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Questions de cours

1. On a d’après la formule du binôme de Newton

n∑
k=0

Bk,n(X ) =
n∑

k=0

(
n
k

)
X k (1−X )n−k

= (X + (1−X ))n

= 1 .

2. (a) D’après le cours cette loi s’appelle loi binomiale et ses paramètres sont n et t .

(b) Toujours d’après le cours, on a

E(Xn) = nt

V (Xn) = nt (1− t )

(c) On peut prendre par exemple la variable aléatoire comptant le nombre de pile
d’une suite de n lancers d’une pièce éventuellement truquée dont la probabilité
de tomber sur pile serait t .

3. La famille (1, X , · · · , X n) étant une base de Rn[X ], sa dimension est bien n +1.

4. On dit que deux sous-R-espaces vectoriels E et F d’un espace préhilbertien sont or-
thogonaux pour le produit scalaire ϕ si

∀x ∈ E ,∀y ∈ F, ϕ(x, y) = 0.

5. Par définition il s’agit d’un ensemble de points de l’espace qui sont invariants par
toutes les rotations de R3 d’axe ∆.

Préliminaires

1. On a par un calcul immédiat

B0,2(X ) = (1−X )2 = X 2 −2X +1

B1,2(X ) = 2X (1−X ) =−2X 2 +2X

B2,2(X ) = X 2

et
B0,3(X ) = (1−X )3 =−X 3 +3X 2 −3X +1

B1,3(X ) = 3X (1−X )2 = 3X 3 −6X 2 +3X

B2,3(X ) = 3X 2(1−X ) =−3X 3 +3X 2

B3,3(X ) = X 3
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2. Les calculs précédents montrent que la matrice de la famille
{
B0,2,B1,2,B2,2

}
dans la

base
{
1, X , X 2

}
est  1 0 0

−2 2 0
1 −2 1

 .

Le déterminant de cette matrice vaut donc 2 car elle est triangulaire inférieure et ce
déterminant est donc non nul. Donc cette matrice est une matrice de passage et on
obtient bien :

la famille
{
B0,2,B1,2,B2,2

}
est une base de R2[X ].

3. La question précédente invite à employer le même raisonnement. En effet pour 0 ≤ k ≤
n le degré du plus petit monome non nul de Bk,n(X ) est k et son coefficient est

(
n
k

)
.

Ainsi si l’on considère la matrice de la famille
{
Bk,n

}
0≤k≤n dans la base

{
1, · · · , X n

}
, elle

sera toujours triangulaire inférieure avec tout ses coefficients non nuls sur la diagonale

et donc de déterminant non nul (ce déterminant vaut en fait
∏n

k=0

(
n
k

)
). Donc le même

raisonnement que dans la question précédente montre que

la famille
{
Bk,n

}
0≤k≤n est une base de Rn[X ].

Partie I : Produit scalaire

1. (a) La fonction ϕ est évidemment symétrique . Elle est de plus linéaire en sa pre-
mière variable car l’évaluation en un point et linéaire et donc l’applicationϕ(−,Q)
(où Q est fixé) est une combinaison linéaire d’applications linéaires. Ainsi par
symétrie l’application ϕ est bilinéaire . De plus si P ∈ R2[X ], alors ϕ(P,P ) est
une somme de carré donc est positif. Ainsi ϕ est positive .Enfin supposons que
ϕ(P,P ) = 0 pour P ∈ R2[X ], alors, une somme de terme positifs étant nulle si et
seulement si chacun des termes est nul, il vient

P (0)2 = 0

P (1)2 = 0
1
4

(
P

(1
2

)−P (1)−P (0)
)2 = 0

On en déduit que P (0) = P (1) = P
(1

2

) = 0. Or P est un polynôme de degré 2, et
ayant 3 racines c’est donc nécessairement le polynôme nul.

Ainsi ϕ est bien un produit scalaire sur R2[X ].

(b) On utilise le procédé de Gram-Schmidt. On remarque que

ϕ(X 2, X 2) = 0+1+ 1

4

(
4

1

4
−1−0

)2

= 1
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et donc B2,2(X ) = X 2 est de norme 1. On calcule ensuite

X −ϕ(X , X 2)X 2

Or ϕ(X , X 2) = 1, et finalement

X −ϕ(X , X 2)X 2 = X −X 2

De plus

ϕ(X −X 2, X −X 2) = 0+0+ 1

4

(
4

1

4

)2

= 1

4

donc le vecteur X −X 2 est de norme 1
2 et le deuxième vecteur de la base orthonor-

male obtenue est donc 2(X −X 2) =B1,2(X ). Enfin pour obtenir le dernier vecteur
on calcule

1−ϕ(1,B1,2(X ))B1,2(X )−ϕ(1, X 2)X 2 = 1−4ϕ(1, X −X 2)(X −X 2)−ϕ(1, X 2)X 2

or

ϕ(1, X 2) = 1

ϕ(1, X −X 2) = 1

2

On en déduit que le vecteur 1−4 1
2 (X −X 2)−X 2 = 1−2X +X 2 =B0,2(X ) est ortho-

gonal à B1,2(X ) et B2,2(X ). De plus

ϕ(B0,2(X ),B0,2(X )) = 1

Ainsi le procédé d’orthonormalisation de Gram-Schmidt partant de la famille{
X 2, X ,1

}
donne la famille orthonormale

{
B2,2(X ),B1,2(X ),B0,2(X )

}
.

2. (a) La matrice M est à coefficients réels et symétrique, donc d’après le théorème
spectral elle est diagonalisable et ceci dans une base orthonormale.

(b) On trouve le polynôme caractéristique de M en utilisant les règles de calcul du
déterminant, on obtient χM (X ) = (X −4)(X +2)2. De plus la méthode du pivot de
Gauss nous permet de trouver

ker(M +2id) = Vect

−1
1
−1

 ,

−1
0
1


ker(M −4id) = Vect

1
2
1


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Ainsi les vecteurs

e1 = 1p
3

−1
1
−1


e2 = 1p

2

−1
0
1


e3 = 1p

6

1
2
1


forment une base orthonormale de vecteurs propres de M . On a donc en posant

Q =


−1p

3
−1p

2
1p
6

1p
3

0 2p
6−1p

3
1p
2

1p
6


D =

−2 0 0
0 −2 0
0 0 4


que Q est une matrice de passage d’une base orthonormée (la base canonique de
R3) à une autre. C’est donc une matrice orthogonale et son inverse est sa trans-
posée. On a donc

Q−1 = tQ

=


−1p

3
1p
3

1p
3−1p

2
0 1p

2
1p
6

2p
6

1p
6

 .

et
D =Q−1MQ

(c) Les valeurs propres ainsi que les espaces propres de f sont ceux que l’on a trouvé
pour la matrice M , on en déduit que f admet les valeurs propres −2 de multipli-
cité deux et 4 de multiplicité un, et que en posant

e1(X ) =−B2,2(X )+B1,2(X )−B2,2(X )

e2(X ) =−B2,2(X )+B0,2(X )

e3(X ) =B2,2(X )+2B1,2(X )+B0,2(X )

alors on a
ker( f +2id) = Vect(e1(X ),e2(X ))

ker( f −4id) = Vect(e3(X ))

(d) Les coordonnées des vecteurs e1(X ),e2(X ),e3(X ) dans la base orthonormale{
B2,0(X ),B1,2(X ),B2,2(X )

}
4
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sont données respectivement par les vecteurs

g1 =
−1

1
−1

 , g2 =
−1

0
1

 , g3 =
1

2
1

 .

Or un produit scalaire se calcule comme s’il s’agissait du produit scalaire cano-
nique dès lors que l’on dispose des coordonnées dans une base orthonormale.
Ainsi les vecteurs g1, g2, g3 étant orthogonaux dans R3 euclidien canonique, les
vecteurs e1(X ),e2(X ),e3(X ) sont orthogonaux pour le produit scalaire ϕ, on en
déduit que

les espaces propres de f sont orthogonaux pour ϕ.

(e) On considère l’application suivante

ϕn : Rn[X ]×Rn[X ] → R

(P,Q) 7→
n∑

k=0
αkβk

où P (X ) =
n∑

k=0
αkBk,n(X ) et Q(X ) =

n∑
k=0

βkBk,n(X ) (ces coefficients existent et

sont uniques puisque la famille
{
Bk,n(X )

}
0≤k≤n est une base de Rn[X ] d’après

la question Préliminaire 3). Alors cette application est évidemment symétrique,
bilinéaire et positive. Si ϕn(P,P ) = 0 pour un polynôme P , alors ceci nous donne
que tous les coefficients αk sont nuls puisque la famille

{
Bk,n(X )

}
0≤k≤n est une

base de Rn[X ] d’après la question Préliminaire 3, et donc P est nécessairement
le polynôme nul. Ainsi ϕn est un produit scalaire. De plus il est construit de telle
façon que pour tout i ,k ∈ {0, · · · ,n} on ait ϕn(Bi ,n(X ),Bk,n(X )) = δi ,n .

Il existe un produit scalaire sur Rn[X ] pour lequel la famille
{
Bk,n

}
0≤k≤n est

orthonormale.

Partie II : Une première courbe de Bézier dans le plan.

1. (a) On utilise la définition d’une courbe de Bézier et le résultat de la question 1 des
préliminaires. On a pour tout t ∈ [0,1],

Γ1(t ) =B0,3(t )

(
0
0

)
+B1,3(t )

(
2
2

)
+B2,3(t )

(
1
3

)
+B3,3(t )

(
1
−1

)
=

(
6t 3 −12t 2 +6t
6t 3 −12t 2 +6t

)
+

(−3t 3 +3t 2

−9t 3 +9t 2

)
+

(
t 3

−t 3

)

=
(
6t −9t 2 +4t 3

6t −3t 2 −4t 3

)
(b) On peut donc faire la remarque que la courbe Γ1 n’est autre que la portion de la

courbe Γ2 lorsque le paramètre parcourt uniquement l’intervalle [0,1].
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2. (a) Les fonctions x2 et y2 étant des polynômes, elles sont de classe C ∞ sur R et pour-
ront au cours de l’étude être dérivées autant de fois que nécessaire. On a

∀t ∈R, x ′
2(t ) = 6−18t +12t 2

y ′
2(t ) = 6−6t −12t 2

L’étude des deux trinômes du second degré montre que

x ′
2(t ) = 12

(
t − 1

2

)
(t −1)

y ′
2(t ) =−12

(
t − 1

2

)
(t +1)

Donc leur signe est connu et on obtient les tableaux de variations suivants

t −∞ 1
2 1 +∞

x ′
2(t ) + 0 − 0 +

x2(t ) ↗ 5
4 ↘ 1 ↗

et
t −∞ −1 1

2 +∞
y ′

2(t ) − 0 + 0 −
y2(t ) ↘ −5 ↗ 7

4 ↘
(b) D’après les tableaux de variations obtenus à la question précédente, la courbe Γ2

admet en le point de paramètre t = 1 une tangente verticale et admet en le point
de paramètre t =−1 une tangente horizontale, et ce sont les seuls tels points.

(c) La tangente à Γ2 en t = 0 est la droite dirigée par Γ′2(0) =
(
6
6

)
et passant par Γ2(0) =(

0
0

)
: il s’agit donc de la première bissectrice.

Une équation cartésienne de la tangente à Γ2 en t = 0 est y = x.

(d) D’après les tableaux de variation obtenus à la question 2.a, le point singulier est
le point de paramètre t = 1

2 . On a

x ′′
2

(
1

2

)
=−6, y ′′

2

(
1

2

)
=−18, x ′′′

2

(
1

2

)
= 24, y ′′′

2

(
1

2

)
=−24

Les vecteurs Γ′′2
(1

2

)
et Γ′′′2

(1
2

)
ne sont pas colinéaires, ainsi d’après le cours

il s’agit d’un point de rebroussement de première espèce , et la tangente est la droite

passant par Γ2
(1

2

)
et dirigée par Γ′′2

(1
2

)
. Son équation est donnée par∣∣∣∣ −6 5

4 −x
−18 7

4 − y

∣∣∣∣= 0

soit y −3x =−2.
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1 0 1 2

3

2

1

0

1

2

3

A0

A1

A2

A3

1
tangente au point (0,0)
tangente au point de rebroussement
tangente au point A3

FIGURE 1 – La courbe Γ1

(e) La courbe admet des branches infinies lorsque le paramètre tend vers±∞d’après
le tableau de variation obtenu en 2.b. Or

lim
t→±∞

x2(t )

y2(t )
=−1

et

lim
t→±∞x2(t )+ y2(t ) =−∞

La courbe admet des branches paraboliques de direction asymptotique y =−x.

(f ) La courbe a été représentée sur la figure 1.

Partie III : Un détour par le cas général

1. On a d’après la définition de la courbe de Bézier que

Γ(0) = A0, Γ(1) = An .

7



Correction Maths Epreuve B 2017, Banque PT D. Denoncin

2. La fonction Γ étant polynomiale elle est de classe C ∞ sur son intervalle de définition.
Or

Γ′(0) =
n∑

k=0
B′

k,n(0)
−−−→
O Ak

=−n
−−→
O A0 +n

−−→
O A1

= n
−−−→
A1 A0.

Ce vecteur étant non nul, c’est le vecteur directeur de la tangente en A0 et la tangente

à Γ en A0 étant la droite passant par A0 et dirigée par n
−−−→
A1 A0, on a bien

la tangente à Γ en A0 est la droite (A0 A1).

3. D’après la question Préliminaire 3, il existe
(
p0, · · · , pn

) ∈Rn+1 tel que P (X ) =
n∑

k=0
pi Bk,n(X )

et de même il existe
(
q0, · · · , qn

) ∈ Rn+1 tel que Q(X ) =
n∑

k=0
qi Bk,n(X ). En posant Ai =(

pi

qi

)
, on a bien que la courbeΛ est la courbe de Bézier associée aux points de contrôle

A0, · · · , An .

Il est donc possible de trouver A0, · · · , An tel que la courbeΛ soit la courbe de Bézier
associée à ces points.

Partie IV : Une deuxième courbe de Bézier

1. (a) On sait d’après la partie I I I que le point C1 est à l’intersection des tangentes à
Γ1 en A0 et en A3. Or ces droites ont pour équation x = y et x = 1 (d’après les
questions I I .2.b et I I .2.c).

Ainsi le point C1 a pour coordonnées (1,1).

(b) Par définition d’une courbe de Bézier on a pour tout t ∈ [0,1] :

Γ3(t ) =B0,2(t )

(
0
0

)
+B1,2(t )

(
1
1

)
+B2,2(t )

(
1
−1

)
=

(
2t (1− t )
2t (1− t )

)
+

(
t 2

−t 2

)

=
(

2t − t 2

2t −3t 2

)
.

2. La fonction Γ3 admet des coordonnées en t qui sont des polynômes de degré 2 dont
l’étude est immédiate. On obtient les tableaux de variations suivants :

t 0 1
3 1

x3 0 ↗ 1
y3 0 ↗ 1

3 ↘−1
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1 0 1 2

5

4

3

2

1

0

1

2

3

A0 = C0

A1

A2

A3 = C2

C1

1
tangente au point (0,0)
tangente au point de rebroussement
tangente au point A3

3
tangente horizontale de 3

FIGURE 2 – Les courbes Γ1 et Γ3

avec une tangente horizontale en t = 1
3 et une tangente verticale en t = 1.

3. Le graphique complété est présentée en figure 2.

Partie IV : Une surface de révolution

1. Encore une fois, il s’agit d’appliquer la définition. On a pour t ∈ [0,1] :

Γ4(t ) =B0,3(t )

−3
0
0

+B1,3(t )

−1
1
0

+B2,3(t )

1
1
0

+B3,3(t )

3
0
0


=

3t 3 −9t 2 +9t −3
0
0

+
−3t 3 +6t 2 −3t

3t 3 −6t 2 +3t
0

+
−3t 3 +3t 2

−3t 3 +3t 2

0

+
3t 3

0
0


=

(
6t −3

3(t − t 2)

)

2. La fonction Γ4 est de classe C ∞ sur son intervalle de définition et on a Γ′4
(1

3

)=
6

1
0

 .

Ce vecteur étant non nul c’est lui qui dirige la tangente au point t = 1
3 . De plus la courbe

est située dans le plan z = 0 donc la tangente à Γ4 en t = 1
3 sera contenue dans ce plan,

9
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passera par le point Γ4(1) =
−1

2
3
0

 et sera aussi contenue dans un plan orthogonal à

Γ′4
(1

3

)
, par exemple le plan contenant Γ4

(1
3

)
et orthogonal au vecteur

 1
−6
0

. Ainsi un

système d’équation de cette tangente est donné par{
z = 0

(x − (−1))−6(y − 2
3 ) = 0

c’est-à-dire

{
z = 0

x −6y =−5

3. Soit M = (x, y, z) ∈R3 et notons S la surface en question. Alors, en traduisant le fait que
ce point est sur la surface si et seulement si il existe un point sur A l’axe des abscisses et

un point B sur la méridienne Γ4 tels que
−−→
M A soit orthogonal à

−→
i ,

−→
B A soit orthogonal

à
−→
i et que ||M A||2 = ||B A||2 on a :

(x, y, z) ∈ S ⇔∃t ,λ



〈
x −λ

y

z

 ,


1

0

0


〉

= 0

〈
6t −3−λ
3(t − t 2)

0

 ,


1

0

0


〉

= 0

(x −λ)2 + y2 + z2 = (6t −3−λ)2 + (3(t − t 2))2

⇔∃t ,λ


x =λ
t = 3+λ

6

y2 + z2 = 9(t − t 2)2

⇔∃t ,

{
t = 3+x

6

y2 + z2 = 9(t − t 2)2

⇔ y2 + z2 = 9

(
3+x

6
−

(
3+x

6

)2)2

⇔ y2 + z2 = 1

4
(x2 +9)2

Ainsi une équation cartésienne de cette surface de révolution est y2 + z2 = 1
4 (x2 +9)2
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