Exercice 1.

- 1.a. On a une équation différentielle linéaire, homogène, à coefficients constants. Son équation caractéristique est $r^2 + n^2 = 0$ dont les solutions sont $\pm in$. L'ensemble des solutions est donc $Vect(c_n, s_n)$.
- 1.b. Posons

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$

Par théorèmes généraux, g et h sont continues (et donc dans E) et f = g + h. En outre, par construction, g est paire et h est impaire.

1.c. Comme $-(\pi)^2 = \pi^2$, $\tilde{\phi}$ est bien définie. $\tilde{\phi}$ est continue et de classe C^1 par morceaux, elle est donc égale à la somme de sa série Fourier et la série est normalement convergente sur \mathbb{R} . $\tilde{\phi}$ étant paire, les coefficients de Fourier "en sinus" sont nuls et ceux en cosinus valent

$$a_0 = \frac{1}{\pi} \int_0^{\pi} x^2 dx = \frac{\pi^2}{3} \; ; \; \forall n \ge 1, \; a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos(nx) dx = \frac{(-1)^n 4}{n^2}$$

D'après les remarques initiales, on a

$$\forall x \in \mathbb{R}, \ \tilde{\phi}(x) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} cos(nx)$$

2.a. S est limite au sens de la norme infinie de la suite de fonctions de terme général

$$S_n = \sum_{k=0}^n u_k$$

Les S_n étant, comme les u_k , continues, il en est de même de la limite uniforme et $S \in E$. En outre, par linéarité de T,

$$\forall n, \ T(S_n) = \sum_{k=0}^{n} T(u_k)$$

La propriété (P_2) indique que $(T(S_n))$ est le terme général d'une suite uniformément convergente de limite T(S) et ainsi, en passant à la limite,

$$T(S) = \sum_{n=0}^{\infty} T(u_n)$$

2.b. On procède par récurrence sur n. La propriété donne l'initialisation (rang n=1). Supposons le résultat vrai au rang $n \ge 1$. Si $f \in C^{n+1}$ on a alors

$$T(f^{(n+1)}) = T((f')^{(n)}) = T(f')^{(n)} = (T(f)')^{(n)} = T(f)^{(n+1)}$$

Si f est polynomiale de degré $\leq n$ alors $f^{(n+1)}$ est nulle. Il en est donc de même de $T(f)^{(n+1)}$ ce qui est indique que f est polynomiale de degré $\leq n$ (en primitivant n+1 fois ou en utilisant une formule de Taylor).

3.a. c_0 est polynomiale de degré ≤ 0 et il en est donc de même de $T(c_0)$ qui est ainsi une constante :

$$\exists \alpha_0 / \forall x, \ T(c_0)(x) = \alpha_0 = \alpha_0 c_0(x)$$

De même, pour $n \ge 1$, c_n est solution de $y'' + n^2y = 0$. Avec la question 2, il en est de même de $T(c_n)$. La question 1 donne alors

$$\exists \alpha_n, \beta_n / T(c_n) = \alpha_n c_n + \beta_n s_n$$

3.b. ϕ étant polynomiale de degré 2, $T(\phi)$ est polynomiale de degré ≤ 2 :

$$\exists \lambda, \ \mu, \ \nu/ \ \forall x \in [-\pi, \pi], \ T(\phi)(x) = \lambda x^2 + \mu x + \nu$$

3.c. On sait que

$$\phi = \frac{\pi^2}{3}c_0 + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}c_n$$

En composant par T (et en particulier avec 2.a), on obtient

$$T(\phi) = \frac{\pi^2}{3}\alpha_0 c_0 + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} (\alpha_n c_n + \beta_n s_n)$$

c'est à dire

$$\forall x \in [-\pi, \pi], \ \lambda x^2 + \mu x + \nu = \alpha_0 \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} (\alpha_n \cos(nx) + \beta_n \sin(nx))$$

3.d. On applique l'égalité précédente en x et -x et on fait la différence des égalités obtenues. On obtient

$$\forall x \in [-\pi, \pi], \ \mu x = 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} (\beta_n sin(nx))$$

Pour $x = \pi$, il vient $\mu = 0$ et on a donc

(*) :
$$\forall x \in [-\pi, \pi], \ \lambda x^2 + \nu = \alpha_0 \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} (\alpha_n \cos(nx))$$

Notons

$$\phi_n = \frac{\pi^2}{3}c_0 + 4\sum_{k=1}^n \frac{(-1)^k}{k^2}c_k$$

On sait que (ϕ_n) converge uniformément sur $[-\pi, \pi]$. D'après la propriété (P_2) , la suite $(T(\phi_n))$ converge elle aussi uniformément sur $[-\pi, \pi]$ (et on a utilisé que sa limite est $T(\phi)$). On a alors, pour tout k, convergence uniforme des suites de terme général $T(\phi_n)c_k$ et $T(\phi_n)s_k$. Quand on intègre entre $-\pi$ et π , on peut alors permuter limite et intégrale. Ceci indique que (*) est LE développement en série de Fourier de $x \mapsto \lambda x^2 + \nu$. La question 1 donnant ce développement, on peut identifier :

$$\forall n \ge 1, \ \beta_n = 0 \text{ et } \alpha_n = \lambda \ ; \ \nu + \lambda \frac{\pi^2}{3} = \alpha_0 \frac{\pi^2}{3}$$

En écrivant que $T(\phi)'' = T(\phi'')$, on a $2\lambda = T(2) = 2T(c_0) = 2\alpha_0$ et donc

$$\alpha_0 = \lambda$$
 et $\nu = 0$

3.e. Par définition des α_k et β_k , on a

$$\forall n, \ T(c_n) = \alpha_n c_n + \beta_n s_n = \lambda c_n$$

En dérivant, on a donc

$$\forall n, \ T(s_n) = T(-c'_n) = -T(c'_n) = -T(c_n)' = \lambda s_n$$

4.a. \tilde{f} est continue et de classe C^1 par morceaux. \tilde{f} est donc égale à la somme de sa série de Fourier (et cette série converge normalement):

$$\tilde{f} = a_0(f) + \sum_{k=1}^{+\infty} (a_k(f)c_k + b_k(f)s_k)$$

En composant par T (et compte-tenu des interversions licites avec la question 2)

$$T(f) = a_0(f)T(c_0) + \sum_{k=1}^{+\infty} (a_k(f)T(c_k) + b_k(f)T(s_k)) = \lambda f$$

4.b. Il existe une constante c telle que

$$\forall x \in [-\pi, \pi], \ F(x) = c + \int_0^x f(t) \ dt$$

Par imparité de f, on a F(-x) = F(x) (dans l'intégrale qui apparaît dans F(-x), poser u = -t) et $F(-\pi) = F(\pi)$. Comme F est de classe C^1 , la question précédente donne $T(F) = \lambda F$. Il suffit alors de dériver pour obtenir $T(f) = \lambda f$.

4.c. 4.a donne $T(f) = \lambda f$ dans le cas où f est paire et 4.b donne le même résultat dans le cas où f est impaire. Par linéarité de T, le résultat est vrai pour une somme de fonctions impaire et paire de $E \dots$ c'est à dire pour toute fonction de E (question 1.b).

Exercice 2.

Partie I.

1.a. Si $f^{p}(x) = 0$ alors $f^{p+1}(x) = f(f^{p}(x)) = f(0) = 0$. Ceci prouve que

$$Ker(f^p) \subset Ker(f^{p+1})$$

Soit $x \in f(Ker(f^{p+1}))$; il existe $y \in Ker(f^{p+1})$ tel que x = f(y) et $f^p(x) = f^{p+1}(y) = 0$. On a donc

$$f\left(Ker(f^{p+1})\right) \subset Ker(f^p)$$

1.b. De manière immédiate

$$Ker(u) = Ker(f_F) = Ker(f) \cap F$$

1.c. Avec la question 1.a, $Ker(f^{p+1})$ est stable par f. Soit u la restriction de f à ce sous-espace. Le théorème du rang donne

$$\dim(Ker(u)) + \dim(Im(u)) = \dim(Ker(f^{p+1}))$$

Comme $Im(u) \subset Ker(f^p)$, on a donc

$$dim(Ker(f^{p+1})) \le dim(Ker(u)) + dim(Ker(f^p))$$

2.a. Soit λ une valeur propre de E et x un vecteur propre associé. On a $f(x) = \lambda x$ et donc $\forall k$, $f^k(x) = \lambda^k x$ (récurrence immédiate). Comme f est nilpotente, il existe k tel que $f^k = 0$ et donc $\lambda^k = 0$ ($x \neq 0$ puisque c'est un vecteur propre). Ainsi

$$sp(f) \subset \{0\}$$

Notons que comme E est un \mathbb{C} -espace, il y a au moins une valeur propre et l'inclusion ci-dessus est une égalité.

2.b. Le polynôme caractéristique est scindé (le corps de base est \mathbb{C}) et a 0 pour seule racine. Il est donc égal à $(-x)^n$ (il est de degré n et de coefficient dominant $(-1)^n$). Comme il annule f (théorème de Cayley-Hamilton) on a donc

$$f^n = 0$$

- 2.c. f n'est pas inversible (0 est valeur propre) et donc son rang est < dim(E) = n.
- 3.a. On suppose ici que Ker(f) est de dimension 1 (théorème du rang). On a donc

$$(*) : \dim(Ker(f^p)) \leq \dim(Ker(f^{p+1})) \leq \dim(Ker(f^p)) + 1$$

On montre donc par récurrence (évidente) que

$$\forall p \in \{0, \dots, n\}, \ dim(Ker(f^p)) \le p$$

Si, par l'absurde, il y a inégalité stricte au rang k alors la même récurrence donne une inégalité stricte aux rangs $k+1,\ldots,n$ ce qui est contraire à l'hypothèse $f^n=0$. On a ainsi

$$\forall p \in \{0, 1, \dots, n\}, \ dim(Ker(f^p)) = p$$

- 3.b. f étant nilpotent, u l'est aussi. La question 2.a donne alors $u^p = 0$.
- 3.c. Les $Ker(f^p)$ sont bien stables par f d'après 1.a. Il reste à prouver que ce sont les seuls sous-espaces stables.

Soit F un sous-espace stable de dimension p; $u = f_F$ vérifie $u^p = 0$ et on a donc $F \subset Ker(f^p)$. Comme F et $Ker(f^p)$ ont même dimension, on a donc égalité des sous-espaces!

3.d. $Im(f^p)$ est stable par f (si $x = f^p(y)$ alors $f(x) = f^p(f(y))$). D'après la question précédente, $Im(f^p) = Ker(f^k)$ avec $k = dim(Im(f^p))$. Par théorème du rang,

$$dim(Im(f^p)) = dim(E) - dim(Ker(f^p)) = n - p$$

et on a donc

$$Im(f^p) = Ker(f^{n-p})$$

Partie II.

- 1.a. $f(a + \mu b) = f(a) + \mu f(b) = \lambda (a + \mu b)$ et donc V_{μ} est stable par f.
- 1.b. Soient a, b deux éléments indépendants de $Ker(f \lambda e)$. Si $\mu_1 \neq \mu_2$ alors $(a + \mu_1 b, a + \mu_2 b)$ est libre (dans la base (a, b) de Vect(a, b), le déterminant des deux vecteurs vaut $\mu_2 \mu_1$). La question précédente donne ainsi une infinité de droites stables (les V_{μ}).
- 2.a. Par théorème de Cayley-Hamilton, P_f annule f. Le théorème de décomposition des noyaux (ici les $(X \lambda_i)^{k_i}$ sont bien premiers entre eux deux à deux) donne alors

$$E = Ker(P_f(f)) = \bigoplus_{i=1}^r K_i$$

2.b. f et $(f - \lambda_j e)^{k_j}$ commutent ; on en déduit que K_j est stable par f. Soit $f_j = f_{K_j}$; par définition, $(f_j - \lambda_j e)^{k_j}$ est nul et λ_j est donc l'unique valeur propre de f_j . Dans une base adaptée à la décomposition de la question précédente, la matrice de f est bloc-diagonale chaque bloc étant la matrice d'un f_i ; on a donc

$$P_f = \prod_{i=1}^r P_{f_i}$$

Comme $P_{f_i} = (\lambda_i - X)^{dim(K_i)}$, on a donc $\forall i, \ dim(K_i) = k_i$.

- 2.c. On a vu que K_j est stable par f et donc aussi par $f \lambda_j e$. En notant $u_j = (f \lambda_j)_{K_j}$ et en reprenant la question précédente, u_j est nilpotent. En outre, l'énoncé suppose que u_j a un noyau de dimension 1. On est dans le cadre de I.3 et les sous-espaces stables par u_j sont les $Ker(f \lambda_j e)^p$, $p \in \{0, 1, ..., k_j\}$. On conclut en remarquant que les sous-espaces de K_j stables par f sont ceux stables par $f \lambda_j e$ et sont donc exactement les sous-espaces stables par u_j .
- 2.d. Soit F stable par f; montrons par récurrence sur $k \in [1..r]$ que

$$\forall (x_1, \dots, x_k) \in K_1 \times \dots \times K_k, \ \sum_{i=1}^k x_i \in F \ \Rightarrow \ (\forall i, \ x_i \in F)$$

- Initialisation : le résultat est immédiat pour k = 1.
- Etape de récurrence : soit $k \in [2..r]$ tel que le résultat est vrai au rang k-1. Supposons $x_1 + \cdots + x_r = x \in F$ avec $\forall i, x_i \in K_i$; on a alors $f(x) = \lambda_1 x_1 + \cdots + \lambda_k x_k$. $x \lambda_k f(x)$ est dans F car x et f(x) le sont (F est stable par f). On a donc

$$(\lambda_1 - \lambda_k)x_1 + \dots + (\lambda_{k-1} - \lambda_k)x_{k-1} \in F$$

Avec l'hypothèse de récurrence, $(\lambda_1 - \lambda_k)x_1, \ldots, (\lambda_{k-1} - \lambda_k)x_{k-1} \in F$ et donc aussi $x_1, \ldots, x_{k-1} \in F$. On en déduit alors que $x_k = x - x_1 - \cdots - x_{k-1} \in F$ et on a le résultat au rang k.

Le résultat au rang r donne que

$$F = E \cap F = \left(\bigoplus_{i=1}^{r} K_i\right) \cap F = \bigoplus_{i=1}^{r} (K_i \cap F)$$

 $F \cap K_j$ est encore stable par f et donc

$$\forall j, \ \exists \alpha_i \in \{0, \dots, k_i\} / \ F \cap K_i = Ker(f - \lambda_i e)^{\alpha_j}$$

On a donc

$$F = \bigoplus_{i=1}^{r} Ker(f - \lambda_{j}e)^{\alpha_{j}}$$

Réciproquement, ces sommes directes sont stables par f. Comme deux choix des α_i donnent deux espaces différents, le nombre de sous-espaces stables est égal au nombre de choix de $(\alpha_1, \ldots, \alpha_r)$:

$$N = \prod_{i=1}^{r} (k_i + 1)$$