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I Etude d’intégrales généralisées

I.A Divergence de I, pour a < 2

Notons que la fonction f, est toujours continue sur l'intervalle |0, +o00[, donc localement intégrable,

de plus elle est positive, on ne le rappelera plus nécessairement.

I.A.1)

L.A.2)

I.A.3)

Pour a < 0, fq(x) — 0, il n’y a donc pas de probléme de convergence en 0.
xr—

Par ailleurs : z* — 0, et donc fuo(z) ~ x, et enfin: fo(z) — Ho0.
T——+00 +oo T——+00

“+o00
On a donc / fa(z) dz diverge. On peut par exemple utiliser le critére d’équivalence en +o00,

0
la fonction étant positive.

Désormais, on a a > 0, et donc le seul probléme de convergence est en +00. On ne rappelera
pas toujours.

Pour a =0, 2% =1, et : fo(z) = ’

N8

1+sin?x ~

+o00
On a donc / fa(z) dz diverge. On peut par exemple utiliser le critére de comparaison.
0

Ona:0<sin?z<1letdonc:1<1+2%sin?z <1+ 2%

x x
C id : > =20 = 0.
e qui donne : f,(z) = G aosinZs S 1gae > car x

T oo
Or : ~ t dx di < 2.
r 20 o o1 e /1 ) x diverge pour a <

—+00
Ce qui fait que : / fa(z) dz diverge par comparaison.
0

I.B Convergence de 1,

1.B.1)

1.B.2)

“+o00
fa est positive, dons ses primitives sont croissantes, ce qui entraine / fa(x) dx converge si
0

x
et seulement si / fa(t) dt est bornée.
0

C’est a dire si et seulement si la suite / fa(t) dt est bornée, (u,) étant une suite de limite

infinie.

[e.e] n
D’autre part, Z uy, converge si et seulement si la suite (Z uk> est bornée, puisque c’est une

n=1 k=1

série positive.

n (nt3)m (nt3)m 5
Enfin, Zuk = / fa(z)dz = / folz)dz —/ fa(x)dx
k=1 2 0 0

n (n+3)
Les deux suites (Z uk> et < / fa(z) dx) sont donc bornées en méme temps, ce qui
0

k=1
nous permet de conclure :

“+o0o
fa(x) dx converge < Z Uy, converge
n=1

Pour z € [(n— 3)m, (n+ $)7], on a:

(n— 3w x < (n+3)m
14 ((n+ %)W)O{SiHZ.r S 14azesin?r 14 ((n— %)ﬂ)asirﬁx.
Ce qui donne bien : v, < U, < Wy.
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1.B.3) w, =(n+ 5)%/

1.B.4)

I.B.5)

1.B.6)

(nt+3)m 1
(n-Lyr 1+ ((n - %)ﬂ)asin%:

2

dzx.

On pose le changement de variable . = 2 — nm qui donne du = dz et sin?u = sin?z, on

( (n+1) / 2 ! d
rouve : wy, = (n 4 5)w u.
" 2 —z 1+ ((n—2)m)" sin®u
Mais la fonction de u est paire, ce qui donne finalement :
w 2(n—|—1)7r/2 ! du
" 2o 1+ ((n— D)% sinu

En faisant le méme changement de variable et en utilisant la méme symétrie, on obtient aussi
facilement :

1
vn:2(n—;)7r/ a5 du.
0

1+ ((n+ 3)m)" sin?u

Jus

VB

2 1
Dans / —————dx, on fait le changement de variable u = tanz par application de la
o 1+ h?sin*z
2
régle de Bioche. D’ol : dz = du et sinz = —r.
1+ u? 1+ u?

On obtient une intégrale généralisée, nécessairement convergente car on a effectué un change-
ment de variable monotone de classe C' sur une intégrale simple.

Finalement :

™

™

————dr = ——du t = —
/0 1+ h2sin’z . /0 14 (1 + h?)u? [\/ g areran V1 ] 2v1 + h2

Ce qui nous donne en remplagant h par sa valeur :

vn = (2n — )7 et :wy,=2n+ )7
4
2\/1+ +Hm)® 2\/1+ )"
2
n—
v, = 7T ( 2) , et (n_|_ %)aﬂ'a > 1, ce qui donne :
\/1+(n+l)a7To‘
w(n—1) 7% (n — %)( IR,
= = o n N
" VA Dint T Valn+ DS (n+ 1)
3 n—% 1 3

T2 n—% n+1 e
77,2 g_lx X 1 = g_lx 2 X a_q
V2(n+ )27t nt 1 \ntg V2(n+ 127 ntl T 4V2 T (nt1)3
carn > 1.

1
On a donc K = 7 qui convient pour tout n € N* et tout a > 0.
2 1 2 1 2-a 1
T™(n+ 5 m™n+ 35 ™ 2(n+ 3 a 1
Wy, = ( 2) < ( - g2)g < ( - g2)(n_ 1)5—1 T pour n = 2.
\/1—1—(n %) (n—g5)2m2 (n—3)2 (n—1)2

T2 n+3 n—1)\2 722 ) .
Wp, < ( l)g_l X — X T < ( 1)3_1 X 5 x 1 toujours pour n = 2.
n—1)2 - n-—3 n—1)2

5
On a donc K’ = 3 qui convient pour tout n € N* et tout a > 0.

o_a
T2 «a
— Pour a > 4, K— converge car — — 1 > 1,
Z (n o 1)571 2
d’olt Z wy, converge et aussi Z Uy, par comparaison de séries positives.
2% o
— Pour o < 4, Ki diverge car — — 1 < 1

d’olt E Un dlverge et aussi E Uy, par comparaison de séries positives.
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On obtient : Z U, converge < o > 4
+oo
et enfin : fo(z) dx converge & a > 4.
0
I.C Limites de ®
I.C.1) Comme les intégrales convergent, on a bien: 4 < ay < g = fo,(x) = fa,(x) = P(a1) > ®(a2).

1.C.2)

1.C.3)

® est donc bien décroissante.
1

n n

On utilise : v, > K72~ 2

o 1 o n+1 1
dot =Y v = Kn2 2y —— > K7r22/ -
2w ; (k+1)271 1 (t41)27t

k=1
sique de séries et d’intégrales.

o 1 1 1
Finalement : V= Kn? 2 ( — — = >
g;k $—2\2272 (n+1)272

00 9_a
2m)“ 2
La série converge et en passant & la limite : E v = K L

k=1
(n+3)m

n n
Par ailleurs, ka < Zuk = / ’ fo(z)de.

k=1 2

Mais, l'intégrale et la série convergent, d’ot : ka / falz
k=1
| (2m)*3
On obtient enfin : (o) > K-——— — +o0.
5 = 2 a4t

On a donc montré : lim ®(a) = +o0.
a—4+

o 1
wy, < K’7r27771 pour n > 2.
(n—1]2

n

a7

dt par comparaison clas-

o 1 o n 1
D’ou wp < K'n?™ 2 - < K'z* 3 (/ adt+1> ar comparaison
Z k Z(k—l)fil 9 (t_l)ffl p p

k=2
clas&que d’une série et d’une intégrale, décalée ici d’un rang.

a 1 1
On intégre : wp < K'n?™2 (2— - )
o 520 -t

k=2
00 7_[_2 a
La série converge, on passe & la limite : Z wy < 2K’ g
k=2 2
.
Mais : 2K T — 0, en utilisant les croissances comparées.
5 — 2 a—+o0
Par ailleurs, en sortant le premier rang de la relation dul.C.2, on a:
!
0< ul—i-Zwk / fa dx—i-QK%_z

11 suffit malntenant de regarder la limite de :

ﬂig fa(z)dx

T ) S 3
0</ —————dr < 22dx<2/
= 1+axvsin“x 1+ (5)*sin” 2 o 14

s
2 2

Mais:SWL — 0
2 1_|_( )a a—00

Cette deuxiéme limite, associée a la premiére entraine : lim ®(«

a—00

)

=0.
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IT Etude d’une série de fonctions

ITI.A C’est une série positive a termes non nuls. Le critére de d’Alembert est utilisable.

Un1(z)  (n+1)° y n! (n+1 xx 1
un(z) (A1) 7 nr n
x
La série Z s converge toujours.

— 0 < 1.
n+ 1 n—oo

II.B La série est positive, donc : S(z) > uq(z) et donc S(z) > 1
S est donc a valeurs strictement positives.
Pour n > 2, x; < zg = n® <n" = S,(r1) < Sp(z2) = S(x1) < S(x2)

Mais par ailleurs, toujours pour n > 2 :

o0 [e.9] o0 o0

972 _ 971 972 _ 91
Sn(x2) — Sp(x1) = Sa(x2) — Sa(x1) = — > 0= S(x2) —S(z1) > 5
S est donc strictement croissante.
o0
1
I1.C Pour ces calculs on utisera le développement de e® en 1, c’est & dire : e = Z -
n!
=0
o0 1 "
S(O) =) —=e-1,
n=1
e | =1
I S R LB
| | | !
n=1 n' n=1 (n 1) p=0 p:
>

n=1
les 2 séries convergent,

o0 o0

_Oon3_oo n* (n—1)(n 1
D=3 =Y e S w2 o

= Z w3 + 3(2e) — 2e = be, car les 3 séries convergent.
n —3)!

ILLD On a déja montreé que S(:c) > 0.

Zk,: +Z = x)+%+zﬂ

k=1 nt k= n+1 : " k=n+1
n® > EN* n!
)+ (1 (4 k!)
k=n+1
k xr
mais z < 0 et kK > n, donc : <> <1,
n
n! 1 1

et aussi :

Wt Dm+2) kS (et )i

(k—n) facteurs

Notons la notation inhabituelle avec k > n.

On a donc maintenant :

1
n® i
S(z) < Sn-a(z) + (1 + Z ) = Sn-1(@) + (1 + 1”1)
k= n+1
car on retrouve une série geometrlque

Ce qui donne bien : S(x) < (1 + )

1
IL.LE On a la double inégalité : S,,—1(x) < S(x) < Sp—1(x) + = (1 + n)

>
:iLzzL—l+Z;:Z;+27:
nzl(n—l)! nzl(n—l)! nzl(n—l)! 71:2(71—2)! nzl(n—l)!

2e, car
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II.LF

I11.G

II.H

I1.1

n” 1
Sn—1(x) est une valeur approchée a ¢ prés de S(z) dés que : — <1 + > <e.
n n

Sp—1(—1) est une valeur approchée a 1072 prés de S(—1) dés que :
6 1

' 52.5] 53 -4
Et donc S4(—1) convient.

Pour n =5, <1072

Pour z >k, on a : ug(x) > 1, et donc pour x > n, on a : Zuk(x) > n et enfin : S(z) > n,
k=1
ce qui prouve que : lim S(x) = +oo.
T—-+00
27 1
Pour z < 0, on a : S1(z) < S(x) gSl(z)qL? 1+§ .

Or, z2m — 0, et S1(z)

Tr——00

ui(z) = 1.
Ce qui donne : lim S(z)=1.
r——00

La seule chose qui reste & étudier, compte tenu des questions précédentes est la branche infinie en

+o00.
S(z U (z )
Remarquons que : L > M pour tous les n € N*| en majorant la somme par un seul terme.
T x

S(x Up(n
On prend maintenant n = E(z), la partie entiére de z, et donc : Q > n—l(- 1)
x n

car la fonction u,

est croissante.

S(x) n" "

z " nln+1)  (n+1)!
Etudions la suite a,, par le théoréme de d’Alembert :
ant1  (n+ 1)t y (n+1)! n+1 (n+1>"

Ce qui donne : = ay,.

= = — s e
an, (n+2)! nn n+2 n n—oo
@
00

Ceci prouve que : a, — +00, et donc que :
n—oo €T r——+00

On a une branche parabolique de direction Oy.
L’autre branche infinie est une asymptote horizontale d’équation y = 1 en —oo0.

T —00 0 +00

Sx)y| 1/ (e—=1) / 40

On peut tracer le tableau de variations :

bS]

P 00 Lk >k
i ) . x N ot r T
Dauns les conditions annoncées, z € [0,1], et : p € N* on a : kz_o i < kz_o o 2 A +Z_: ol

Mais, comme z € [0, 1], on a : Z ol < p' Z kV toutes ces séries étant convergentes.

k=p
! 1
De plus : % < W, en effet, les coefficient binomiaux sont plus grands que 1.
! —p)!
00 2 P
On majore encore : Z o < E Z m = He
p—1

P
On obtient bien ’encadrement : Z o <et < Z ﬁ Lo

La fonction est continue donc localement 1ntegrable sur ]O, 1], le probléme de convergence est en 0.
t_

Mais 7111]% = 1, la fonction est prolongeable par continuité, c’est un faux probléme, I'intégrale

converge.
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¢
e —1
I1.J On encadre maintenant .

p tk p—1 tk
> ! P
i e —1 ik z? 51

+ x P S P + ef' pour p =

p tk—1<et_1<p_1 k—1 2P .
2GS T S ey rowr
k=1 k=1

1 k=1
On intégre cette inégalité entre 0 et 1 en utilisant : ?dt = et en utilisant également la
0 . * .

linéarité de l'intégrale.

LI | Let —1q Pl e
On obtient : < dt < —_— .
n obtien ;k-k! /O ; 2w pp

p p—1
. . e . . 1 _ s 1 —
Regardons les limites des différents termes : lim kg_l i plggo kg_l = S(-1).

p—o0 k- k!
. . €
Et aussi : lim =0.
p—oo p - p
Let —1
En appliquant le théoréme d’encadrement : / dt = S(-1).
0

— Christophe Caignaert — Lycée Colbert — 59200 Tourcoing — http://c.caignaert.free.fr —



