Corrigé CNM 2011 Maths 1 Option PSI

Mr A.CHABCHI!

Exercice : Résolution d’une équation différentielle
1. Notons y, (t) = t“, alors y, est solution de (H) sur I si et seulement si

Viel, yi ) +3ty,(t) +ya ) =0=Vtel, t*(a®*+2a+1)=0+=a=-1
1
Ainsi t — n est la seule solution sur I de (H) qui soit de la forme ¢ — ¢°.

2. Un calcul simple donne : V¢ € I, t\" (t) + X () = (¢N (t))/ =0, cad :
il existe A € R,V te I, t\N(t) = A, en intégrant une seconde fois :

JABeR, A(t)=A|t|+B

At
Ainsi les solutions de (H) sur I de la forme i) sont
Alnjt| B
y(t) = ?‘ | + 2, oA BER

3. (H) est une équation différentielle linéaire d’ordre 2 homogéne dont les coefficients sont continues sur

I avec celui de y” : x — 2% ne s’annule jamais sur I, ainsi 'ensemble Sy (I) des solutions de (H)

In|t] 1
sur I est R—espace vectoriel de dimension 2, contenant la famille libre <tH’ t) des deux fonctions

Injt| 1
trouvées a la question (2). D’ou Sy (I) = vect (ntH, t> .
Ainsi les solutions de (H) sur [ sont

Allt| B
y(t):?H+t, ot A,BE€R

Aln|t| B . ,
+ ? existe si et seulement

4. 11 s’agit ici de prolonger les solutions obtenues en 0. Or on a lim

t—0 t

1 In |t
si A = B = 0 puisque ;=0 <ntH> en 0. La seule solution sur R de (H) est la solution nulle.

At
5. Ce calcul est dé¢ja fait a la question (2), t — i) est solution de (L) si et seulement si
1
Vel tN () +N () =N 1) = —35

Une premiére intégration donne : 3 A€ R, V¢t e I, t\ (t) = arctan (t) + A. (1)
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arctan ()

La fonction t —— est continue sur I et admet une limite finie en 0, donc admet des

primitives sur R ou R, soit

t

arctan (u

o(t) = / 7()du, la primitive s’annulant en 0
0 u

Une deuxiéme intégration de (1) donne :
JAeR, 3BeR, Vtel, A(t)=¢(t)+Aln|t|+ B

. L’espace Sy, (I) des solutions de (L) sur I est plan affine de direction Sy (I): Sp, (I) = yp, + Su (1),

t) 1 ["arct Inft| 1
oty (t) = i) = t/ Mdu une solution particuliere de (L) et Sy (1) = vect <nt||’ t> .
0 u

. Méthode 1 : La solution générale de (L) sur I est :

1 [t arct Alnlt| B
y(t):/ arctan () , o n||+t, ou A, BeR

t 0 u t

arctan (u) o= 2n

OnaVuel]-1,1[, ———— = Z (-1)" 5 est la somme d’une série entiére de rayon 1, donc
u n
n=0
s’intégre terme a terme sur |—1, 1[, donc
+oo 2n
t Alnl|t| B
vVtel-1,1[, y(t) = -1)" + +—, 00 A,BeR
L w0 =3 (0 e+

Ainsi la seule solution DSE & 'origine est :

-— 2" (-"
t) = —1)" ———, R =1 selon D’Alembert et as, = ———, a =0
y( ) nzzo( ) (2n + 1)2 2n (27”L T 1)2 2n+1
+oo
Méthode 2 : Soit y (z) = Z anx™ la somme d’une série entiere de rayon R > 0, alors y est solution
n=0
de (L) sur |- R, R| si et seulement si
+oo +oo
Ve e|-RR[, > (n+1)an” =) (-1)"z*"
n=0 n=0

Par unicité d’un développement en série entiére ceci est réalisé si et seulement si

(="

VneN, aypir =0et ag, =

(2n 4 1)?
too $2n
on retrouve la solution y (t) = (—1)" ————, définie sur |—1,1].
HZ_O (2n+1)?
.Ona: N
1 [* arct = ¢2n
T oL L CO PRSNG|
t—0t | g u =0~ (2n+1)
1 ["arct Alnft| B
Donc lim / arctan (u) du + n ] + — existe si et seulement si A = B = 0.
t—0 ¢ 0 u t t
1 [ arctan (u)d _
Ainsiy(t) =9 ¢/, usit#0 ot 0% sur R (coincident avec la somme d’une série

u
1sit=0
enitére sur |—1,1[ et produit de fonctions C* sur R*), elle est donc la seule solution de (L) sur R
tout entier.



Probléme : Formule sommation de Poisson - Applications
Partie I

1. Les fonctions t — t2g (t) et t — t2g’ () sont continues sur R et bornées aux V (00) , donc bornées
sur R tout entier, donc :

M

IM>0,Vt#0, |g(t) 5

M
< ) et ‘g’ (t)} <

» M M
" =19 @] < 5 avee t — 5

1.1. La fonction ¢t — g (t) e~ est continue sur R et |g(t)e 2

intégrable aux V (£00) : Riemann o = 2 > 1. Ainsi t — g (t) e est intégrable sur R.

b
1.2. Soit [a,b] un segment de R, on prend n > max (—;, 2) de facon que :
w 2w

2nr+t>2nm+a >0
Vte[a,b],{ T —t> 2w —b>0 , donc V t € [a,b] :

1 1 1 1 M M
<M + <M + ~ avec —_—
90 () <(2n7r +1)?*  2nw — t)2> <(2mr +a)?  (2nm— b)2) 2n2n? Z 2m2n?
convergente (Riemann o =2 > 1). Ainsi ) g,, converge uniformément sur tout segment [a,b] de R.

1.3.
1.3.1. Ona:

e Pour tout n € N, g, est de classe C! sur R
e La série ) g, converge uniformément sur tout segment [a,b] de R, converge simplement sur R.

e Le méme raisonnement du 1.2. appliqué a g/, prouve que la série des dérivées Y g/, converge
uniformément sur tout segment [a, b] de R

+o00
Ainsi la somme g (t) = Z gn (t) est de classe C! sur R et se dérive terme & terme.
n=0

n

1.3.2. Comme indiqué, on a : g (¢t +27) = lirf g g ((t+27m) + 2pm), dans cette sommation on
n—-+0oo
p=-n

effectue le changement d’indice ¢ = p + 1, on obtient :

n+1 n+1
gt+2m) = lim > g(t+2m) = lm |—g(-n)—g(-n—1+ >  g(t+2n)
g=—n+1 q=—(n+1)

Or lim —g(—n)= lim —g(-—n—1)=0carg(t) =0 (1) auV (—o0). D’ou

n—-4oo n—-+oo t2

n+1
glt+2m) = lim > g(t+2m)=g(t)
g=—(n+1)
Ainsi g est une fonction 27-périodique.
1 27 L 1 27 +0 .
Par ailleurs, on a : g) = — g (t) e *dt = — t) e"Ftdt.
raillews, ona s or(9) = 5 [ a0 M=o [ U5 o e
La série > g, converge uniformément sur le segment [0,27] selon 1.2. et pour tout ¢ € [0,27],
|gn (t) €| = |gy (t)|, donc la série Z gn (t) e~ converge aussi uniformément sur le segment
n>0



[0,27], on peut alors intégrer terme a terme :

+00 T
w@=5-> [ 7 g (1) e
271' 0

n=0

2m 21 2w
Mais / gn () ekt dt = / g (t+ 2nn) eiktdt—&—/ g (t — 2n7) e"™*!dt, en faisant respectivement
0 0 0

les changements u = t + 2n7m et u = t — 2n7 et sachant que €*"™ = ¢~2"" = 1, on obtient :
2 ) 2(n+1)m ) —2(n—1)m )
Vn > 1, / gn (t) e"Fdt = / g (t) e *tdt 4 / gn (t) e M dt
0 2nm —2nm

Et par la relation de Charles, on aura :

o o

(n+1)m —2(n— 1)7r

2nm —2nm

Ainsi :

w@= 3 [Tawera= L ([Tgwertas [0 gwena) = Ly
27 —Jo " 2 0 oo 27

1.3.3.

e §est un signal de classe C! et 2r-périodique, donc sa suite des coefficients de Fourier (¢, (§)

)n
est sommable ( Notion peut-étre hors programme PSI !!); or on vient de montrer que ¢, (§) =
1
%g (n), d’ot la famille (& (n)),,cz est aussi sommable.
e § est un signal de classe C! et 2w-périodique, donc la série de Fourier de § converge normalement
sur R vers g, en particulier

€L

—+00 “+o00

- - 1 -
§0)= Y gim= Y @@=y > &0
n=-—oo n=-—o00 n=—oo
D’ou la formule sommatoire de Poisson.
PARTIE 11
. Soit A >0et hy(t) = e Nt
2.1. On a hy est de classe C! sur R avec t2h) (t) = 2N ot 121, (1) = —2X283¢ Nt sont de
A

limites nulles en +o0o puisque les exponentielles I’emportent sur les puissances, donc en particulier
bornées aux V (+£00) . Les hypothéses sont alors satisfaites.

2.2. La fonction h; est définie par :

. +oo .
hi(x) = / e ety

—0o0
_$2 s . . L. . . ,
On note f (z,t) = e~ e~ il s’agit d’une dérivation sous l'intégrale?, on a alors

e f est continue sur R? intégrable sur R pour tout z fixé dans R

20n peut aussi utiliser les hypotheses du programme francais



0 :
. 8—f(x,t) = —ite e~ continue sur R? et vérifie la domination : V ¢t € R, Vz € [a,b],
x
0 1
’89}; (z, t)‘ < |t|e™™ = ¢ (t) avec ¢ C° et intégrable sur R car négligeable devant 2 en +o0.

Ainsi hy est de classe C! sur R et se dérive sous Dintégrale (Formule de Leibniz) :

iLl ( _ +oo_.t —t2 —iactd
1(z) = ite”"e t

—0o0
A P’aide d’une intégration par parties®, on a :

Y T it LT ez, iat] T e it
hy (x) = —ite” " et = — {e e } — xe Ve , vu le comportement de

2 o )

2 \ 2 —1 Ry
e ¥ et le caractére borné du terme e, le crochet est nul, d’ot :

—0o0

h (z) = —gﬁl (z) Cad hy vérifie 3/ + gy =0

2.3. Les solutions de (1) sont les y (x) = Ae—x2/4; ou A une constante réelle. tenant compte de
h1(0) = /7, on obtient /iy (z) = /me /4.

2.4. Sachant que t — At est C' de R sur lui méme, on effectue le changement de variable u = At,

~ +m .
dans 'intégrale hy (z) = / e~ N emint gt on aura
—0o0

.%'2

R +oo ) +oo ) d 1. -
h,\ (1‘) — / e—)\2t2e—zxtdt _ / e—u26—zxu/)\7u — Xhl (§> _ \17?6 402

—0o0

2.5. Notons d’abord que la fonction h)y est paire, donc V n € Z, c_,, (hy) = ¢y (hy) , donc la formule

CLJZz
Va

sommatoire de Poisson appliqué a h) (z) = e 47 obtenue pour A = ——, donne :

27
+oo R +oo R
o <hA (0)+2) hy (2m)> = (hA 0)+2)  hy (n))
n=1

n=1

ou encore

R 2 2 R Sl
2w [ 1+ 2 e ™M)l = —— 142 e a

D’ou la formule demandée.

PARTIE III

3. On considére uy, (2) = exp (imn?z)

3.1. L’application f : C — R définie par f (z) = Im (z) est continue ( linéaire en dimension finie
lorsque C est considéré comme R—espace vectoriel) et = f~1(]0, +00[) avec ]0, +oo[ ouvert de R,
donc 2 ouvert de ’espace de départ qui est C.

Par ailleurs € est demi-plan donc convexe puisque :
Im((1 —t) 21 +tze) = (1 —t)Im(21) + tIm (22) > 0 pour t € [0,1] et 21, 22 € Q.

3.2. On a |uy, (2)] = e ™ ™) donc

3Pour étre propre, il faut se ramener & un segment et conclure par passage a la limite



e Silm(z) <0, le terme général u, (z) ne tend pas vers 0 quand n tend vers l'infini, donc la série
> uy (z) diverge grossiérement.

1
e Silm(z) > 0, alors |u, (2)| = e ™ m?(z) — (712) , donc la série ) u,, (2) converge absolument
donc converge.

Conclusion : ) uy, () converge si et seulement si z € 2.

_‘_m . .
2 2 T2 1 si n est pair
3.3. Onau(z+1)+u(z) = g emnE (1 + e ) , en remarquant que e’ = { “1sin est ili)npair )
n=1

on va séparer les pairs et les impairs dans la sommation précédante ( On peut scinder les deux som-
mations car elles convergent), on obtient

+oo +oo
; 2 ; 2 ; 2
u(z+1)+u(z) = E e“mz(l—l—e”m ) = E 26772 — 9, (42)
n=1 n=1

3.4. On pose Uy, (,y) = up (x +iy) et (z,y) = u(z + iy)

1 1
3.4.1. Pour tout (z,y) € Rx [a,+o0[, on a ’nkﬂn (m,y)‘ < pke=m?’a® — <n2> , avec Z 3 con-

vergente, donc 3 nFi, converge normalement et par suite converge uniformément sur Rx [a, +oo].
3.4.2. Pour y > 0 fixé, on pose pour tout z € R, v, (z) = 4, (z,y) = eim*Te=m%y on a4 alors

e Pour tout n € N*, v, est de classe C! sur R.
e La série ) v, converge simplement sur R selon 3.4.3.
e La série des dérivées Y v}, converge uniformément sur R selon 3.4.3.

= du
Donc la somme z — E vp () est de classe C! sur R et se dérive terme & terme, par suite I existe
x

n=1
sur Rx 0, 4+o0[ et on a

o1 ™=,
o (@) = Y imni, (@)
n=1

imn2x ,—mn?y

3.4.3. De méme pour tout x € R fixé, on pose pour tout y > 0, w, (y) =, (z,y) =€ e ,
on a alors

e Pour tout n € N*, w, est de classe C! sur R.
e La série ) w, converge simplement sur R selon 3.4.1.
e La série des dérivées Y w!, converge uniformément sur tout [a,+oo[ pour tout a > 0, selon

3.4.1.
+0o0
Donc la somme y —— an (y) est de classe C! sur ]0, +o0o[ et se dérive terme & terme, par suite
n=1

U
— existe sur Rx |0, +oo[ et on a

dy
o1 = 00
By (z,y) = ;Wﬂ Un (T, y) = Y ox (z,y)
o =
— 2
3.4.4. On a n (x,y) = nz::lmn Up, (z,y) , avec



2

e Les imn“t, continues sur Rx |0, +-o00[

e La série g inn?d, converge uniformément sur Rx [a, +oo[ selon 3.4.1
n>1

ou
Donc la somme % est continue sur Rx ]0,4o00[. Il en est de méme pour
x

i

on .0t
Ainsi @ est différentiable sur Rx ]0, +oof et vérifie les conditions de Cauchy-Riemann : a—u —{—za—u =0,
Y

par suite u est holomorphe sur 'ouvert €.
3.5. Pour z complexe non réel négatif, on pose : z¢ = exp (alog (2))

3.5.1. La fonction z — z® est holomorphe sur C\R™ comme composée de deux fonctions holomor-
phes.

3.5.2. La formule (2) peut-étre écrite sous la forme

Y a>0, <Z>
ia

1

N | —

(1420 (ia)) = 1+ 2u <—Zla)

7

"9 1
Ainsi la fonction z —— <> 2 (14+2u(z)) — (1 + 2u (—)) qui est holomorphe sur 'ouvert
z z

convexe ) s’annule sur tout le demi-axe ouvert des imaginaires purs : iR*", donc ses zéros ne sont
pas isolés et par suite elle est NULLE sur I'ouvert connexe par arcs {2 tout entier. D’otul le résultat
connu sous le nom du prolongement analytique.

3.5.3. En utilisant la relation ci-dessus pour 4z et pour z, on a aura :
1 1

(ZZ>_2 (14 2u (42)) = <1—|—2u <—412>) ot <i>_2 (14 2u(z)) = <1+2u (-i)) cad

1 1
i\ 2 1 _[iY2 (1 1
(14 2u(4z)) <4> <1+2u< 4z)>_<z> (2+u< 4z>> et
1
) -
< 5 +u(z ): <;>2 ( ( )) , en faisant la différence membre & membre et tenant compte
deu(z+1)+u(z) = , on obtient :
1 1 N
1\ 9 1 1 ()2 Sy imn? imn?
o= () () (Eor () o
CQFD





