑔0 − 𝑔1 n’en est pas un. Expliquer pourquoi l’ensemble 𝒢 des
glisseurs n’est pas un sous-espace vectoriel de 𝒯.
b) Montrer que l’ensemble 𝒢𝑂 des glisseurs s’annulant en 𝑂 est un sous-espace vectoriel de 𝒯 et que l’application

{ 𝒢𝑂 → ⃗ℰ
ℳ ↦ ⃗𝑟 , où ⃗𝑟 est la résultante de ℳ, est un isomorphisme.

En déduire la dimension de 𝒢𝑂.
c) Démontrer que 𝒯 = 𝒞 ⊕ 𝒢𝑂. Quelle est la dimension de 𝒯 ?
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I.B – Équiprojectivité
I.B.1) Démontrer que, si ℳ est un torseur alors ℳ vérifie la propriété suivante :

∀𝐴, 𝐵 ∈ ℰ, ℳ(𝐴) ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 = ℳ(𝐵) ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵

Cette propriété est connue sous le nom de propriété d’équiprojectivité.
On se propose d’étudier la réciproque.
I.B.2) Question préparatoire
a) Rappeler la définition d’une matrice antisymétrique.
b) L’espace est muni du repère orthonormé direct (𝑂, ⃗𝑒1, ⃗𝑒2, ⃗𝑒3) et on identifie tout vecteur avec la matrice
colonne 3 × 1 contenant ses coordonnées dans la base ℬ.
Montrer qu’il existe un unique vecteur ⃗𝑟, dont on donnera les coordonnées dans la base ℬ, tel que

∀𝑢⃗ = ⎛⎜
⎝

𝑥
𝑦
𝑧

⎞⎟
⎠

∈ ⃗ℰ, ⎛⎜
⎝

0 1 2
−1 0 3
−2 −3 0

⎞⎟
⎠

⎛⎜
⎝

𝑥
𝑦
𝑧

⎞⎟
⎠

= ⃗𝑟 ∧ 𝑢⃗

I.B.3) Soit 𝑓 : ⃗ℰ → ⃗ℰ une application telle que pour tous vecteurs 𝑢⃗ et ⃗𝑣, 𝑓(𝑢⃗) ⋅ ⃗𝑣 = −𝑢⃗ ⋅ 𝑓( ⃗𝑣).
a) Montrer que 𝑓 est linéaire.

Pour 𝜆 et 𝜇 deux nombres réels, on pourra considérer le vecteur ⃗⃗⃗ ⃗⃗𝑤 = 𝑓(𝜆𝑢⃗ + 𝜇 ⃗𝑣) − 𝜆𝑓(𝑢⃗) − 𝜇𝑓( ⃗𝑣) et
montrer qu’il est orthogonal à tout vecteur de ℰ.

b) Montrer que la matrice de 𝑓 dans la base ℬ est une matrice antisymétrique.
c) Démontrer qu’il existe un unique vecteur ⃗𝑟 ∈ ⃗ℰ tel que pour tout 𝑢⃗ ∈ ⃗ℰ, 𝑓(𝑢⃗) = ⃗𝑟 ∧ 𝑢⃗.
I.B.4) Soit ℳ : ℰ → ⃗ℰ une application vérifiant la propriété d’équiprojectivité. Montrer alors que ℳ est un
torseur.

On pourra considérer l’application 𝑓 : ⃗ℰ → ⃗ℰ définie pour tout vecteur 𝑢⃗ ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ℳ par 𝑓(𝑢⃗) = ℳ(𝑂′)−ℳ(𝑂)
où 𝑂′ désigne le translaté du point 𝑂 par le vecteur 𝑢⃗ c’est-à-dire ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝑂′ = 𝑢⃗.

II Produits infinis
II.A – Définitions et premières propriétés
Soient 𝑛0 ∈ ℕ et (𝑢𝑛)𝑛⩾𝑛0

une suite de nombres réels ou complexes. Pour 𝑁 ⩾ 𝑛0, on pose

𝑃𝑁 = 𝑢𝑛0
𝑢𝑛0+1 ⋯ 𝑢𝑁 =

𝑁
∏

𝑛=𝑛0

𝑢𝑛

La suite (𝑃𝑁)𝑁⩾𝑛0
est appelée suite des produits partiels associée à (𝑢𝑛)𝑛⩾𝑛0

.
On dit que le produit infini ∏

𝑛⩾𝑛0

𝑢𝑛 converge si la suite (𝑃𝑁)𝑁⩾𝑛0
admet une limite finie non nulle. Cette limite

est notée
+∞

∏
𝑛=𝑛0

𝑢𝑛 et est appelée valeur du produit infini. Si (𝑃𝑁)𝑁⩾𝑛0
est divergente ou de limite nulle, on dit

que le produit infini ∏
𝑛⩾𝑛0

𝑢𝑛 diverge.

II.A.1) Produits téléscopiques

a) Montrer que
𝑁

∏
𝑛=2

(1 − 1
𝑛

) = 1
𝑁

.

En déduire la divergence du produit infini ∏
𝑛⩾2

(1 − 1
𝑛

).

b) Justifier que
𝑁

∏
𝑛=2

(1 − 1
𝑛2 ) = (

𝑁
∏
𝑛=2

𝑛 − 1
𝑛

) (
𝑁

∏
𝑛=2

𝑛 + 1
𝑛

).

En déduire la convergence et la valeur du produit infini ∏
𝑛⩾2

(1 − 1
𝑛2 ).

II.A.2) Conditions nécessaires de convergence
a) Montrer que si ∏

𝑛⩾𝑛0

𝑢𝑛 converge alors pour tout 𝑛 ⩾ 𝑛0, 𝑢𝑛 ≠ 0.
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b) Montrer, en considérant le quotient
𝑃𝑁+1
𝑃𝑁

que si ∏
𝑛⩾𝑛0

𝑢𝑛 converge alors lim
𝑛→+∞

𝑢𝑛 = 1.

c) La condition lim
𝑛→+∞

𝑢𝑛 = 1 est-elle suffisante pour que le produit infini ∏
𝑛⩾𝑛0

𝑢𝑛 converge ?

II.A.3) On suppose dans cette question que (𝑢𝑛)𝑛⩾𝑛0
est une suite de réels strictement positifs.

a) Montrer que le produit infini ∏
𝑛⩾𝑛0

𝑢𝑛 converge si et seulement si la série ∑
𝑛⩾𝑛0

ln(𝑢𝑛) converge. Préciser alors

la relation entre
+∞

∏
𝑛=𝑛0

𝑢𝑛 et
+∞

∑
𝑛=𝑛0

ln(𝑢𝑛).

b) Montrer que si, pour tout 𝑛 ⩾ 𝑛0, 0 < 𝑢𝑛 < 1 alors le produit infini ∏
𝑛⩾𝑛0

(1 − 𝑢𝑛) converge si et seulement

si la série ∑
𝑛⩾𝑛0

𝑢𝑛 converge.

c) Soit 𝑞 un nombre réel appartenant à [0, 1[ quelle est la nature du produit infini ∏
𝑛⩾1

(1 − 𝑞𝑛) ?

II.B – Développement en produit infini de sin(𝜋𝑥)
𝜋𝑥

On se propose dans cette sous-partie de démontrer que

∀𝑥 ∈ ]−1, 1[, sin(𝜋𝑥) = 𝜋𝑥
+∞

∏
𝑛=1

(1 − 𝑥2

𝑛2 )

II.B.1) Expliquer pourquoi il suffit de démontrer cette égalité pour tout 𝑥 ∈ ]0, 1[.

Dans toute la suite de cette sous-partie II.B, 𝑥 est un réel fixé appartenant à l’intervalle ]0, 1[.

II.B.2) Prouver la convergence du produit infini ∏
𝑛⩾1

(1 − 𝑥2

𝑛2 ).

II.B.3)
a) Montrer que pour tout (𝑎, 𝑏) ∈ ℝ2, cos 𝑎 cos 𝑏 = 1

2 (cos(𝑎 + 𝑏) + cos(𝑎 − 𝑏)).
b) On définit la fonction 𝑓, 2𝜋-périodique, par ∀𝑡 ∈ ]−𝜋, 𝜋], 𝑓(𝑡) = cos(𝑥𝑡).
Représenter graphiquement la fonction 𝑓 dans le cas particulier où 𝑥 = 1/2.
Dans le cas général où 𝑥 ∈ ]−1, 1[, démontrer que 𝑓 est continue sur ℝ et 𝐶1 par morceaux.
Calculer les coefficients de Fourier de 𝑓.
c) En déduire, pour tout 𝑡 ∈ [−𝜋, 𝜋], l’égalité

cos(𝑥𝑡) = sin(𝜋𝑥)
𝜋 ( 1

𝑥 +
+∞

∑
𝑛=1

(−1)𝑛2𝑥
𝑥2 − 𝑛2 cos(𝑛𝑡))

d) Pour tout 𝑡 ∈ ℝ tel que sin 𝑡 ≠ 0 on pose cot 𝑡 = cos 𝑡
sin 𝑡

. Montrer que,

𝜋 cot(𝜋𝑥) = 1
𝑥 +

+∞

∑
𝑛=1

2𝑥
𝑥2 − 𝑛2

II.B.4)

a) À l’aide d’un développement limité en 0 de 𝑢 cos 𝑢 − sin 𝑢, calculer lim
𝑡→0

(𝜋 cot(𝜋𝑡) − 1
𝑡
). En déduire la

convergence de l’intégrale 𝐼 =
𝑥

∫
0

(𝜋 cot(𝜋𝑡) − 1
𝑡
) d𝑡.

b) Prouver l’existence et calculer la limite de ln (sin(𝜋𝜖)
𝜋𝜖

) quand 𝜖 tend vers 0.

c) En déduire que 𝐼 = ln (sin(𝜋𝑥)
𝜋𝑥

).

d) Expliquer pourquoi la quantité
+∞

∑
𝑛=𝑁+1

2𝑡
𝑛2 − 𝑡2 est définie pour tout 𝑁 ∈ ℕ∗ et tout 𝑡 ∈ [0, 1].

e) Justifier que lim
𝑁→+∞

+∞

∑
𝑛=𝑁+1

2
𝑛2 − 1

= 0.
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f) Montrer que

∀𝑡 ∈ [0, 1[, ∀𝑁 ∈ ℕ∗, 0 ⩽
+∞

∑
𝑛=𝑁+1

2𝑡
𝑛2 − 𝑡2 ⩽

+∞

∑
𝑛=𝑁+1

2
𝑛2 − 1

g) Montrer que, pour tout 𝑁 ∈ ℕ∗,

∣ln (sin(𝜋𝑥)
𝜋𝑥 ) −

𝑁
∑
𝑛=1

𝑥

∫
0

2𝑡
𝑡2 − 𝑛2 d𝑡∣ ⩽ 𝑥

+∞

∑
𝑛=𝑁+1

2
𝑛2 − 1

h) En déduire le développement en produit infini de sin(𝜋𝑥).
II.B.5) Deux applications
a)

i. Justifier la convergence du produit infini ∏
𝑛⩾1

(1 − 1
4𝑛2 ).

ii. À l’aide du développement en produit infini de sin(𝜋𝑥)
𝜋𝑥

appliqué à un réel 𝑥 bien choisi, donner la

valeur du produit infini ∏
𝑛⩾1

(1 − 1
4𝑛2 ).

b) On introduit la fonction 𝜁 de Riemann donnée par 𝜁(𝑎) =
+∞

∑
𝑛=1

1
𝑛𝑎 .

i. Prouver que 𝜁 est définie sur ]1, +∞[.
ii. Écrire le développement limité à l’ordre 3 en 0 de la fonction 𝑥 ↦ sin(𝜋𝑥).

iii. On trouve dans les travaux d’Euler un « calcul formel » permettant d’obtenir la valeur de 𝜁(2). Il
identifie les termes de degré 3 du développement limité de 𝑥 ↦ sin(𝜋𝑥) et de son développement en produit
infini. Conjecturer la valeur de 𝜁(2) en utilisant cette méthode.

• • • FIN • • •
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