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Concours communs polytechniques 2009 - TSI   Mathématiques 1 
 
 
 
Exercice:      
 
 
1-a)  ∀n∈IN,    |un(r)| = rn.|cos(nθ)| ≤ rn. 

  La série géométrique ∑ rn converge car |r| < 1. 

  Par comparaison, la série ∑ un(r) est absolument convergente donc convergente. 

 
 
1-b)  ∀n∈IN,    un(r) = Re[(r.eiθ)n]. 

  La série ∑ (r.eiθ)n est une série géométrique de raison r.eiθ avec |r.eiθ| = r < 1. 

  Cette série est donc convergente et a pour somme ∑
n ≥ 0

 (r.eiθ)n = 
1

1 – r.eiθ. 

  Par suite,  ∑
n ≥ 0

 rn.cos(nθ) = Re






1

1 – r.eiθ  = Re






1

1 – r.cosθ – i.r.sinθ  = Re 






1 – r.cosθ + i.r.sinθ

1 – 2r.cosθ + r2  

  D'où  ∑
n ≥ 0

 rn.cos(nθ) = 
1 – r.cosθ

1 – 2r.cosθ + r2 . 

 
 

2-a)  f(r, θ) = 
1 – r.cosθ

1 – 2r.cosθ + r2  existe si et seulement si   1 – 2r.cosθ + r2 ≠ 0. 

  1 – 2r.cosθ + r2 = 0  ⇔  1 – 2r.cosθ + r2.cos2θ + r2.sin2θ = 0   ⇔   (1 – r.cosθ)2 + (r.sinθ)2 = 0 

  Donc   1 – 2r.cosθ + r2 = 0  ⇔   



 
r.sinθ = 0   (a)
r.cosθ = 1   (b) 

  Comme r ≠ 0,   (a)  ⇔  θ ∈ πZZ   ⇔   cosθ = ± 1. 
  Comme |r| < 1, cette condition est incompatible avec (b). 

  Par suite:   ∀r∈]0, 1[,  ∀θ∈IR,   f(r, θ) = 
1 – r.cosθ

1 – 2r.cosθ + r2  existe. 

 
 

2-b)  ∀r∈]0, 1[,  ∀θ∈IR,   1 + 2∑
n ≥ 1

 rn.cos(nθ) = 1 + 2






∑

n ≥ 0

 rn.cos(nθ) – 1  = – 1 + 
2(1 – r.cosθ)

1 – 2r.cosθ + r2 

  ∀r∈]0, 1[,  ∀θ∈IR,   1 + 2∑
n ≥ 1

 rn.cos(nθ) = 
– 1 + 2r.cosθ – r2 + 2 – 2r.cosθ

1 – 2r.cosθ + r2
 

  Donc:   ∀r∈]0, 1[,  ∀θ∈IR,   1 + 2∑
n ≥ 1

 rn.cos(nθ) = 
1 – r2

1 – 2r.cosθ + r2 . 
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Première partie 
 
I-1)  On note (H) l'équation différentielle  sin(2t).f '(t) – cos(2t).f(t) = 0. 
  Si t∈]0, π/2[  alors  2t∈]0, π[  et  sin(2t) > 0  donc  sin(2t) ≠ 0. 

  Sur ]0, π/2[,  (H)  ⇔   f '(t) – 
cos(2t)
sin(2t)

 f(t) = 0. 

  C'est une équation différentielle linéaire homogène du premier ordre résolue en f '. 

  Si a(t) = – 
cos(2t)
sin(2t)

  alors  A(t) = – 
1
2
 ln[sin(2t)] est une primitive de a sur ]0, π/2[ 

  et la solution générale de (H) sur ]0, π/2[ est  f(t) = λ.e–A(t),  λ∈IR. 

  La solution générale de (H) sur ]0, π/2[ est donc f(t) = λ sin(2t),   λ∈IR . 

 
I-2)  On note (E) l'équation différentielle  sin(2t).f '(t) – cos(2t).f(t) = (sin(2t))3/2. 

  Sur ]0, π/2[,  (E)  ⇔   f' '(t) – 
cos(2t)
sin(2t)

 f(t) = sin(2t). 

  C'est une équation différentielle linéaire du premier ordre résolue en f '. 
  On cherche les solutions de (E) sous la forme f(t) = λ(t). sin(2t). 
  Il vient:   λ'(t). sin(2t) = sin(2t)  soit  λ'(t) = 1  et  λ(t) = t + k,   k∈IR. 

  La solution générale de (E) sur ]0, π/2[ est donc  f(t) = (t + k) sin(2t),  k∈IR . 

 
Deuxième partie 
 

II-1.a) d(AM).d(BM) = k2  ⇔   [(x + a)2 + y2][(x – a)2 + y] = k4    (*) 

 
II-1.b) (*)   ⇔   (x2 + y2 + a2 + 2ax)(x2 + y2 + a2 – 2ax) = k4 
  (*)   ⇔   (r2 + a2 + 2ar.cosθ)(r2 + a2 – 2ar.cosθ) = k4 

  (*)   ⇔   (r2 + a2)2 – 4a2.r2.cos2θ = k4 . 

 
II-2.a) Si on pose R = r2, il vient   (R + a2)2 – 4a2.R.cos2θ = k4 
  ou encore  R2 + 2a2.R.(1 – 2cos2θ) + a4 – k4 = 0. 
  Comme  2cos2θ – 1 = cos(2θ), 

  R est solution de l'équation du second degré:   R2 – 2a2.R.cos(2θ) + a4 – k4 = 0   (1). 

 
II-2.b)  →  Pour cette équation du second degré,    ∆ = 4a4.cos2(2θ) – 4a4 + 4k4 = 4[k4 – a4.sin2(2θ)]. 

   Donc (1) admet des racines réelles ssi  k4 ≥ a4.sin2(2θ) . 

  →  Dans ce cas, leur produit vaut  a4 – k4  et  leur somme vaut   2a2.cos(2θ). 

   Pour avoir deux racines positives, on obtient les conditions    



 
a4.sin2(2θ) ≤ k4 ≤ a4

cos(2θ) ≥ 0  . 

 

II-2.c)  Si l'équation admet des racines réelles positives alors R = r2 = a2.cos(2θ) ± k4 – a4.sin2(2θ) ≥ 0 

  donc  r =  ± a2.cos(2θ) ± k4 – a4.sin2(2θ)    

  ce qui donne bien 4 courbes d'équations polaires respectives: 

  r1(θ) = a2.cos(2θ) – k4 – a4.sin2(2θ)  r2(θ) = a2.cos(2θ) + k4 – a4.sin2(2θ) 
  r3(θ) = – r1(θ)     et   r4(θ) = – r2(θ). 
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II-2.d) Il faut tenir compte de la condition cos(2θ) ≥ 0 pour préciser l'intervalle d'étude. 

  →  Les quatre fonctions r i étant π-périodiques, on se restreint à une étude sur [– π/4, π/4]  
   suivie d'une symétrie par rapport au point O (rotation de centre O et d'angle π). 

  →  Ces quatre fonctions étant paires, on peut encore se restreindre à [0, π/4] 
   puis faire une symétrie par rapport à l'axe polaire suivie de la symétrie par rapport au pôle. 
 

II-3.a) Si k = ± a,  il vient  r =  ± a2.cos(2θ) ± a2 1 – sin2(2θ) = ± a cos(2θ) ± cos(2θ) 

  On obtient donc  r = ± a 2cos(2θ)     car la valeur r = 0  est atteinte pour θ = 
π
4
.  

  On retrouve, pour ce cas particulier, les symétries précédentes: 
  →  par rapport à O par π-périodicité, 
  →  par rapport à (O, 

→
i ) par parité, 

  →  par rapport à (O, 
→
j ) par combinaison des deux précédentes. 

 

II-a.b) →  Les symétries permettent de se limiter à l'étude de r = cos(2θ)  sur [0, π/4]. 
  →  Sur cet intervalle, cos(2θ) décroit de 1 à 0 donc r décroit de 1 à 0 en restant positif. 

   Note:   r  ' = – 
sin(2θ)

cos(2θ)
 

  →  Pour θ = 0, la courbe passe par le point I(1, 0). 
   Sa tangente dans le repère mobile est dirigée par 

→
T (0, 1)  

   ce qui donne une tangente verticale. 

  →  Si θ = 
π
4
,  la courbe passe par le pôle et la tangente est la droite θ = 

π
4
. 

  > with(plots):polarplot(sqrt(2*cos(2*t))/sqrt(2),t=-Pi..Pi); 
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Troisième partie 
 

III-1.a)    



 
x = r.cosθ
y = r.sinθ
z = z

  . 

 
III-1.b)  X −→u + Y−→v + Z

→
k = x

→
i  + y

→
j  + z

→
k 

  ⇔   (X.cosθ – Y.sinθ)
→
i  + (X.sinθ + Y.cosθ)

→
j  + Z

→
k = x

→
i  + y

→
j  + z

→
k 

  ⇔   



 
X.cosθ – Y.sinθ = x
X.sinθ + Y.cosθ = y
Z = z

      car   (
→
i , 

→
j , 

→
k) est une famille libre 

  ⇔     



 
X = x.cosθ + y.sinθ
Y = – x.sinθ + y.cosθ
Z = z

  . 

 

III-1.c) 



 

→u = cosθ.
→
i  + sinθ.

→
j

→v = – sinθ.
→
i  + cosθ.

→
j     ⇔       




 

→
i  = cosθ.→u – sinθ.→v

→
j  = sinθ.→u + cosθ.→v  . 

  
∂ →u
∂θ  = – sinθ.

→
i  + cosθ.

→
j  = →v   et  

∂ →v
∂θ  = – cosθ.

→
i  – sinθ.

→
j  = – →u   donc  

∂ →u
∂θ  = →v   et  

∂ →v
∂θ  = – →u . 

 

III-1.d)  La matrice de passage de la base (
→
i , 

→
j , 

→
k) à la base (→u, →v, 

→
k) est P = 









cosθ  – sinθ  0

sinθ  cosθ  0
0  0  1

. 

  C'est la matrice de la rotation d'angle θ et d'axe (O, 
→
k). 

  C'est donc une matrice orthogonale de déterminant égal à +1. 
  Comme (

→
i , 

→
j , 

→
k) est une base orthonormale directe,   

  (→u, →v, 
→
k) est aussi une base orthonormale directe. 

  Par suite (O, →u, →v, 
→
k) est un repère orthonormal direct. 

 
III-2.a)  Il est nécessaire d'exclure les points de l'axe (O, 

→
k)  pour que le calcul de z ait un sens 

  donc on travaillera avec r∈IR*. 

  z = 
x2 – y2

x2 + y2  s'écrit   z = 
r2(cos2θ – sin2θ)

r2    soit  z = cos(2θ) . 

  (Σ) apparaît donc comme l'image de la nappe paramétrée 

     (r, θ)∈IR*×[0, 2π[ →  M 



 
x = r.cosθ
y = r.sinθ
z = cos(2θ)

  . 

 
III-2.b)  z = cos(2θ)  ⇒  – 1 ≤ z ≤ 1. 

Donc (Σ) est contenue dans la partie de IR3 comprise entre les deux plans parallèles 
d'équation z = – 1 et z = 1. 
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III-2.c)  Pour une valeur fixée θ0 de θ dans [0, 2π[, il vient  



 
x = 0 + cos(θ0) × r
y = 0 + sin(θ0) × r
z = cos(2θ0) + 0 × r

  ,   r∈IR*. 

  C'est une représentation paramétrique de la droite (C, 
→
U)  avec  C









0

0
cos(2θ0)

  et  
→
U








cos(θ0)

sin(θ0)
0

 

  privée du point C  et cette droite est parallèle au plan d'équation z = 0. 

  Par suite:  (Σ) est une réunion de droites parallèles au plan d'équation  z = 0 . 

III-3.a)  Dans le repère cylindrique (O, →u(θ), →v(θ), 
→
k),  M(r, θ, z) a pour coordonnées 









r

0
cos(2θ)

. 

  
→
OM = r.→u(θ) + cos(2θ).

→
k   donne   

→
∂M
∂θ (r, θ) = r.→v(θ) – 2.sin(2θ).

→
k  et   

→
∂M
∂r

(r, θ) = →u(θ). 

  
→
N(r, θ) = 

→
∂M
∂r

(r, θ) ∧ 
→
∂M
∂θ (r, θ) = 2.sin(2θ).→v(θ) + r.

→
k  est un vecteur normal à (Σ) au point M. 

  

III-3.b)  P








X

Y
Z

∈ΠM  ⇔   
→
PM









r – X

– Y
cos(2θ) – Z

 ⊥ 
→
N(r, θ)  ⇔   – 2.sin(2θ).Y + r.(cos(2θ) – Z) = 0 

  Une équation de ΠM dans le repère cylindrique est donc:  2.sin(2θ)Y + r.Z = r.cos(2θ) . 

 

III-3.c)  P








X

Y
Z

∈ΠM  ⇔   
1  0  X – r
0  r  Y
0  – 2.sin(2θ)  Z – cos(2θ)

 = 0  ⇔   
r  Y

– 2.sin(2θ)  Z – cos(2θ)  = 0. 

  Ce qui redonne l'équation  2.sin(2θ)Y + r.Z = r.cos(2θ) . 

 
III-3.d)  La droite dont il est question est celle définie à la question III-2.c. 

  Elle a pour représentation paramétrique  



 
x = r.cosθ
y = r.sinθ
z = cos(2θ)

   ,  r∈IR*  dans le repère (O, 
→
i , 

→
j , 

→
k) 

  donc  



 
X = r
Y = 0
Z = cos(2θ)

  ,   r∈IR*   dans le repère cylindrique. 

  ∀r∈IR*,   2.sin(2θ)×0 + r.cos(2θ) = r.cos(2θ)  est une égalité vraie. 
  Donc tous les points de la droite appartiennent à ΠM.  

  Par suite:  cette droite est incluse dans (Σ) ∩ ΠM . 

 

III-4)  Soit M







a

b
a2 – b2

a2 + b2

  avec (a, b) ≠ (0, 0) un point de (Σ), 

  le vecteur 
→
N' = (4ab2, – 4a2b, – (a2 + b2)2) est un vecteur normal à (Σ). 

  P








x

y
z

∈ΠM   ⇔    
→
PM ⊥ 

→
N'  ⇔   4ab2.x – 4a2b.y – (a2 + b2)2.z + a4 – b4 = 0 .  
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Quatrième partie 

IV-1.a) Le point M(r(t), θ(t), z(t)) a pour coordonnées 








r(t)

0
z(t)

 dans le repère cylindrique. 

  M∈(Σ)  ⇔  z(t) = cos[2θ(t)] . 

 
IV-1.b) 

→
OM(t) = r(t).→u + cos[2θ(t)].

→
k. 

  Le point M étant régulier la tangente en M à (Γ) est dirigée par le vecteur 
→
dM
dt

. 

  
→
dM
dt

 = r  '(t).→u + r(t).θ'(t).→v – 2sin[2θ(t)].θ'(t).
→
k. 

  det 








→
dM
dt

, 
→
∂M
∂θ , 

→
∂M
∂r

 = 
r  '  0  1

r.θ'  r  0
– 2.sin(2θ).θ'  – 2.sin(2θ)  0

 = – 2.r.sin(2θ).
θ'  1
θ'  1  = 0 

  Donc la tangente à (Γ) est contenue dans le plan ΠM .  

 
IV-1.c)  Soit θ0 une valeur fixe dans [0, 2π[. 
  (Γ): t∈I → (r(t), θ0, cos(2θ0))  avec r de classe C1 sur I définit un arc de classe C1 tracé sur (Σ). 

  Au point M(t0), la tangente à (Γ) est dirigée par 
→
dM
dt

 = r  '(t).→u  car  (θ0)' = 0. 

  On retrouve la droite définie au III-2.c. 

  Cette droite est donc bien incluse dans (Σ) ∩ ΠM . 

 
IV-2)  

→→→→
OM(θ) = r(θ).→u + cos(2θ).

→
k 

  
→
dM
dθ (θ) = r  '(θ).→u + r(θ).→v – 2.sin(2θ).

→
k  et 

→

d2M
dθ2 (θ) = [r"(θ) – r(θ)]. →u + 2r  '(θ).→v – 4.cos(2θ).

→
k . 

 
IV-3.a) Le point M(θ) est commun aux deux plans PM et ΠM. 
  On travaille dans le repère cylindrique. 

  →  
→
N(r(θ), θ)









0

2.sin(2θ)
r(θ)

 est un vecteur normal à ΠM.  

  →  
→
dM
dθ (θ)









r  '(θ)

r(θ)
– 2.sin(2θ)

 et  
→

d2M
dθ2 (θ)









r"(θ) – r(θ)

2r  '(θ)
– 4.cos(2θ)

 sont deux vecteurs directeurs de PM 

   et ces deux vecteurs sont linéairement indépendants. 

  PM = ΠM  ⇔   





 

→
N(r(θ), θ) ⊥ 

→
dM
dθ (θ)   (3)

→
N(r(θ), θ) ⊥ 

→

d2M
dθ2 (θ)  (4)

   

  Donc    (Γ) est une ligne asymptôtique de (Σ) ssi 





 

→
N(r(θ), θ) ⊥ 

→
dM
dθ (θ)

→
N(r(θ), θ) ⊥ 

→

d2M
dθ2 (θ)

  . 
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IV-3.b) (3) est toujours vraie. 
  (4)  ⇔   sin(2θ).r  '(θ) – cos(2θ).r(θ) = 0  ce qui correspond à l'équation (H) de la partie I. 

  La courbe (Γ) est une ligne asymptotique de (Σ) ssi r est solution de l'équation (H).  

 

IV-3.c) 
→
N(r(θ), θ).

→
dM
dθ (θ) = 0   ⇒  

d
→
N(r(θ), θ)

dθ .
→
dM
dθ (θ) + 

→
N(r(θ), θ).

→

d2M
dθ2 (θ) = 0 

  PM = ΠM  ⇔   





 

→
N(r(θ), θ).

→
dM
dθ (θ) = 0

→
N(r(θ), θ).

→

d2M
dθ2 (θ) = 0

     ⇔   
d

→
N(r(θ), θ)

dθ .
→
dM
dθ (θ) = 0 

  Comme  
d

→
N(r(θ), θ)

dθ  








– 2.sin(2θ)

4.cos(2θ)
r  '(θ)

  et  
→
dM
dθ (θ)









r  '(θ)

r(θ)
– 2.sin(2θ)

 

  on retrouve la condition   

  (Γ) est une ligne asymptôtique de (Σ)  ⇔  r est solution de l'équation (H). 

 
IV-4)  Si (Γ) est une ligne asymptôtique de (Σ), alors la projection de (Γ) sur le plan d'équation z = 0 

  est une courbe d'équation polaire  r(θ) = λ sin(2θ),  λ∈IR . 
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