
Mines PSI 1

Un corrigé

1 Tridiagonalisation.

Q.1. Comme la base canonique de Rm est orthonormée, le produit scalaire de x, y ∈ Rm vaut (x|y) =
txy. Ici,

Hu = u− 2utuu = u− 2u‖u‖2 = u− 2u = −u

∀v ∈ Vect(u)⊥, Hv = v − 2utuv = v − 2u(u|v) = v

Remarque : ceci montre que l’endomorphisme canoniquement associé à H est la réflexion ortho-
gonale d’hyperplan Vect(u)⊥.

Q.2. On rappelle que tAB = tBtA dès que le produit AB existe. Ici, la transposition étant en outre
linéaire et involutive,

tH = tI − 2t(tu)tu = I − 2utuu

De plus
H2 = I − 4utu+ 4utuutu = I − 4utu+ 4u‖u‖2tu = I

On a ainsi H = tH = H−1 ce qui montre que H est à la fois symétrique et orthogonale.

Q.3. Par bilinéarité du produit scalaire, on a

‖u‖2 =
1

2(1− γ1)
(
‖g‖2 − 2(g|e1) + ‖e1‖2

)
) =

1

1− γ1
(1− (g|e1))

Par ailleurs, la base canonique étant orthonormée, γi = (ei|g). On en déduit alors que

‖u‖2 = 1

Remarque : l’hypothèse (g, e1) libre permet d’affirmer qu’il existe i > 1 tel que γi 6= 0 et que
γ21 = ‖g‖2 −

∑
k≥2 γ

2
k < 1 ce qui donne en particulier 1− γ1 6= 0 et assure que u est bien défini.

On a aussi tug = 1√
2(1−γ1)

(
tgg − tge1

)
= 1√

2(1−γ1)

(
‖g‖2 − (g|e1)

)
= 1√

2(1−γ1)
(1− γ1) =

√
1−γ1
2

et donc

Hg = g − 2utug = g − 2

√
1− γ1

2

g − e1√
2(1− γ1)

= e1

Q.4. Soit x /∈ Vect(e1). g = 1
‖x‖x est unitaire et non colinéaire à e1. En choisissant u = g−e1√

2(1−γ1)
, la

question précédente donne
Hx = ‖x‖Hg = ‖x‖e1

Q.5. Un calcul par blocs donne (H1 étant une matrice de Householder, la question 2 donneH2
1 = Im−1)

Ĥ1
2

=

(
1 tζ
ζ H2

1

)
= Im

et on a donc Ĥ1 = Ĥ1
−1

ce qui montrer que

Ŝ = Ĥ1
−1
Q̂Ĥ1

est semblable à Q̂. On peut même dire que Ŝ représente l’endomorphisme q̂ canoniquement
associé à Q̂ dans la base B formée des colonnes de Ĥ1 (ces colonnes forment une base puisque

Ĥ1 est inversible, on vient de le voir). Distinguons maintenant deux cas.
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- Si q2,1 est nul alors q(e1) est colinéaire à e1. En choisissant H1 de façon quelconque, le premier

vecteur de B est e1 et la première colonne de Q̂ représente q(e1) dans B est du type (∗, 0, . . . , 0).
Comme Ŝ est symétrique, la première ligne est la même et on a σ̂i,1 = σ̂1,i = 0 pour i = 2,m
(et donc a fortiori pour i = 3,m).

- Si q2,1 6= 0, la question précédente utilisée avec x = q2,1 donne une matrice H1 telle que
H1q2,1 = ‖q2,1‖e′1 où e′1 est le premier vecteur de la base canonique de Rm−1. Un cacul par
blocs donne alors

Ŝ =

(
c tq1,2H1

H1q1,2 H1QH1

)
Par choix de H1, on a donc σ̂i,1 = σ̂1,i = 0 pour i = 3,m

Q.6. On vient de voir qu’il existe une matrice de Householder H1 de taille m− 1 telle que

Ĥ1Q̂Ĥ1 =



∗ ∗ 0 . . . . . . 0
∗
0
... H1QH1
...
0


De même, H1QH1 étant une matrice symétrique d’ordre m− 1, on trouve une matrice de Hou-
seholder H2 de taille m− 2. En posant cette fois

Ĥ2 =



1 0 0 . . . . . . 0
0 1 0 . . . . . . 0
0 0
...

... H2

0 0
0 0


on calcule Ĥ2Ĥ1Q̂Ĥ1Ĥ2 et on vérifie que l’on obtient une matrice du type

Ĥ2Ĥ1Q̂Ĥ1Ĥ2 =



∗ ∗ 0 . . . . . . 0
∗ ∗ ∗ 0 . . . 0
0 ∗
... 0 S
...

...
0 0


où S est encore une matrice symétrique. On a ainsi réussi à obtenir de bonnes seconde ligne et
colonne (sans perdre les zéros apparus à l’étape précédente). En poursuivant ainsi (il y a m− 2

étapes), on obtient des matrices symétriques et orthogonales Ĥ1, . . . , Ĥm−2 telles que

Ĥm−2 . . . Ĥ1Q̂Ĥ1 . . . Ĥm−2

est tridiagonale symétrique. Comme Ĥ1 . . . Ĥm−2 admet Ĥm−2 . . . Ĥ1 pour inverse, on a bien la
relation de similitude voulue.
Remarque : on pourrait bien sûr décrire récursivement la stratégie précédente mais il est difficile
de savoir ce que veut exactement l’énoncé.
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2 Matrices de Jacobi.

Q.7. T0x = λx donne n équations qui s’écrivent
(b1 − λ)ξ1 + a1 = 0
∀k ∈ [2,m− 1], ak−1ξk−1 + (bk − λ)ξk + akξk+1 = 0
am−1ξm−1 + (bm − λ)ξm = 0

Supposons, par l’absurde, que ξm = 0. Comme am−1 6= 0, la dernière équation donne ξm−1 = 0.
Comme am−2 6= 0, la précédente donne alors ξm−2 = 0. Le processus (récurrent) se poursuit
jusqu’à exploiter la seconde équation qui, comme a1 6= 0, donne ξ1 = 0. On a alors x = 0 ce qui
est contradictoire avec le fait que x est vecteur propre.
Remarque : on pourrait proprement montrer par récurrence descendante la nullité des ξi.

Q.8. Soit λ ∈ σ(T0) et u, v deux vecteurs propres associés (dont on note uk et vk les coordonnées
dans la base canonique). La question précédente montre que un et vn sont non nuls. Par ailleurs,
vnu− unv ∈ ker(T0 − λId) (qui est un espace vectoriel) et sa dernière coordonnée est nulle. La
question précédente montre que vnu− unv = 0. Ainsi, (u, v) est liée. ker(T0− λId) est donc une
droite vectorielle (espace non réduit à {0} et où deux éléments sont liés).
Or, T0 est diagonalisable puisque symétrique réelle. La somme des dimensions des sous-esapces
propres est donc égale à m. Et comme toutes ces dimensions valent 1, on a finalement

card(σ(T0)) = m

3 Paires de Lax.

Q.9. T étant une solution de (5), les αi et βi sont dérivables sur R puis, par récurrence à l’aide des
relations, de classe C∞ sur R.
Rappelons que si E est un espace vectoriel de dimension finie, un système linéaire d’ordre 1
d’inconnue y : R→ E est un système qui s’écrit ∀t ∈ R, y′(t) = a(t)(y(t)) où pour tout tout t,
a(t) ∈ L(E). Le cours nous indique que si t 7→ a(t) est continue de R dans L(E) alors l’ensemble
des solutions de ce système est un espace vectoriel de dimension dim(E). De plus, si t0 ∈ R et
u ∈ E, il existe une unique solution telle que y(t0) = u (problème de Cauchy).
Ces rappels étant faits, je dis que (6) est un problème de Cauchy pour un système différentiel
linéaire d’inconnue V : t ∈ R 7→ V (t) ∈Mn(R) (et donc, ici, E =Mn(R)). L’application a du
rappel est celle qui à un réel t associe a(t) : M 7→ U(t)M qui est bien linéaire de E dans E.
Comme t 7→ a(t) est continue (ce qui résulte de la continuité de t 7→ U(t), provenant elle même
de la continuité des αi), le problème (6) admet bien une unique solution.
Remarque : tout s’éclaire quand on comprend qu’il s’agit d’un système à m2 inconnues qui sont
les fonctions coordonnées vi,j de V . La première équation du système est, par exemple,

v′1,1(t) =

m∑
k=1

u1,k(t)vk,1(t) = α1(t)v2(t)

Il y a m2 telles équations et on est bien dans le cadre du cours. . .

Q.10. Posons W : t 7→ tV (t)V (t). W est dérivable sur R et

∀t ∈ R, W ′(t) = tV ′(t)V (t) + tV (t)V ′(t)

Or, tV ′(t) = tV (t)tU(t) = −tV (t)U(t) et V ′(t) = U(t)V (t). Ainsi,

∀t ∈ R, W ′(t) = 0
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W est donc constante sur l’intervalle R. Comme W (0) = I, on a ainsi

∀t ∈ R, tV (t)V (t) = W (t) = I

ce qui montre que V (t) ∈ Om(R) pour tout réel t.

Q.11. Comme (fgh)′ = f ′gh+ fg′h+ fgh′, on a

(tV TV )′ = tV ′TV + tV T ′V + tV TV ′

= tV tUTV + tV (UT − TU)V + tV TUV

= 0

le dernier point provenant de l’antisymétrie de U(t). Une fonction à dérivée nulle sur un intervalle
est constante et ainsi

∀t ∈ R, tV (t)T (t)V (t) = tV (0)T (0)V (0) = T0

Comme V (t) est orthogonale, ceci montre que T (t) est semblable à T0 pour tout t. Deux matrices
semblables ayant même spectre, on a

∀t ∈ R, σ(T (t)) = σ(T0)

4 Etude asymptotique.

Q.12. L est dérivable sur R et

L′ = 2
m−1∑
i=1

αiα
′
i +

m∑
i=1

βiβ
′
i

= 2

m−1∑
i=1

α2
i (βi+1 − βi) + 2

m∑
i=1

βi(α
2
1 − α2

i−1)

En développant, les termes s’éléminent presque tous. Il reste

L′ = −2α2
0β1 + 2βmα

2
m = 0

L est donc constante sur l’intervalle R :

∀t ∈ R, L(t) = L(0) =
m−1∑
i=1

a2i +
1

2

m∑
i=1

b2i

Une somme de carrés étant positive, on a donc

∀k ∈ [1,m], βk(t)
2 ≤ 2L(t) = 2L(0)

et donc
∀k ∈ [1,m], |βk(t)| ≤ D =

√
2L(0)

Q.13. Fixons i ∈ [1,m− 1]. On a

i∑
j=1

β′j(t) = 2

i∑
j=1

(α2
j (t)− α2

j−1(t)) = 2(α2
i (t)− α2

0(t)) = 2α2
i (t)

Intégrons cette égalité sur [0, t] :

∀t ∈ R, 2

∫ t

0
α2
i (t) dt =

i∑
j=1

(βj(t)− βj(0)) =
i∑

j=1

(βj(t)− bj)
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La fonction t 7→
∫ t
0 α

2
i (t) dt est croissante sur R (puisque α2

i est positive) et elle est bornée (les
βj le sont). Par théorème de limite monotone, cette fonction admet une limite finie en +∞ et
en −∞. Ainsi,

∫
R α

2
i existe. Et comme α2

i ≥ 0, ceci revient à dire que

α2
i ∈ L1(R)

Q.14. On montre par récurrence sur i que la propriété Hi : “βi admet une limite finie en ±∞” est vraie
pour tout i ∈ [1,m].
- Initialisation : on a β1(t) = b1 + 2

∫ t
0 α

2
1 et H1 est vraie puisque α2

1 ∈ L1(R).
- Hérédité : soit i ∈ [2,m] tel que H1, . . . ,Hi−1 soient vraies. On a cette fois

βi(t) = bi −
i−1∑
k=1

(βk(t)− bk) + 2

∫ t

0
α2
i

Comme α2
i ∈ L1 et comme β1, . . . , βi−1 admettent des limites finies en ±∞, la propriété Hi

est vraie elle aussi.

Q.15. On a
∀t ∈ R, |αi(t)α′i(t)| = |α2

i (t)(βi+1(t)− βi(t))| ≤ 2Dα2
i (t)

Ainsi, αiα
′
i est une fonction continue sur R et majorée en module par une fonction intégrable

sur R. C’est donc aussi une fonction intégrable sur R.
Remarquons que

∀t ∈ R,
∫ t

0
αi(u)α′i(u) du =

1

2
(α2

i (t)− α2
i (0)) =

1

2
α2
i (t)

On vien de voir que le membre de gauche admet une limite finie en ±∞ (l’intégrabilité entrâıne
l’existence de l’intégrale). Il en est donc de même du membre de droite et αi admet des limites
finie `+i et `−i en +∞ et −∞. Si, par l’absurde, `+i 6= 0 alors |tα2

i (t)| → +∞ quand t → +∞
ce qui indique que α2

i n’est pas intégrable au voisinage de +∞ et est contradictoire avec ce qui
précède. On a donc

lim
t→+∞

αi(t) = 0

On montre de même que
lim

t→−∞
αi(t) = 0

Q.16. On a T (t) 7→ diag(β+1 , . . . , β
+
m) quand t → +∞ (par exemple pour la norme infinie, le choix de

norme importe peu puisqueMm(R) est de dimension finie). Or, M 7→ det(M) est continue (par
exemple par multilinéarité en dimension finie ou, plus simplement, par théorèmes d’opérations
puisque le déterminant est somme et produit des coefficients de la matrice). On a donc

lim
t→+∞

det(λI − T (t)) = det(λI − diag(β+1 , . . . , β
+
m)) =

m∏
i=1

(λ− β+i )

Par ailleurs, on a vu (question 11) que σ(T (t)) = σ(T0) pour tout t et (question 8) que les valeurs
propres de T0 sont simples et en nombre m. On a donc

∀t ∈ R, χt(λ) =
∏

s∈σ(T0)

(λ− s)

Un passage à la limite donne alors

m∏
i=1

(λ− β+i ) =
∏

s∈σ(T0)

(λ− s)
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En procédant de même en −∞, on a donc

m∏
i=1

(λ− β−i ) =
∏

s∈σ(T0)

(λ− s)

Q.17. En identifiant les racines des polynômes on a donc

∀t ∈ R, σ(T (t)) = σ(T0) = B+ = B−

Q.18. Par définition de la borne inférieure, il existe une suite (tn) d’éléments de A+ telle que tn → τ
quand n→ +∞. αi étant continue, on en déduit que

αi(τ) = lim
n→+∞

αi(tn) = 0

αi ne s’annulant pas sur ]0, τ [ (par définition de la borne inférieure) et étant non nulle en 0, elle
est par théorème des valeurs intermédiaires (qui s’applique puisque αi est continue) du signe de
ai sur tout l’intervalle.

Q.19. αi ne s’annulant pas sur [0, τ [, les relations (7) donnent

∀t ∈ [0, τ [,
α′i(t)

αi(t)
= βi+1(t)− βi(t)

En intégrant cette relation on en déduit que

∀t ∈ [0, τ [, ln(|αi(t)|)− ln(|αi(0)|) =

∫ t

0
(βi+1(u)− βi(u)) du

On passe à la valeur absolue et on utilise la postivité de l’intégrale pour en déduire

∀t ∈ [0, τ [, |ln(|αi(t)|)− ln(|αi(0)|)| ≤
∫ t

0
|βi+1(u)− βi(u)| du

≤
∫ t

0
(|βi+1(u)|+ |βi(u)|) du

≤ 2Dt

≤ 2Dτ

En passant à la limite quand t → τ−, on obtient une contradiction (+∞ ≤ 2Dτ) et on a donc
A+ = ∅. On fait le même raisonnement pour montrer que A− = ∅ (on suppose l’inverse, on note
τ la borne supérieure de A− et on travaille sur [τ, 0[). On a donc

∀t ∈ R, αi(t) 6= 0

Q.20. Supposons, par l’absurde, que β+i+1 ≥ βi+. La question 17 montre que les β+k sont deux à deux
distincts (puisque B+ est de cardinal m) et on a donc β+i+1 > βi+. Par définition des limites,

∃ t0/ ∀t ≥ t0, βi+1(t) > βi(t)

- Si ai > 0 alors αi est toujours > 0 et les relations (7) donnent

∀t ≥ t0, α′i(t) > 0

αi est donc croissante sur [t0,+∞[, > 0 en t0 et de limite nulle en +∞, ce qui est impossible.
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- Si ai < 0 alors αi est toujours < 0 et les relations (7) donnent

∀t ≥ t0, α′i(t) < 0

αi est donc décroissante sur [t0,+∞[, < 0 en t0 et de limite nulle en +∞, ce qui est impossible.
Dans tous les cas, on a une contradiction et ainsi

β+i+1 < β+i

Les suites (βk) et les (λk) sont toutes deux ordonnées dans l’ordre décroissant et prennent des
valeurs globalement égales (question 17). On a donc

∀i, β+i+1 = λi

On pourrait bien sûr mener une récurrence sur i pour le justifier.

Q.21. Par définition des limites,

∃S > 0/ ∀t ≥ S, βi(t)− βi+1(t) ≥ δ

Distinguons encore deux cas.
- Si ai > 0 alors αi reste > 0 et (7) donne

∀t ≥ S, α′i(t) ≤ −δαi(t)

t 7→ αi(t)e
δt est donc strictement décroissante sur [S,+∞[ (sa dérivée est strictement négative)

et si on pose C = αi(S)eδS on a

∀t > S, 0 ≤ αi(t) < Ce−δt

- Si ai < 0 alors αi reste < 0 et (7) donne

∀t ≥ S, α′i(t) ≥ −δαi(t)

t 7→ αi(t)e
δt est donc strictement croissante sur [S,+∞[ (sa dérivée est strictement positive)

et si on pose C = −αi(S)eδS on a

∀t > S, −Ce−δt < αi(t) ≤ 0

Dans les deux cas, on a trouvé C > 0 tel que

∀t > S, |αi(t)| < Ce−δt

Si on veut des constantes indépendantes de i, il suffit de prendre le maximum des ces constantes
pour i = 1,m. On fera cette hypothèse dans la suite. On a donc

∃S,C > 0/ ∀i ∈ [1,m], ∀t > S, |αi(t)| < Ce−δt

En utilisant les formules vues en question 14, on a

β1(t)− β1(s) = 2

∫ t

s
α2
1

∀i ∈ [2,m], βi(t)− βi(s) = −
i−1∑
k=1

(βk(t)− βk(s)) + 2

∫ t

s
α2
i

7



On fait tendre t vers +∞ puis on passe au module :

|λ1 − β1(s)| = 2

∫ +∞

s
α2
1

∀i ∈ [2,m], |λi − βi(s)| ≤
i−1∑
k=1

|βk(t)− βk(s)|+ 2

∫ +∞

s
α2
i

Pour s > S, on peut utiliser le début de la question pour majorer u2i . Pour tout s > S, on a
alors

|λ1 − β1(s)| <
C2

δ
e−2δs

∀i ∈ [2,m], |λi − βi(s)| <
i−1∑
k=1

|βk(t)− βk(s)|+
C2

δ
e−2δs

Une récurrence immédiate donne finalement

∀s > S, ∀i ∈ [1..m], |λi − βi(s)| <
(i+ 1)C2

δ
e−2δs

et on obtient le résultat voulu en posant

C ′ =
(m+ 1)C2

δ
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