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Exercice : Résolution d�une équation di¤érentielle

1. Notons y� (t) = t�; alors y� est solution de (H) sur I si et seulement si

8 t 2 I; t2y00� (t) + 3ty0� (t) + y� (t) = 0() 8 t 2 I; t�
�
�2 + 2�+ 1

�
= 0() � = �1

Ainsi t 7�! 1

t
est la seule solution sur I de (H) qui soit de la forme t 7�! t�:

2. Un calcul simple donne : 8 t 2 I; t�00 (t) + �0 (t) =
�
t�0 (t)

�0
= 0; càd :

il existe A 2 R; 8 t 2 I; t�0 (t) = A, en intégrant une seconde fois :

9 A;B 2 R; � (t) = A ln jtj+B

Ainsi les solutions de (H) sur I de la forme
� (t)

t
sont

y (t) =
A ln jtj
t

+
B

t
; où A;B 2 R

3. (H) est une équation di¤érentielle linéaire d�ordre 2 homogène dont les coe¢ cients sont continues sur
I avec celui de y00 : x 7�! x2 ne s�annule jamais sur I; ainsi l�ensemble SH (I) des solutions de (H)

sur I est R�espace vectoriel de dimension 2; contenant la famille libre
�
ln jtj
t
;
1

t

�
des deux fonctions

trouvées à la question (2) : D�où SH (I) = vect
�
ln jtj
t
;
1

t

�
:

Ainsi les solutions de (H) sur I sont

y (t) =
A ln jtj
t

+
B

t
; où A;B 2 R

4. Il s�agit ici de prolonger les solutions obtenues en 0. Or on a lim
t�!0

A ln jtj
t

+
B

t
existe si et seulement

si A = B = 0 puisque
1

t
= o

�
ln jtj
t

�
en 0: La seule solution sur R de (H) est la solution nulle.

5. Ce calcul est déjà fait à la question (2) ; t 7�! � (t)

t
est solution de (L) si et seulement si

8 t 2 I; t�00 (t) + �0 (t) =
�
t�0 (t)

�0
=

1

1 + t2

Une première intégration donne : 9 A 2 R; 8 t 2 I; t�0 (t) = arctan (t) +A: (1)
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La fonction t 7�! arctan (t)

t
est continue sur I et admet une limite �nie en 0; donc admet des

primitives sur R+ ou R�; soit

� (t) =

Z t

0

arctan (u)

u
du; la primitive s�annulant en 0

Une deuxième intégration de (1) donne :

9 A 2 R; 9 B 2 R; 8 t 2 I; � (t) = � (t) +A ln jtj+B

6. L�espace SL (I) des solutions de (L) sur I est plan a¢ ne de direction SH (I) : SL (I) = yp + SH (I) ;

où yp (t) =
� (t)

t
=
1

t

Z t

0

arctan (u)

u
du une solution particulière de (L) et SH (I) = vect

�
ln jtj
t
;
1

t

�
:

7. Méthode 1 : La solution générale de (L) sur I est :

y (t) =
1

t

Z t

0

arctan (u)

u
du+

A ln jtj
t

+
B

t
; où A;B 2 R

On a 8u 2 ]�1; 1[ ; arctan (u)
u

=

+1X
n=0

(�1)n u2n

2n+ 1
est la somme d�une série entière de rayon 1, donc

s�intégre terme à terme sur ]�1; 1[ ; donc

8t 2 ]�1; 1[ ; y (t) =
+1X
n=0

(�1)n t2n

(2n+ 1)2
+
A ln jtj
t

+
B

t
; où A;B 2 R

Ainsi la seule solution DSE à l�origine est :

y (t) =
+1X
n=0

(�1)n t2n

(2n+ 1)2
; R = 1 selon D�Alembert et a2n =

(�1)n

(2n+ 1)2
; a2n+1 = 0

Méthode 2 : Soit y (x) =
+1X
n=0

anx
n la somme d�une série entière de rayon R > 0; alors y est solution

de (L) sur ]�R;R[ si et seulement si

8 x 2 ]�R;R[ ;
+1X
n=0

(n+ 1)2 anx
n =

+1X
n=0

(�1)n x2n

Par unicité d�un développement en série entière ceci est réalisé si et seulement si

8 n 2 N; a2n+1 = 0 et a2n =
(�1)n

(2n+ 1)2

on retrouve la solution y (t) =
+1X
n=0

(�1)n t2n

(2n+ 1)2
; dé�nie sur ]�1; 1[ :

8. On a :

lim
t!0

1

t

Z t

0

arctan (u)

u
du = lim

t!0

+1X
n=0

(�1)n t2n

(2n+ 1)2
= 1

Donc lim
t�!0

1

t

Z t

0

arctan (u)

u
du+

A ln jtj
t

+
B

t
existe si et seulement si A = B = 0:

Ainsi y (t) =

8<: 1

t

Z t

0

arctan (u)

u
du si t 6= 0

1 si t = 0
est C1 sur R (coïncident avec la somme d�une série

enitère sur ]�1; 1[ et produit de fonctions C1 sur R�); elle est donc la seule solution de (L) sur R
tout entier.
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Problème : Formule sommation de Poisson - Applications
Partie I

1. Les fonctions t 7�! t2g (t) et t 7�! t2g0 (t) sont continues sur R et bornées aux V (�1) ; donc bornées
sur R tout entier, donc :

9 M > 0; 8 t 6= 0; jg (t)j � M

t2
et
��g0 (t)�� � M

t2

1.1. La fonction t 7�! g (t) e�ixt est continue sur R et
��g (t) e�ixt�� = jg (t)j � M

t2
avec t 7�! M

t2
intégrable aux V (�1) : Riemann � = 2 > 1: Ainsi t 7�! g (t) e�ixt est intégrable sur R:

1.2. Soit [a; b] un segment de R; on prend n � max
�
� a

2�
;
b

2�

�
de façon que :

8 t 2 [a; b] ;
n
2n� + t � 2n� + a � 0
2n� � t � 2n� � b � 0 ; donc 8 t 2 [a; b] :

jgn (t)j �M
�

1

(2n� + t)2
+

1

(2n� � t)2

�
�M

�
1

(2n� + a)2
+

1

(2n� � b)2

�
s

M

2�2n2
avec

X M

2�2n2

convergente (Riemann � = 2 > 1) : Ainsi
P
gn converge uniformément sur tout segment [a; b] de R:

1.3.

1.3.1. On a :

� Pour tout n 2 N; gn est de classe C1 sur R
� La série

P
gn converge uniformément sur tout segment [a; b] de R; converge simplement sur R:

� Le même raisonnement du 1.2. appliqué à g0n; prouve que la série des dérivées
P
g0n converge

uniformément sur tout segment [a; b] de R

Ainsi la somme ~g (t) =
+1X
n=0

gn (t) est de classe C1 sur R et se dérive terme à terme.

1.3.2. Comme indiqué, on a : ~g (t+ 2�) = lim
n!+1

nX
p=�n

g ((t+ 2�) + 2p�) ; dans cette sommation on

e¤ectue le changement d�indice q = p+ 1; on obtient :

~g (t+ 2�) = lim
n!+1

n+1X
q=�n+1

g (t+ 2q�) = lim
n!+1

0@�g (�n)� g (�n� 1) + n+1X
q=�(n+1)

g (t+ 2q�)

1A
Or lim

n!+1
�g (�n) = lim

n!+1
�g (�n� 1) = 0 car g (t) = O

�
1

t2

�
au V (�1) : D�où

~g (t+ 2�) = lim
n!+1

n+1X
q=�(n+1)

g (t+ 2q�) = ~g (t)

Ainsi ~g est une fonction 2�-périodique.

Par ailleurs, on a : ck (~g) =
1

2�

Z 2�

0
~g (t) e�iktdt =

1

2�

Z 2�

0

+1X
n=0

gn (t) e
�iktdt:

La série
P
gn converge uniformément sur le segment [0; 2�] selon 1.2. et pour tout t 2 [0; 2�] ;��gn (t) e�ikt�� = jgn (t)j ; donc la série

X
n�0

gn (t) e
�ikt converge aussi uniformément sur le segment
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[0; 2�] ; on peut alors intégrer terme à terme :

ck (~g) =
1

2�

+1X
n=0

Z 2�

0
gn (t) e

�iktdt

Mais
Z 2�

0
gn (t) e

�iktdt =

Z 2�

0
g (t+ 2n�) e�iktdt+

Z 2�

0
g (t� 2n�) e�iktdt; en faisant respectivement

les changements u = t+ 2n� et u = t� 2n� et sachant que e2in� = e�2in� = 1; on obtient :

8n � 1;
Z 2�

0
gn (t) e

�iktdt =

Z 2(n+1)�

2n�
g (t) e�iktdt+

Z �2(n�1)�

�2n�
gn (t) e

�iktdt

Et par la relation de Charles, on aura :

+1X
n=0

Z 2�

0
gn (t) e

�iktdt =
+1X
n=0

Z 2(n+1)�

2n�
g (t) e�iktdt+

+1X
n=1

Z �2(n�1)�

�2n�
g (t) e�iktdt

Ainsi :

ck (~g) =
1

2�

+1X
n=0

Z 2�

0
gn (t) e

�iktdt =
1

2�

�Z +1

0
g (t) e�iktdt+

Z 0

�1
g (t) e�iktdt

�
=
1

2�
ĝ (k)

1.3.3.

� ~g est un signal de classe C1 et 2�-périodique, donc sa suite des coe¢ cients de Fourier (cn (~g))n2Z
est sommable ( Notion peut-être hors programme PSI !!); or on vient de montrer que cn (~g) =
1

2�
ĝ (n) ; d�où la famille (ĝ (n))n2Z est aussi sommable.

� ~g est un signal de classe C1 et 2�-périodique, donc la série de Fourier de ~g converge normalement
sur R vers ~g; en particulier

~g (0) =
+1X
n=�1

g (2n�) =
+1X
n=�1

cn (~g) =
1

2�

+1X
n=�1

ĝ (n)

D�où la formule sommatoire de Poisson.

PARTIE II

2. Soit � > 0 et h� (t) = e��
2t2

2.1. On a h� est de classe C1 sur R avec t2h� (t) = t2e��
2t2 et t2h0� (t) = �2�2t3e��2t2 sont de

limites nulles en �1 puisque les exponentielles l�emportent sur les puissances, donc en particulier
bornées aux V (�1) : Les hypothèses sont alors satisfaites.

2.2. La fonction ĥ1 est dé�nie par :

ĥ1 (x) =

Z +1

�1
e�t

2
e�ixtdt

On note f (x; t) = e�t
2
e�ixt; il s�agit d�une dérivation sous l�intégrale2, on a alors

� f est continue sur R2 intégrable sur R pour tout x �xé dans R
2On peut aussi utiliser les hypothèses du programme français
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� @f
@x
(x; t) = �ite�t2e�ixt continue sur R2 et véri�e la domination : 8 t 2 R; 8x 2 [a; b] ;����@f@x (x; t)

���� � jtj e�t2 = � (t) avec � C0 et intégrable sur R car négligeable devant 1t2 en �1:
Ainsi ĥ1 est de classe C1 sur R et se dérive sous l�intégrale (Formule de Leibniz) :

ĥ01 (x) =

Z +1

�1
�ite�t2e�ixtdt

A l�aide d�une intégration par parties3, on a :

ĥ01 (x) =

Z +1

�1
�ite�t2e�ixtdt = 1

2

�h
e�t

2
ie�ixt

i+1
�1

�
Z +1

�1
xe�t

2
e�ixt

�
; vu le comportement de

e�t
2
et le caractère borné du terme e�ixt; le crochet est nul, d�où :

ĥ01 (x) = �
x

2
ĥ1 (x) Càd ĥ1 véri�e y0 +

x

2
y = 0

2.3. Les solutions de (1) sont les y (x) = Ae�x
2=4; où A une constante réelle. tenant compte de

ĥ1 (0) =
p
�; on obtient ĥ1 (x) =

p
�e�x

2=4:

2.4. Sachant que t 7�! �t est C1 de R sur lui même, on e¤ectue le changement de variable u = �t,

dans l�intégrale ĥ� (x) =
Z +1

�1
e��

2t2e�ixtdt; on aura

ĥ� (x) =

Z +1

�1
e��

2t2e�ixtdt =

Z +1

�1
e�u

2
e�ixu=�

du

�
=
1

�
ĥ1

�x
�

�
=

p
�

�
e
�
x2

4�2

2.5. Notons d�abord que la fonction h� est paire, donc 8 n 2 Z; c�n (h�) = cn (h�) ; donc la formule

sommatoire de Poisson appliqué à h� (x) = e
�
ax2

4� obtenue pour � =
p
a

2
p
�
; donne :

2�

 
h� (0) + 2

+1X
n=1

h� (2n�)

!
=

 
ĥ� (0) + 2

+1X
n=1

ĥ� (n)

!
ou encore

2�

 
1 + 2

+1X
n=1

e��n
2a

!
=
2�p
a

0B@1 + 2 +1X
n=1

e

��n2
a

1CA
D�où la formule demandée.

PARTIE III

3. On considére un (z) = exp
�
i�n2z

�
3.1. L�application f : C �! R dé�nie par f (z) = Im (z) est continue ( linéaire en dimension �nie
lorsque C est considéré comme R�espace vectoriel) et 
 = f�1 (]0;+1[) avec ]0;+1[ ouvert de R;
donc 
 ouvert de l�espace de départ qui est C:
Par ailleurs 
 est demi-plan donc convexe puisque :
Im ((1� t) z1 + tz2) = (1� t) Im (z1) + t Im (z2) > 0 pour t 2 [0; 1] et z1; z2 2 
:

3.2. On a jun (z)j = e��n
2 Im2(z); donc :

3Pour être propre, il faut se ramener à un segment et conclure par passage à la limite
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� Si Im (z) � 0; le terme général un (z) ne tend pas vers 0 quand n tend vers l�in�ni, donc la sérieP
un (z) diverge grossièrement.

� Si Im (z) > 0; alors jun (z)j = e��n
2 Im2(z) = o

�
1

n2

�
; donc la série

P
un (z) converge absolument

donc converge.

Conclusion :
P
un (z) converge si et seulement si z 2 
:

3.3. On a u (z + 1)+u (z) =
+1X
n=1

ei�n
2z
�
1 + ei�n

2
�
; en remarquant que ei�n

2
=
n

1 si n est pair
�1 si n est impair ;

on va séparer les pairs et les impairs dans la sommation précédante ( On peut scinder les deux som-
mations car elles convergent), on obtient

u (z + 1) + u (z) =
+1X
n=1

ei�n
2z
�
1 + ei�n

2
�
=

+1X
n=1

2ei�4n
2z = 2u (4z)

3.4. On pose ~un (x; y) = un (x+ iy) et ~u (x; y) = u (x+ iy)

3.4.1. Pour tout (x; y) 2 R� [a;+1[ ; on a
��nk~un (x; y)�� � nke��n2a2 = o� 1

n2

�
; avec

X 1

n2
con-

vergente, donc
P
nk~un converge normalement et par suite converge uniformément sur R� [a;+1[ :

3.4.2. Pour y > 0 �xé, on pose pour tout x 2 R; vn (x) = ~un (x; y) = ei�n
2xe��n

2y; on a alors

� Pour tout n 2 N�; vn est de classe C1 sur R:
� La série

P
vn converge simplement sur R selon 3.4.3.

� La série des dérivées
P
v0n converge uniformément sur R selon 3.4.3.

Donc la somme x 7�!
+1X
n=1

vn (x) est de classe C1 sur R et se dérive terme à terme, par suite
@~u

@x
existe

sur R� ]0;+1[ et on a
@~u

@x
(x; y) =

+1X
n=1

i�n2~un (x; y)

3.4.3. De même pour tout x 2 R �xé, on pose pour tout y > 0; wn (y) = ~un (x; y) = ei�n
2xe��n

2y;
on a alors

� Pour tout n 2 N�; wn est de classe C1 sur R:
� La série

P
wn converge simplement sur R selon 3.4.1.

� La série des dérivées
P
w0n converge uniformément sur tout [a;+1[ pour tout a > 0; selon

3.4.1.

Donc la somme y 7�!
+1X
n=1

wn (y) est de classe C1 sur ]0;+1[ et se dérive terme à terme, par suite

@~u

@y
existe sur R� ]0;+1[ et on a

@~u

@y
(x; y) =

+1X
n=1

��n2~un (x; y) = i
@~u

@x
(x; y)

3.4.4. On a
@~u

@x
(x; y) =

+1X
n=1

i�n2~un (x; y) ; avec
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� Les i�n2~un continues sur R� ]0;+1[
� La série

X
n�1

i�n2~un converge uniformément sur R� [a;+1[ selon 3.4.1

Donc la somme
@~u

@x
est continue sur R� ]0;+1[ : Il en est de même pour @~u

@y
:

Ainsi ~u est di¤érentiable sur R� ]0;+1[ et véri�e les conditions de Cauchy-Riemann : @~u
@x
+i
@~u

@y
= 0;

par suite u est holomorphe sur l�ouvert 
:

3.5. Pour z complexe non réel négatif, on pose : z� = exp (� log (z))

3.5.1. La fonction z 7�! z� est holomorphe sur CnR� comme composée de deux fonctions holomor-
phes.

3.5.2. La formule (2) peut-être écrite sous la forme

8 a > 0;
�
i

ia

��1
2 (1 + 2u (ia)) = 1 + 2u

�
� 1
ia

�

Ainsi la fonction z 7�!
�
i

z

��1
2 (1 + 2u (z)) �

�
1 + 2u

�
�1
z

��
qui est holomorphe sur l�ouvert

convexe 
 s�annule sur tout le demi-axe ouvert des imaginaires purs : iR�+, donc ses zéros ne sont
pas isolés et par suite elle est NULLE sur l�ouvert connexe par arcs 
 tout entier. D�où le résultat
connu sous le nom du prolongement analytique.

3.5.3. En utilisant la relation ci-dessus pour 4z et pour z; on a aura :�
i

4z

��1
2 (1 + 2u (4z)) =

�
1 + 2u

�
� 1

4z

��
et
�
i

z

��1
2 (1 + 2u (z)) =

�
1 + 2u

�
�1
z

��
càd

(1 + 2u (4z)) =

�
i

4z

�1
2
�
1 + 2u

�
� 1

4z

��
=

�
i

z

�1
2
�
1

2
+ u

�
� 1

4z

��
et

�
1

2
+ u (z)

�
=

�
i

z

�1
2
�
1

2
+ u

�
�1
z

��
; en faisant la di¤érence membre à membre et tenant compte

de u (z + 1) + u (z) = 2u (4z) ; on obtient :

u (z + 1) +
1

2
=

�
i

z

�1
2
�
u

�
� 1

4z

�
� u

�
�1
z

��
=

�
i

z

�1
2
 
+1X
n=1

exp

�
� i�n

2

4z

�
� exp

�
� i�n

2

z

�!

CQFD.
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