Mines PSI 1

Un corrigé

1 Tridiagonalisation.

Q.1.

Q.3.

Comme la base canonique de R™ est orthonormée, le produit scalaire de z,y € R™ vaut (z|y) =
try. Ici,
Hu=u—2utuu = v — 2u|ul|®> = u — 2u = —u

Vo € Vect(u)t, Hv = v — 2uluv = v — 2u(ulv) = v

Remarque : ceci montre que l’endomorphisme canoniquement associé o H est la réflexion ortho-
gonale d’hyperplan Vect(u)*.

. On rappelle que AB = !B'A dés que le produit AB existe. Ici, la transposition étant en outre

linéaire et involutive,
H="T-2"("u)'u = I — 2u'uu

De plus

H? =T — dulu + dvluutu = T — dulu + du|u)|®'u = 1
On a ainsi H ='H = H~! ce qui montre que H est & la fois symétrique et orthogonale.
Par bilinéarité du produit scalaire, on a

_
2(1=m)

1

7(1 — (gle1))

2 _
Jull? = —

(Igl* = 2(gler) + llexl?)) =
Par ailleurs, la base canonique étant orthonormée, v; = (e;|g). On en déduit alors que
lul® =

Remarque : Uhypothése (g,e1) libre permet d’affirmer qu’il existe i > 1 tel que v; # 0 et que
v =|1glI> = X j=27F <1 ce qui donne en particulier 1 —y1 # 0 et assure que u est bien défini.

st — t _t _ 1 2 _ _ 1 _ _ 1-7
On a aussi 'ug =~ (g9 = 'ger) =~z (> = (glen)) = 7= (1 =) = /15

et donc
1-— —e
Hg:g—Zutug:g—2\/7% J ! =e1
2 V2(1-m)
. Soit = ¢ Vect(eq). g = ”71“:1: est unitaire et non colinéaire & e;. En choisissant u = %,
—

question précédente donne
Hz = ||z|Hg = [|z[ley

. Un calcul par blocs donne (H; étant une matrice de Householder, la question 2 donne H 12 =1In-1)

—~2 1 tC
}ﬁ:<czﬁ>:%

—~ —~—1
et on a donc Hy = H; ce qui montrer que
—~ P N
S=H QH;
est semblable a Q On peut méme dire que S représente 'endomorphisme ¢ canoniquement
assoc1e a Q dans la base B formée des colonnes de H; 1 (ces colonnes forment une base puisque
H, 1 est inversible, on vient de le voir). Distinguons maintenant deux cas.



- Si go,1 est nul alors g(eq) est colinéaire a e;. En choisissant Hy de fagon quelconque, le premier

vecteur de B est e; et la premiere colonne de @ représente g(ej) dans B est du type (*,0,...,0).
Comme S est symétrique, la premiére ligne est la méme et on a 0,1 = 71,; = 0 pour i = 2,m
(et donc a fortiori pour i = 3, m).

- Si g21 # 0, la question précédente utilisée avec x = ¢o1 donne une matrice H; telle que
Higo1 = ||g2,1]|€} o €] est le premier vecteur de la base canonique de R™~1. Un cacul par

blocs donne alors
[ ( c tq10Hy )
Hiq1, H1QH;

Par choix de Hy, on a donc 0,1 =01, = 0 pour i = 3,m

Q.6. On vient de voir qu’il existe une matrice de Householder H; de taille m — 1 telle que

* 0 ... 0

H\QH, = H,QH,

0
De méme, H1QH; étant une matrice symétrique d’ordre m — 1, on trouve une matrice de Hou-
seholder Hs de taille m — 2. En posant cette fois
1 00
010
—~ 0 0

=
Hy

0 0
00

on calcule ]/'17\2[/—1'\1@}/1:\1]—/[\2 et on vérifie que 'on obtient une matrice du type

* 0 ... ... 0
* x x 0 0
AAAAA 0 =*
HyH\QH1Hy = 0 g
00

ol S est encore une matrice symétrique. On a ainsi réussi a obtenir de bonnes seconde ligne et
colonne (sans perdre les zéros apparus a ’étape précédente). En poursuivant ainsi (il y a m — 2
—_—

étapes), on obtient des matrices symétriques et orthogonales f/f\l, ..., Hp o telles que
H, o.. HHQH,... H, o

—_ —
est tridiagonale symétrique. Comme H; ... H,,_o admet H,, o ... H; pour inverse, on a bien la
relation de similitude voulue.

Remarque : on pourrait bien siur décrire récursivement la stratégie précédente mais il est difficile
de savoir ce que veul exactement [’énoncé.



2 DMatrices de Jacobi.
Q.7. Tox = Ax donne n équations qui s’écrivent

(b1 —A)é1+a1 =0
Vk € [2,m — 1], ap—1&k—1 + (b — Nk + axkr1 =0
am—lfm—l + (bm - A)fm =0

Supposons, par 'absurde, que &, = 0. Comme a,,—1 # 0, la derniere équation donne §,,—1 = 0.
Comme a,,—2 # 0, la précédente donne alors §,,_o = 0. Le processus (récurrent) se poursuit
jusqu’a exploiter la seconde équation qui, comme a; # 0, donne & = 0. On a alors x = 0 ce qui
est contradictoire avec le fait que = est vecteur propre.

Remarque : on pourrait proprement montrer par récurrence descendante la nullité des &;.

Q.8. Soit A\ € o(Tp) et u,v deux vecteurs propres associés (dont on note uy et v les coordonnées
dans la base canonique). La question précédente montre que u,, et v,, sont non nuls. Par ailleurs,
vpu — upv € ker(Tp — AId) (qui est un espace vectoriel) et sa derniére coordonnée est nulle. La
question précédente montre que v,u — u,v = 0. Ainsi, (u,v) est lie. ker(Ty — AId) est donc une
droite vectorielle (espace non réduit a {0} et ot deux éléments sont liés).

Or, Ty est diagonalisable puisque symétrique réelle. La somme des dimensions des sous-esapces
propres est donc égale a m. Et comme toutes ces dimensions valent 1, on a finalement

card(o(Tp)) =m

3 Paires de Lax.

Q.9. T étant une solution de (5), les «; et 5; sont dérivables sur R puis, par récurrence a l'aide des
relations, de classe C*° sur R.
Rappelons que si E' est un espace vectoriel de dimension finie, un systéme linéaire d’ordre 1
d’inconnue y : R — E est un systéme qui s’écrit Vi € R, v/(¢) = a(t)(y(t)) ol pour tout tout ¢,
a(t) € L(E). Le cours nous indique que si t — a(t) est continue de R dans £(E) alors ’ensemble
des solutions de ce systéme est un espace vectoriel de dimension dim(FE). De plus, si ¢ty € R et
u € F, il existe une unique solution telle que y(ty) = u (probleme de Cauchy).
Ces rappels étant faits, je dis que (6) est un probleme de Cauchy pour un systéeme différentiel
linéaire d’inconnue V' : t € R— V(t) € M, (R) (et donc, ici, E = M,(R)). L’application a du
rappel est celle qui a un réel ¢ associe a(t) : M — U(t)M qui est bien linéaire de E dans E.
Comme ¢ — a(t) est continue (ce qui résulte de la continuité de t — U(¢), provenant elle méme
de la continuité des «;), le probleme (6) admet bien une unique solution.
Remarque : tout s’éclaire quand on comprend qu’il s’agit d’un systéme a m* inconnues qui sont
les fonctions coordonnées v; ; de V. La premiere équation du systéme est, par exemple,

2

V() = urk(t)or(t) = on (t)ua(t)
k=1
Il y a m? telles équations et on est bien dans le cadre du cours. . .
Q.10. Posons W : t+— 'V (t)V(t). W est dérivable sur R et
vt e R, W(t) ="V )V (t) + V)V (¢)
Or, 'V'(t) ='V(#)'U(t) = ='V()U(t) et V'(t) = U(t)V (t). Ainsi,

VteR, W'(t)=0



Q.11.

W est donc constante sur 'intervalle R. Comme W (0) = I, on a ainsi
VteR, 'V(H)V(t)=W(t)=1
ce qui montre que V(t) € Op,(R) pour tout réel ¢t.
Comme (fgh) = f'gh+ fg'h+ fgh', on a
‘vrvy = WTV VTV VTV
= WUTV +'V({UT - TU)V +'VTUV
= 0

le dernier point provenant de antisymétrie de U (). Une fonction a dérivée nulle sur un intervalle
est constante et ainsi

vt e R, 'V()T(H)V (t) = 'V(0)T(0)V(0) = Ty

Comme V() est orthogonale, ceci montre que 7T'(t) est semblable & Ty pour tout ¢. Deux matrices
semblables ayant méme spectre, on a

Vt € R, o(T(t)) = o(Tp)

4 Etude asymptotique.

Q.12.

Q.13.

L est dérivable sur R et
m—1 m
L = 2 OéiOéfi + Z ,Blﬂ;
i=1 i=1

—_

3

m

= 2> a¥(Bi1 - Bi) +2)_Bilaf —al )

=1 =1

En développant, les termes s’éléminent presque tous. Il reste
L' = —20261 + 2Bpa?, =0

L est donc constante sur 'intervalle R :

m—1 m
1
VteR, L(t) = L(0) = ) a?+5 b?
=1 =1

Une somme de carrés étant positive, on a donc

Vk € [1,m], Bi(t)* < 2L(t) = 2L(0)
et donc

vk € [L,m], |Bx(t)] < D = v/2L(0)
Fixons i € [1,m —1]. On a

> Bi(t) =2 (a3(t) — aF (1) = 2(aF (1) — ad(t)) = 207 (t)
j=1

J=1

Intégrons cette égalité sur [0,¢] :

Vvt € R, 2/0 af(t) dt = (B;(t) — B;(0) = Y _(B;(t) = b))



Q.14.

Q.15.

Q.16.

La fonction ¢ fg a2(t) dt est croissante sur R (puisque o7 est positive) et elle est bornée (les
B; le sont). Par théoreme de limite monotone, cette fonction admet une limite finie en +oco et
en —oo. Ainsi, fR oz? existe. Et comme a? > 0, ceci revient a dire que

o? € L'(R)

On montre par récurrence sur ¢ que la propriété H; : “5; admet une limite finie en +00” est vraie
pour tout i € [1,m].
- Initialisation : on a 81(t) = by + 2 f(f a? et Hy est vraie puisque of € LY(R).

- Hérédité : soit i € [2,m] tel que Hy,..., H;_1 soient vraies. On a cette fois
i—1 ‘
B0 = b= Y (50 b +2 [ 2
k=1 0
Comme a? € L' et comme B4, ..., Bi—1 admettent des limites finies en 400, la propriété H;
est vraie elle aussi.
On a

vt € R, Ja(t)ai(t)| = |af (1) (Bir1 (1) — Bi(1)| < 2Dai (1)

Ainsi, o est une fonction continue sur R et majorée en module par une fonction intégrable
sur R. C’est donc aussi une fonction intégrable sur R.
Remarquons que

WGRHAawmmwdu=;mﬂﬂ—ﬁwﬂ=2%@)

On vien de voir que le membre de gauche admet une limite finie en +oo (I'intégrabilité entraine
Iexistence de lintégrale). Il en est donc de méme du membre de droite et o; admet des limites
finie £ et £; en 400 et —oo. Si, par I'absurde, ¢} # 0 alors |[taZ(t)| — +o0o quand t — +00
ce qui indique que a? n’est pas intégrable au voisinage de +o0o et est contradictoire avec ce qui
précede. On a donc

B i) =0
On montre de méme que
t_l}r_noo a;(t) =0
On a T(t) — diag(B{,...,3) quand t — +oo (par exemple pour la norme infinie, le choix de

norme importe peu puisque M,,(R) est de dimension finie). Or, M +— det(M) est continue (par
exemple par multilinéarité en dimension finie ou, plus simplement, par théoremes d’opérations
puisque le déterminant est somme et produit des coefficients de la matrice). On a donc

m

lim det(A\ — T'(t)) = det(M — diag(B; ..., 55)) = [[(A - ;")

t——+o0 -
=1

Par ailleurs, on a vu (question 11) que o(T'(t)) = o(Tp) pour tout ¢ et (question 8) que les valeurs
propres de Ty sont simples et en nombre m. On a donc

VteR, xs(N) = ] (A—»)

s€a(To)
Un passage a la limite donne alors
[Ta-8= 11 -9
=1 s€o(To)



Q.17.

Q.18.

Q.19.

Q.20.

En procédant de méme en —oo, on a donc

[To-8)= 11 &¢-9
=1 s€o(Top)

En identifiant les racines des polynomes on a donc
vVt eR, o(T(t) = o(To) = Bt = B~

Par définition de la borne inférieure, il existe une suite (¢,) d’éléments de A telle que ¢, — T
quand n — 400. o; étant continue, on en déduit que

a; (1) = ngrfoo a;i(ty,) =0

a; ne s’annulant pas sur |0, 7[ (par définition de la borne inférieure) et étant non nulle en 0, elle
est par théoreme des valeurs intermédiaires (qui s’applique puisque «; est continue) du signe de
a; sur tout l'intervalle.

a; ne s’annulant pas sur [0, 7[, les relations (7) donnent

ai(ti = Biv1(t) — Bi(?t)

En intégrant cette relation on en déduit que

vt e [0, 7],

t
0

vt € [0, 7], In(las(®)]) — In(|as(0)]) = / (Bis1(u) — Bi(w)) du

On passe a la valeur absolue et on utilise la postivité de l'intégrale pour en déduire

vt € [0, 7], [In(fei(#)]) — In(le:(0)])] < /Olﬁm(U)ﬁi(U)ldu

t

< / (1B ()] + Bs(w)]) du
0

< 2Dt

< 2Dt

En passant a la limite quand ¢ — 77, on obtient une contradiction (+oo < 2D7) et on a donc
AT = (. On fait le méme raisonnement pour montrer que A~ = ) (on suppose 'inverse, on note
7 la borne supérieure de A~ et on travaille sur [7,0]). On a donc

Vt € R, ay(t) #0

Supposons, par l’absurde, que B;EH > B;+. La question 17 montre que les B,j sont deux a deux
distincts (puisque BT est de cardinal m) et on a donc 5;;1 > ;4. Par définition des limites,

Jto/ VYt = to, Bita(t) > Bi(t)
- Si a; > 0 alors «; est toujours > 0 et les relations (7) donnent
Vt > tg, al(t) >0

a; est donc croissante sur [tg, +0o[, > 0 en ty et de limite nulle en +00, ce qui est impossible.



Q.21.

- Si a; < 0 alors a; est toujours < 0 et les relations (7) donnent
Vt > to, aj(t) <0

a; est donc décroissante sur [tg, +00[, < 0 en tg et de limite nulle en +o00, ce qui est impossible.
Dans tous les cas, on a une contradiction et ainsi

+ +
1 < B

Les suites (Bg) et les (Ag) sont toutes deux ordonnées dans I'ordre décroissant et prennent des
valeurs globalement égales (question 17). On a donc

Vi7 5:;1 = Az

On pourrait bien sir mener une récurrence sur i pour le justifier.

Par définition des limites,
5 > O/ Vvt > S, ,Bl(t) — ,Bi_:,_l(t) >0

Distinguons encore deux cas.
- Sia; > 0 alors «; reste > 0 et (7) donne

Vt > S, al(t) < —day(t)

t > ay(t)ed est donc strictement décroissante sur [S, 4-00[ (sa dérivée est strictement négative)
et si on pose C' = a;(9)e®®

on a
VE> S, 0 < a;t) < Ce?

- Sia; < 0 alors «; reste < 0 et (7) donne

Vt > S, al(t) > —day(t)

t — a;(t)ed est donc strictement croissante sur [, +oo[ (sa dérivée est strictement positive)

et si on pose C' = —a;(5)e’ on a

VE > S, —Ce ™% < a;(t) <0
Dans les deux cas, on a trouvé C > 0 tel que
Vi > S, |ou(t)] < Ce™®

Si on veut des constantes indépendantes de i, il suffit de prendre le mazimum des ces constantes
pour i = 1,m. On fera cette hypothése dans la suite. On a donc

35,C >0/ Vie[l,m], Vt> S, |a;(t)] < Ce*

En utilisant les formules vues en question 14, on a

t
Ba(t) - Bu(s) =2/ o

Vi€ [2,m], Bi(t) — Bils) = — D (Blt) — Bils)) + z/t a?



On fait tendre ¢ vers 400 puis on passe au module :

+oo
h-m)=2 [ at

i—1 100
vie ol - Bl < Y IR0 - sl +2 [ a?
k=1 S

Pour s > S, on peut utiliser le début de la question pour majorer u?. Pour tout s > S, on a
alors )
C
|)\1 — 51(5” < 76_255

i—1 2
vie [2.ml, - Bi(s)] < Y0 18(0)  Bi(o)] + e
k=1

Une récurrence immédiate donne finalement

(Z + 1)02 6—255

Vs> S, Vie[l.m], |\ — Bi(s)| < 5

et on obtient le résultat voulu en posant

(m+1)C?

r_
v= 4]



