
e3a PSI A - 2009
Un corrigé

Applications simples du cours.

1.1. G est l’intersection de “l’intérieur” de deux paraboles.

1.2. On peut paramétrer γ par

(x(t), y(t)) =
{

(t2,−t) si t ∈ [−1, 0]
(t, t2) si t ∈]0, 1]

On en déduit que∫
γ
V =

∫ 0

−1

(
(−2t3 − t4)2t) + 2t2(−1)

)
dt +

∫ 1

0

(
(2t3 − t2) + (t + t4)(2t)

)
dt =

1
30

1.3. Si on utilise la formule de Green-Riemann, on obtient∫
γ
V =

∫∫
G

(1− 2x) dxdy

On a G = {(x, y)/ x ∈ [0, 1], y ∈ [x2,
√

x]}. Par théorème de Fubini (appliqué à une fonction
continue sur un compact) on a donc∫

γ
V =

∫ 1

0

(∫ √
x

x2

(1− 2x) dy

)
dx =

∫ 1

0
(1− 2x)(

√
x− x2) dx =

1
30

2.1. D’après la formule de Green-Riemann, on
∫
γ V = 0 dans le cas envisagé.

2.2. Soit f : (x, y) 7→ cos(xy). f étant de classe C2 sur R2, on a

∀(x, y) ∈ R2,
∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y)

En posant P (x, y) = ∂f
∂x (x, y) = −y sin(xy) et Q = ∂f

∂y (x, y) = −x sin(xy) on a donc la relation
voulue.
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3.1. En utilisant la formule de Green-Riemann on a

A1 =
∫

γ
x dy =

∫∫
dxdy

A2 = −
∫

γ
y dx =

∫∫
dxdy

A3 =
1
2

∫
γ
(x dy − y dx) =

∫∫
dxdy

et ces trois quantités sont égales à l’aire délimitée par γ.
3.2. Notons M(t) = (x(t), y(t)) = (cos3(t), sin3(t) ; on a

M(t+2π) = M(t), M(t+π) = sym0(M(t)), M(−t) = sym(Ox)(M(t)), M(π/2−t) = symx=y(M(t))

On peut donc faire une étude sur [0, π/4] puis une symétrie par rapport à la première bissectrice
(courbe sur [0, π/2]) puis une symétrie d’axe Ox (courbe sur [−π/2, π/2]) puis une symétrie par
rapport à l’origine (courbe que [−π/2, 3π/2] et donc en entier puisqu’il y a 2π-périodicité). On
a

∀t ∈ [0, π/4], x′(t) = −3 sin(t) cos2(t) ≤ 0, y′(t) = 3 cos(t) sin2(t) ≥ 0

et x décrôıt sur [0, π/4] alors que y crôıt. Le seul point d’annulation commun est en 0 (point
stationnaire). Comme

x(t) =
(

1− t2

2
+ o0(t2)

)3

= 1− 3
2
t2 + o0(t2)

y(t) = (t + o0(t))3 = o0(t2)

la tangente en M(0) est portée par (x′′(0), y′′(0)) = (−3, 0) et est horizontale. D’après les
symétries détectées, on a un point de rebroussement de première espèce. On obtient la courbe
suivante
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3.3. On peut utiliser l’une des formules de 3.1 pour obtenir l’aire. Elle vaut

A =
1
2

∫ 2π

0
(3 cos4(t) sin2(t) + 3 sin4(t) cos2(t)) dt =

3
2

∫ 2π

0
cos2(t) sin2(t) dt

AVec la formule du sinus double,

A =
3
8

∫ 2π

0
sin2(2t) dt =

3
16

∫ 2π

0
(1− cos(4t)) dt =

3π

8
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Problème.

Préliminaires.

1. La fonction t 7→ sin(t) est concave sur [0, π/2] (sa dérivée seconde, − sin, est négative sur cet
intervalle). Son graphe est donc situé au dessus de la corde [(0, 0), (π/2, 1)] et en dessous de la
première bissectrice (tangente à l’origine). Ceci s’écrit

∀t ∈
[
0,

π

2

]
,

2
π

t ≤ sin(t) ≤ t

2.1. ϕ est continue sur ]0, 1] et de limite 1 en 0. Elle est donc prolongeable par continuité en 0
(avec ϕ(0) = 1).

2.2. Une intégration par parties (les fonctions étant C1 sur [1,+∞[, celle-ci est licite) donne

∀x ≥ 1, φ(x) =
[
−cos(t)

t

]x

1

−
∫ x

1

cos(t)
t2

dt = cos(1)− cos(x)
x

−
∫ x

1

cos(t)
t2

dt

2.3.
∣∣∣ cos(x)

x

∣∣∣ ≤ 1
x est de limite nulle quand x → +∞. t 7→ cos(t)

t2
est continue sur [1,+∞[ et dominée

par 1/t2 ; elle est donc intégrable sur [1,+∞[. A fortiori, sont intégrale entre 1 et x admet une
limite quand x → +∞. On peut donc écrire que

lim
x→+∞

φ(x) = cos(1)−
∫ +∞

1

cos(t)
t2

dt

2.4. Pour tout x > 0, on a
∫ x
0

sin(t)
t dt =

∫ 1
0 ϕ + φ(x) admet une limite quand x → +∞ et on peut

écrire que ∫ +∞

0

sin(t)
t

dt =
∫ 1

0

sin(t)
t

dt + cos(1)−
∫ +∞

1

cos(t)
t2

dt

1 Une première façon de calculer I =
∫ +∞

0
sin(t)

t dt.

1. Par théorèmes généraux, P et Q sont de classe C∞ sur l’ouvert R2\{(0, 0)} et donc, en particulier,
de classe C1 sur tout domaine U (ouvert selon le programme) de R2 qui ne contient pas (0, 0).

2. Avec les hypothèses faites, on peut utiliser le théorème de Green-Riemann. Or, un calcul donne

∂Q

∂x
(x, y) =

∂P

∂y
(x, y)

=
e−y

(x2 + y2)2
(
(−x2 + y2 + yx2 + y3) cos(x)− (x3 + xy2 + 2xy) sin(x)

)
On en déduit donc que ∫

γ
V = 0

3.1. On a

P (x(θ), y(θ)) =
e−y(θ)

ρ
(sin(x(θ)) cos(θ)− cos(x(θ)) sin(θ))

P (x(θ), y(θ)) =
e−y(θ)

ρ
(cos(x(θ)) cos(θ) + sin(x(θ)) sin(θ))

On multiplie la première quantité par −ρ sin(θ) et la seconde par ρ cos(θ) pour obtenir

Aρ =
∫ π/2

0

e−y(θ)

ρ
cos(x(θ)) dθ =

∫ π/2

0
e−ρ sin(θ) cos(ρ cos(θ)) dθ
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3.2. On veut utiliser le théorème de continuité des intégrales à paramètres.
- ∀ρ ∈ R+, θ 7→ e−ρ sin(θ) cos(ρ cos(θ)) est continue sur [0, π/2].
- ∀θ ∈ [0, π/2], ρ 7→ e−ρ sin(θ) cos(ρ cos(θ)) est continue sur R+.
- ∀ρ ≥ 0, ∀θ ∈ [0, π/2],

∣∣e−ρ sin(θ) cos(ρ cos(θ))
∣∣ ≤ 1. Le majorant est une fonction intégrable

sur [0, π/2] (continue sur ce segment).
Le théorème s’applique et indique que ρ 7→ Aρ est continue sur R+. En particulier,

lim
ρ→0+

Aρ = A0 =
∫ π/2

0
dθ =

π

2

3.3. En utilisant la première question des préliminaires, on a

∀θ ∈
[
0,

π

2

]
,
∣∣∣e−ρ sin(θ) cos(ρ cos(θ))

∣∣∣ ≤ e−ρ sin(θ) ≤ e−
2ρ
π

θ

On en déduit que

|Aρ| ≤
∫ π/2

0
e−

2ρ
π

θ dθ = − π

2ρ

[
e−

2ρ
π

θ
]π/2

0
≤ π

2ρ
→

ρ→+∞
0

4.1. Le dessin est fait ici avec r = 1 et R = 3.

4.2. γ1 est paramétré par t ∈ [r, R] 7→ (t, 0) et ainsi∫
γ1

V =
∫ R

r
P (t, 0) dt =

∫ R

r

sin(t)
t

dt

4.3. γ3 est paramétré par t ∈ [−R,−r, ] 7→ (0,−t) et ainsi∫
γ1

V = −
∫ −r

−R
Q(0,−t) dt = 0

4.4. D’après la question 2,
∫
Γ V = 0. Par ailleurs (en prenant garde au fait que γ4 est parcouru

dans le sens horaire) ∫
γ2

V = AR et
∫

γ4

V = −Ar

Avec les deux questions précédentes, on a donc

0 =
∫ R

r

sin(t)
t

dt + AR −Ar
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Il reste à faire tendre r vers 0+ et R vers +∞ (on a vu l’existence des limites) pour obtenir∫ +∞

0

sin(t)
t

dt =
π

2

2 Une deuxième façon de calculer I =
∫ +∞

0
sin(t)

t dt.

1.1. fn : t 7→ cos(t) sin(2nt)
sin(t) et gn : t 7→ sin(2nt)

t sont continues sur ]0, π/2] et prolongeables par
continuité en 0 (par fn(0) = 2n et gn(0) = 2n). Ce sont donc des fonctions intégrables sur le
segment [0, π/2] et un et vn existent a fortiori.

1.2. La formule sin(a)− sin(b) = 2 cos(a+b
2 ) sin(a−b

2 ) indique que

un+1 − un = 2
∫ π/2

0
cos((2n + 1)t) cos(t) dt

La formule cos(a) cos(b) = 1
2 (cos(a + b) + cos(a− b)) indique alors que

un+1 − un =
∫ π/2

0
(cos((2n + 2)t) + cos(2nt)) dt

On en déduit que
∀n ∈ N∗, un+1 − un = 0

La suite (un)n≥1 est donc constante et

∀n ∈ N∗, un = u1 =
∫ π/2

0
2 cos2(t) dt =

π

2

2. Une intégration par parties donne

∀m ∈ N∗, Hm =
[
h(t)

eimt

im

]β

α

− 1
im

∫ β

α
h′(t)eimt dt

Ainsi, on a

∀m ∈ N∗, |Hm| ≤
|h(α) + h(β)|

m
+
|β − α|

m
‖h′‖∞,[α,β]

ceci étant licite car h′ est continue sur le segment [α, β]. On a alors immédiatement

lim
m→+∞

Hm = 0

3. h est une fonction continue sur [0, π/2] et

h(t) =
sin(t)− t cos(t)

t sin(t)
=

(t + o(t2))− (t + o(t2))
t2 + o(t2)

=
o(1)

1 + o(1)

On en déduit que
lim
t→0

h(t) = 0

et h est prolongable par continuité en posant h(0) = 0. On a alors une fonction continue sur
[0, 1] et de classe C1 sur ]0, π/2] avec

∀t > 0, h′(t) =
t2 − sin2(t)
t2 sin2(t)

=
(t− sin(t))(t + sin(t)

t2 sin2(t)
∼

t→0

(t3/6)(2t)
t4

→
t→0

1
3

Par un corollaire des accroissements finis, on en déduit que h est de classe C1 sur [0, π/2] avec
h′(0) = 1/3.
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4.1. On remarque que vn − un =
∫ π/2
0 h(t) sin(2nt) dt. D’après le lemme de Riemann-Lebsque (en

passant la partie imaginaire) on a donc

lim
n→+∞

(vn − un) = 0

4.2. Le changement de variable x = 2nt donne

vn =
∫ nπ

0

sin(x)
x

dx

En faisant tendre n vers +∞ (on a existence des différentes quantités avec ce qui précède) on
en déduit que∫ +∞

0

sin(x)
x

dx = lim
n→+∞

∫ nπ

0

sin(x)
x

dx = lim
n→+∞

vn = lim
n→+∞

un =
π

2

3 Une troisième façon de calculer I =
∫ +∞

0
sin(t)

t dt.

1. Un simple calcul de dérivée montre que

x 7→ − e−αx

1 + α2
(cos(x) + α sin(x))

est une primitive sur R de x 7→ sin(x)e−αx.
2. Avec le théorème de Fubini (sur un pavé et utilisé avec une fonction de classe C1) on a

J =
∫ u

0

(∫ u

0
sin(x)e−xy dy

)
dx =

∫ u

0

[
−sin(x)

x
e−xy

]y=u

y=0

dx =
∫ u

0

sin(x)
x

(1− eux) dx

mais aussi

J =
∫ u

0

(∫ u

0
sin(x)e−xy dx

)
dy =

∫ u

0

[
− e−yx

1 + y2
(cos(x) + y sin(x))

]x=u

x=0

dy

=
∫ u

0

1− eyu(cos(u) + y sin(u))
1 + y2

dy

L’égalité demandée s’en déduit.
3.1. Comme | sin(x)/x| ≤ 1, on a

K1 ≤
∫ u

0
e−xu dx =

1− e−u2

u
→

u→+∞
0

3.2. On a aussi
|K2| ≤

∫ u

0

1 + y

1 + y2
e−yu dy

1+y
1+y2 est continue sur R+ et de limite nulle en +∞. C’est donc une fonction bornée sur R+. Soit
M un majorant de son module.

|K2| ≤ M

∫ u

0
e−yu dy = M

1− e−u2

u
→

u→+∞
0

3.3. La question 2 donne ∫ u

0

sin(x)
x

dx = K1(u) +
∫ u

0

dy

1 + y2
−K2(u)

En faisant tendre u vers +∞ (
∫ u
0

dy
1+y2 = arctan(u)) on a alors∫ +∞

0

sin(x)
x

dx =
π

2
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4.1. x 7→ sin2(x)
x2 est continue sur R+∗, prolongeable par continuité en 0 (par la valeur 1) et dominée

par 1/x2 (donc intégrable au voisinage de +∞). C’est donc une fonction intégrable sur R+ et
son intégrale sur R+ existe a fortiori.

4.2. Par un calcul similaire à celui de la question 2.2 des préliminaires, on a (en primitivant sin en
1− cos) ∫ +∞

0

sin(x)
x

dx =
∫ +∞

0

1− cos(x)
x2

dx

En posant t = x/2, on en déduit que

π

2
= 2

∫ +∞

0

1− cos(2t)
4t2

dt =
∫ +∞

0

sin2(t)
t2

dt
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