Mines-Ponts 2002 — PSI, épreuve 1 (3h) — corrigé

PARTIE I

Question I.1

Rayon de convergence

I.1.a. Pour $f_1: t\mapsto a,\ u_n=a^n,\ (\sum a^nx^n)$ est de rayon de convergence 1/|a| et de somme $F_1: x\mapsto \frac{1}{1-ax}$. Pour $f_2: t\mapsto at,\ u_n=\frac{a^n}{n!}$, la série entière $(\sum \frac{a^n}{n!}x^n)$ est de rayon de convergence infini et $F_2: x\mapsto e^{ax}$. Pour $f_3: t\mapsto pt-1,\ u_n=0$ si $n\geqslant p$, donc la série entière associée est de rayon de convergence infini. En outre, si $n\leqslant p-1$, on a $u_n=\prod_{k=1}^n(\frac{p}{k}-1)=\prod_{k=1}^n\frac{p-k}{k}=\binom{p-1}{n}$, de sorte que $F_3: x\mapsto (1+x)^{p-1}$.

I.1.b. Si f s'annule en un point 1/k où $k \in \mathbb{N}^*$, alors $u_n = 0$ dès que $n \ge k$ et le rayon de convergence est infini. Sinon, le critère de d'Alembert nous conduit à calculer $\left|\frac{u_{n+1}}{u_n}\right| = |f(\frac{1}{n+1})| \to |f(0)|$ car f est continue en 0. Ainsi, si f(0) = 0, le rayon de convergence est infini, et sinon il vaut $\frac{1}{|f(0)|}$.

Question I.2

Suite de terme général u_n

I.2.a. f étant continue sur [0,1], il existe $\eta > 0$ tel que $0 \le x \le \eta \Rightarrow f(x) > \frac{1}{2}f(0) > 0$. Alors, dès que $n \geqslant N = 1 + \lfloor 1/\eta \rfloor, \frac{u_{n+1}}{u_n} > 0$ de sorte qu'à partir du rang N, u_n a le signe de u_N .

I.2.b. Cas où $0 \le |f(0)| < 1$. Soit $q = \frac{1+|f(0)|}{2} < 1$. Par continuité de f à l'origine, il existe $\eta > 0$ tel que $0 \leqslant x \leqslant \eta \Rightarrow |f(x)| \leqslant q$. On en déduit l'existence d'un rang N tel que $n \geqslant N \Rightarrow \left| \frac{u_{n+1}}{u_n} \right| \leqslant q$. Par une récurrence évidente, on en déduit que si $n \ge N$ on a $|u_n| \le q^{n-N} |u_N|$ donc $\lim u_n = 0$.

Cas où |f(0)| > 1. De façon analogue, posant $q = \frac{1 + |f(0)|}{2} > 1$, il existe un rang N tel que pour $n \ge N$ on a $\left|\frac{u_{n+1}}{u_n}\right| \geqslant q \text{ donc } |u_n| \geqslant q^{n-N}|u_N| \text{ donc } \lim |u_n| = +\infty.$

Question I.3

Série de terme général u_n Comme f est de classe C^2 sur [0,1], au voisinage de 0 on peut écrire $f(x)=1+\beta x+O(x^2)$. Alors $w_n=\ln\frac{v_n}{v_{n-1}}=\ln\frac{u_n}{u_{n-1}}-\beta(\ln n-\ln(n-1))=\ln f(\frac{1}{n})+\beta\ln(1-\frac{1}{n})=\frac{\beta}{n}-\frac{\beta}{n}+O(\frac{1}{n^2})=O(\frac{1}{n^2})$ de sorte que la série $(\sum w_n)$ est absolument convergente.

Notons S la somme de cette série : $S = \lim(\ln v_n - \ln v_0) = \lim(\ln u_n - \beta \ln n)$ donc $\lim \frac{u_n}{n\beta} = e^S = L > 0$.

Question I.4

Fonction F

I.4.a. On a vu que le rayon de convergence de la série entière considérée vaut 1.

 D_F contient donc au moins l'intervalle]-1,+1[. Étudions la convergence de $(\sum u_n)$ et de $(\sum (-1)^n u_n)$.

 u_n est à termes positifs donc les séries $(\sum u_n)$ et $(\sum n^{\beta})$ sont de mêmes natures : elles convergent si et seulement

Si $\beta < -1$, la série $(\sum (-1)^n u_n)$ est absolument convergente. Si $\beta \ge 0$, (u_n) ne tend pas vers 0 et donc la série diverge. Reste à considérer le cas où $-1 \le \beta < 0$. La suite (u_n) est à valeurs positives, tend vers 0 puisque $\beta < 0$ et est décroissante au moins à partir d'un certain rang car $\frac{u_{n+1}}{u_n} = f(\frac{1}{n+1}) = 1 + \frac{\beta}{n+1} + o(\frac{1}{n})$ devient plus petit que 1. Le critère spécial des séries alternées s'applique et conclut à la convergence de la série.

Finalement, si $\beta < -1$, $D_F = [-1, +1]$; si $-1 \le \beta < 0$, $D_F = [-1, +1[$; et si $0 \le \beta$, $D_F =]-1, +1[$.

I.4.b. Ici $u_n = \frac{(n-\alpha)(n-1-\alpha)\dots(1-\alpha)}{n!} = (-1)^n \frac{(\alpha-1)(\alpha-2)\dots(\alpha-n)}{n!}$, le rayon de convergence vaut 1 et on reconnaît le développement en série entière de $F: x \mapsto (1-x)^{\alpha-1}$.

PARTIE II

Question II.1

Propriétés de la fonction g

II.1.a. Au voisinage de 0, si $x \neq 0$, on dispose de $g(x) = \frac{1}{\tan \pi x} - \frac{1}{\pi x} \sim \frac{\pi x - \tan \pi x}{\pi^2 x^2} \sim \frac{\frac{\pi^3 x^3}{3}}{\pi^2 x^2} = \frac{\pi x}{3}$, donc g est continue en 0 et donc évidemment sur]-1,+1[.

Une primitive de g sur]-1,0[ou sur]0,+1[est $G(x)=\frac{1}{\pi}\ln\left|\frac{\sin\pi x}{x}\right|,$ de sorte que $I_{\alpha}=G(\alpha)-\lim_{0}G=\frac{1}{\pi}\ln\frac{\sin\pi\alpha}{\pi\alpha}.$

II.1.b. h est clairement continue par morceaux et C^1 par morceaux sur \mathbb{R} , on en déduit que sa série de Fourier converge simplement sur \mathbb{R} tout entier vers la fonction 2π -périodique \tilde{h} qui coïncide avec h mais telle que $\tilde{h}(0)=\tilde{h}(2\pi)=rac{1}{2}(1+e^{-2i\pi\alpha}).$ Les coefficients de Fourier de h s'écrivent, avec les notations standard :

$$\forall n \in \mathbb{Z}, c_n(h) = \frac{1}{2\pi} \int_0^{2\pi} e^{-i(n+\alpha)t} dt = \frac{1}{2i\pi(n+\alpha)} (1 - e^{-2i\pi(n+\alpha)}) = \frac{1}{2i\pi(n+\alpha)} (1 - e^{-2i\pi\alpha}).$$

En particulier en 0:

$$\begin{split} \tilde{h}(0) &= \frac{1}{2}(1+e^{-2i\pi\alpha}) = \sum_{n=-\infty}^{+\infty} \frac{1}{2i\pi(n+\alpha)}(1-e^{-2i\pi\alpha}) \\ &= \frac{1-e^{-2i\pi\alpha}}{2i\pi} \left(\frac{1}{\alpha} + \sum_{n=1}^{+\infty} \left(\frac{1}{n+\alpha} + \frac{1}{-n+\alpha}\right)\right) \\ &= \frac{1-e^{-2i\pi\alpha}}{2i\pi} \left(\frac{1}{\alpha} + \sum_{n=1}^{+\infty} \frac{2\alpha}{\alpha^2 - n^2}\right), \end{split}$$

de sorte que

$$\frac{1}{\pi} \sum_{n=1}^{+\infty} \frac{2\alpha}{\alpha^2 - n^2} = i \frac{1 + e^{-2i\pi\alpha}}{1 - e^{-2i\pi\alpha}} - \frac{1}{\pi\alpha} = \frac{\cos \pi\alpha}{\sin \pi\alpha} - \frac{1}{\pi\alpha} = g(\alpha).$$

II.1.c. La série de terme général $\frac{2t}{t^2-n^2}$ converge normalement donc uniformément sur $[0,\alpha]$ pour tout α fixé dans]-1,+1[, puisque $\left|\frac{2t}{t^2-n^2}\right| \leqslant \frac{2|\alpha|}{n^2-\alpha^2} = O(1/n^2)$.

On en déduit qu'on peut intégrer terme à terme la somme de la série, et que

$$I_{\alpha} = \frac{1}{\pi} \sum_{n=1}^{+\infty} \int_{0}^{\alpha} \frac{2t}{t^{2} - n^{2}} dt = \frac{1}{\pi} \sum_{n=1}^{+\infty} \left[\ln|t^{2} - n^{2}| \right]_{0}^{\alpha} = \frac{1}{\pi} \sum_{n=1}^{+\infty} \ln(1 - \frac{\alpha^{2}}{n^{2}}).$$

Comparant avec le résultat du a. on obtient : $\frac{\sin \pi \alpha}{\pi \alpha} = \prod_{n=0}^{+\infty} (1 - \frac{\alpha^2}{n^2})$.

Question II.2

On écrit : $u_n = \prod_{k=1}^n (1 - \frac{\alpha^2}{k^2})$ d'où la convergence de la suite (u_n) , de limite $\frac{\sin \pi \alpha}{\pi \alpha}$

PARTIE III

Question III.1

Existence des fonctions G_n et G

Existence des fonctions G_n et G or a unique description of G n'est autre que la fonction G d'Euler : elle est bien définie sur $]0, +\infty[$, car au voisinage de $0, t^{x-1}e^{-t} \sim t^{x-1}e^{-t}$ et x-1 < -1 d'une part, et au voisinage de $+\infty, t^{x-1}e^{-t} \ll t^{-2}$; elle est continue sur tout compact [a,b] de $]0, +\infty[$ (et donc continue sur $]0, +\infty[$) car $(t,x) \mapsto t^{x-1}e^{-t}$ est continue sur $]0, +\infty[\times [a,b]$ et y est majorée par la fonction de domination suivante, qui est sommable sur $]0, +\infty[$: $t \mapsto \begin{cases} t^{a-1}e^{-t}, & \text{si } 0 < t < 1; \\ t^{b-1}e^{-t}, & \text{si } t \ge 1. \end{cases}$

On peut écrire, pour tout x > 0, $G_n(x) = \int_{0}^{+\infty} \varphi_n(x,t) dt$.

Fixons x > 0. Les $t \mapsto \varphi_n(x,t)$ sont toutes positives sur $]0,+\infty[$. Montrons qu'à x et t > 0 fixés, la suite $(\varphi_n(x,t))$ croît et converge, de limite $\varphi(x,t)$. Cela permettra de conclure à la convergence simple cherchée : $\lim G_n(x) = G(x)$, en utilisant le théorème de convergence monotone par exemple.

Or en effet, si t > n+1, $\varphi_n(x,t) = \varphi_{n+1}(x,t) = 0$; si $n < t \le n+1$, $\varphi_n(x,t) = 0 \le \varphi_{n+1}(x,t)$; et si $0 < t \le n$, notant $\psi(t) = (n+1)\ln(1-\frac{t}{n+1}) - n\ln(1-\frac{t}{n})$, on a $\psi'(t) = \frac{1}{1-t/n} - \frac{1}{1-t/(n+1)} = \frac{t}{(n+1-t)(n-t)} \ge 0$ et $\psi(0) = 0$. Donc la suite $(\varphi_n(x,t))$ est bien croissante. En outre, à x > 0 et t > 0 fixés, pour $n \ge t$, on a bien $\lim_{n \to +\infty} \varphi_n(x,t) = t^{x-1}e^{-t}$ car $-t = \lim_{n \to +\infty} n\ln(1-t/n)$.

Question III.2

Une expression de $G_n(x)$

III.2.a. Une intégration par parties fournit :

$$J_{n+1}(x) = \int_0^1 (1-t)^{n+1} t^{x-1} dt = \left[(1-t)^{n+1} \frac{t^x}{x} \right]_0^1 + \frac{n+1}{x} \int_0^1 (1-t)^n t^x dt = \frac{n+1}{x} J_n(x+1).$$

En outre on a clairement $J_0(x) = \int_0^1 t^{x-1}/dt = \frac{1}{x}$.

Une récurrence immédiate conduit alors à $J_n(x) = \frac{n!}{x(x+1)\cdots(x+n)}$.

III.2.b. Le changement de variable t = un transforme

$$G_n(x) = \int_0^n (1 - \frac{t}{n})^n t^{x-1} dt = n^x \int_0^1 (1 - u)^n u^{x-1} du = n^x J_n(x) = \frac{n! n^x}{x(x+1) \cdots (x+n)}.$$

Question III.3

Relation des compléments

G(x)G(1-x) est la limite, quand $n \to +\infty$, de $G_n(x)G_n(1-x)$.

Or on vient d'écrire :

$$G_n(x)G_n(1-x) = \frac{n!^2 n}{x(x+1)\cdots(x+n)\times(1-x)(2-x)\cdots(n+1-x)}$$

$$= \frac{1}{x}\frac{n}{n+1-x}\frac{1}{\prod_{k=1}^n (1+\frac{x}{k})(1-\frac{x}{k})}$$

$$= \frac{1}{x}\frac{n}{n+1-x}\frac{1}{\prod_{k=1}^n (1-\frac{x^2}{k^2})},$$

de sorte que, se rappelant les résultats de II.2, on a :

$$G(x)G(1-x) = \frac{1}{x} \frac{1}{\prod_{k=1}^{+\infty} (1 - \frac{x^2}{k^2})} = \frac{1}{x} \frac{\pi x}{\sin \pi x} = \frac{\pi}{\sin \pi x}.$$