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CORRIGÉ

EXERCICE

1) On a : MB(u3 + u) = A3 + A = 0, donc u3 + u = 0 et MB(u) = A 6= 0,
donc u 6= 0.

2) a) Si u était injectif, alors A inversible, donc A3 + A = 0 devient en
multipliant par A−1, A2 +I3 = 0, d’où u2+ idE = 0. Ainsi A2 = −I3,
donc det(A2) = det(−I3), d’où det(A)2 = −1 ce qui est impossible,
donc u injective.

b) u : R3 −→ R3, donc dim(Ker(u)) ≤ 3. D’aprés la question
précèdente u est injective, donc dim(Ker(u)) 6= 0 et aussi u 6= 0, donc
Ker(u) 6= R3 et donc dim(Ker(u)) 6= 3, d’où dim(Ker(u)) ∈ {1, 2}.

3) x ∈ Ker(u) ∩ Ker(u2 + idE) =⇒ u(x) = 0E, x = −u2(x) = −u(0E) = 0E,
donc Ker(u) ∩ Ker = {0E}
D’autre part : ∀x ∈ E on a : x = x + u2(x) − u2(x) avec u(x + u2(x)) =
u(x)+u3(x) = 0E et (u2+idE)(−u2(x)) = −(u4(x)+u2(x)) = −u(u3(x)+
u(x)) = −u(0E) = 0E, donc E = Ker(u) ⊕ Ker(u2 + idE), et donc
dim(Ker(u2 + idE)) = dim(E)−dim(Ker(u)) = 3−dim(Ker(u)) ∈ {1, 2},
car dim(Ker(u)) ∈ {1, 2}

4) a) Soit x ∈ F = Ker(u2 + idE), donc u2(x) + x = 0E, d’où
u3(x) + u(x) = u(0E) = 0E, donc (u2 + idE)(u(x)) = 0E, d’où
u(x) ∈ Ker(u2 + idE) = F , donc F est stable par F .

b) x ∈ F =⇒ u2(x)x = −x =⇒ v2(x) = −x =⇒ v2 = −idF .

c) det(v2) = det(−idF ) = (−1)dim(F ), or det(v2) = det(v)2 ≥ 0, et
dim(F ) ∈ {2, 3}, d’où dim(F ) = 2.

d) Soit λ une valeur réelle de v, et x un vecteur propre associé, alors
v(x) = λx et donc −x = v2(x) = v(λx) = λv(x) = λ2x, d’où
λ2 = −1, impossible.

5) a) Soit λ, µ réels tel que λe′2 + µe′3 = 0E, on compose par u, d’où
λe′3 − µe′2 = 0E, car u(e′2) = e′3 et u(e′3) = u2(e′2) = v2(e′2) = −e′2,
puisque e′2 ∈ F , F stable par u, u = v sur F et v2 = −idF .

On obtient alors le système suivant :

{

λe′2 + µe′3 = 0E (1)
−µe′2 + λe′3 = 0E (2)

,

λ×(1)−µ×(2) =⇒ (λ2+µ2)e′2 = 0E =⇒ λ2+µ2 = 0 =⇒ λ = µ = 0,
donc la famille (e′2, e

′
3) est libre.

b) Comme Card(B′) = dim(E) = 3, pour montrer que c’est une base,
il suffit de montrer qu’elle est libre.
En effet, soit a, b, c des réels tel que ae′1 + be′2 + ce′3 = 0E, on com-
pose par u, on obtient alors : be′3 − ce′2 = 0 car u(e′1) = 0E, u(e′2) =
e′3, u(e′3) = −e′2, or la famille (e′2, e

′
3) est libre, donc b = c = 0 et par

suite ae′1 = 0E, d’où a = 0, donc la famille (e′1, e
′
2, e

′
3) est libre.

1



PROBLÉME.

Première partie.

1) a) On a A =
∑

1≤k,l≤n

ak,lEk,l, donc :

AEi,j =
∑

1≤k,l≤n

ak,lEk,lEi,j

=
∑

1≤k,l≤n

ak,lδl,iEk,j

=
n
∑

k=1

ak,iEk,j car : δl,i = 0 si l 6= i

= 1 si l = i

Ei,jA =
∑

1≤k,l≤n

ak,lEi,jEk,l

=
∑

1≤k,l≤n

ak,lδk,jEi,l

=
n
∑

l=1

aj,lEi,l car : δk,j = 0 si k 6= j

= 1 si k = j

=

n
∑

k=1

aj,kEi,k

b) AM = MA =⇒ AM − MA = 0
=⇒ AEi,j = Ei,jA

=⇒
n
∑

k=1

ak,iEk,j − aj,kEi,k = 0

=⇒

n
∑

k 6=i,j

ak,iEk,j − aj,kEi,k+

ai,iEi,j − aj,iEi,i + aj,iEi,j − aj,jEi,j = 0

=⇒

n
∑

k 6=i,j

ak,iEk,j − aj,kEi,k + (ai,i − aj,j)Ei,j = 0

Ainsi ak,i = aj,k = 0 si k 6= i, j et ai,i = aj,j = λ, d’où M = λIn

2) a) On sait que la trace est linéaire et que : Tr(Ek,j) = 0 si k 6= j

= 1 si k = j

,

donc Tr(AEi,j) = Tr

(

n
∑

k=1

ak,iEk,j

)

= aj,i.

b) Tr(AM) = 0 =⇒ Tr(AEi,j) = 0 ∀i, j =⇒ aj,i ∀i, j =⇒ A = 0.

3) Posons A = (ai,j), B = (bi,j), AB = (ci,j), BA = (di,j), on a :

ci,j =
n
∑

k=1

ai,kbk,j et Tr(AB) =
n
∑

i=1

ci,i =
n
∑

i=1

n
∑

k=1

ai,kbk,i et on a aussi :

Tr(BA) =
n
∑

i=1

di,i =
n
∑

i=1

n
∑

k=1

bi,kak,i, en échangeant les indices i et k, on

voit bien que : Tr(AB) = Tr(BA).

4) D’aprés le cours, toute composé à droite ou à gauche par un aut-
morphisme laisse invariant le rang, donc toute multiplication à gauche
ou à droite par une matrice inversible laisse le rang invariant, d’où
rg(PMQ) = rg(M) et rg(P tMQ) = rg(tM) = rg(M)

5) det(PMQ) = det(P ) det(M) det(Q), donc uP,Q conserve le déterminant
⇐⇒ det(P ) det(Q) = 1. De même pour vP,Q, puisque det(tM) = det(M).

Deuxième partie.

1) On sait que les valeurs propres d’une matrice sont exactement les ra-
cines de son polynôme caractéristique associé, que son déterminant est
égal à leurs produit et que sa trace est égale à leurs somme, comptées
avec leurs multiplicités. Donc deux matrices qui ont même polynôme
caractéristique ont même déterminant et même trace, en particulier Φ
conserve le déterminant et la trace.

2) C’est une conséquence immediate de la propriété admise au début de la
2ème partie.

3) a) Si Φ = uP,Q, alors Tr (PEi,jQ) = Tr (Φ(Ei,j)) = Tr(Ei,j) car Φ
conserve la norme.
Si Φ = uP,Q, alors Tr (PEi,jQ) = Tr (Φ(tEi,j)) = Tr(tEi,j) =
Tr(Ei,j).
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b) On a Tr(AB) = Tr(BA), qu’on peut généraliser ainsi :
Tr(ABC) = Tr(CAB), en particulier :
Tr(QPEi,j) = Tr(PEi,jQ) = Tr(Ei,j), or la trace est linéaire et
(Ei,j) constitue une base de Mn(C) donc Tr(QPM) = Tr(M), pour
toute matrice M ∈ Mn(C), d’où Tr((QP − In)M) = 0, d’aprés la
question 2.b) 1ère partie, on déduit que PQ = In, d’où Q = P−1.

4) D’aprés tout ce qui précède on conclut que les endomorphismes qui
conservent le polynôme caractéristique sont ceux de la forme uP,Q ou
vP,Q tel que Q = P−1.

5) a) Il est clair que Φ est linéaire, d’autre part soit :

M =

(

a b

c d

)

∈ Ker (Φ), donc Tr(M)I2 = M , d’où
(

a + d 0
0 a + d

)

=

(

a b

c d

)

d’où a = b = c = d = 0, d’où Φ

est injective comme il s’agit d’un endomrphisme en dimension fini,
alors il est isomorphisme.

b) Soit B = (E1,1, E1,2, E2,1, E2,2) la base canonique de M2(C), on a les
résultats suivants :
φ(E1,1) = I2 − E1,1 = E2,2, φ(E1,2) = −E1,2, φ(E2,1) =
−E2,1, φ(E2,2) = I2 − E2,2 = E1,1, donc A = MB(φ) =








0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0









, le polynôme caractéristique de Φ est égal à

χφ(X) = det(A−XI4) = (1 + X)3(1−X), les valeurs propres de Φ
sont donc -1 et 1.
Soit M vecteur propre associé à -1, donc Tr(M) = 0, c’est le noyau
de la forme linéaire trace, donc de dimension 3 ègale à la multiplicté
de -1 dans χφ(X).

Soit M vecteur propre associé à 1, donc M = λI2, avec λ =
1

2
Tr(M),

donc la dimension du sous-espace propre est égale à 1, égale la mul-
tiplicté de 1 dans χφ(X), donc Φ est diagonalisable.

c) soit : M =

(

a b

c d

)

, donc Φ(M) =

(

d b

c a

)

, il est clair que ces

deux matrices ont même polynôme caractéristique.

d) Φ = vP,P−1 =⇒ Φ(P ) = P =⇒ P = λI2

Troisième partie.

1) a) On a χΦ(A)Φ(B) = χAB, donc d’aprés la question 1), deuxième
partie, Φ(A)Φ(B) et AB ont même trace, en particulier
Tr(Φ(Ei,j)Φ(Ek,l)) = Tr(Ei,jEk,l) = Tr(δj,kEi,l) = δj,kTr(Ei,l) =
δj,kδi,l.

b) On a Card(Φ(Ei,j)) = n2 = dim (Mn(C)), pour montrer que c’est
une base il suffit alors de montrer qu’elle est libre.
En effet soit (λi,j) des nombres complexes tels que
∑

1≤i,j≤n

λi,jΦ(Ei,j) = 0, on multiplie par Φ(Ek,l), la trace de la somme

est toujours nulle, tenant compte de la linéarité de la trace et de la

relation pécédente on obtient :
∑

1≤i,j≤n

λi,jδj,kδi,l = λl,k = 0 ∀ k, ∀ l,

d’où la famille est libre.

2) a) Tr ((Φ(A + B) − Φ(A) − Φ(B))Φ(Ei,j))
= Tr (Φ(A + B)Φ(Ei,j) − Φ(A)Φ(Ei,j) − Φ(B)Φ(Ei,j))
= Tr (Φ(A + B)Φ(Ei,j)) − Tr (Φ(A)Φ(Ei,j)) − Tr (Φ(B)Φ(Ei,j))
= Tr ((A + B)Ei,j) − Tr (AEi,j) − Tr (BEi,j))
= 0 car la trace est linéaire et . distributive par rapport à +

b) Comme la trace est linéaire et que (Φ(Ei,j)) est une base
de Mn(C) et tenant compte de la question précédente alors
Tr ((Φ(A + B) − Φ(A) − Φ(B))M) pour toute matrice M ∈
Mn(C), et enfin d’aprés la question 2.b) 1ére partie, on conclut
que Φ(A + B) − Φ(A) − Φ(B) = 0.

3) Soit λ ∈ C, mn montre comme dans la question précédente
que : Tr ((Φ(λA) − λΦ(A))Φ(Ei,j)) = 0, puis on en déduit que
Tr ((Φ(λA) − λΦ(A))M)) = 0 ∀ M ∈ Mn(C), puis enfin que :
Φ(λA) − λΦ(A), d’où Φ est linéaire.
D’autre part : Soit A ∈ Ker (Φ), donc Tr(AEi,j) = Tr(Φ(A)Φ(Ei,j)) =
0, comme (Ei,j) est une base de Mn(C), alors Tr(AM) = 0 ∀ M ∈
Mn(C), donc A = 0 et par suite Φ est injective, comme c’est un endomr-
phisme en dimension finie, alors c’est un automorphisme.
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4) E2
i,j = Ei,jEi,j = δi,jδj,i = 0 car i 6= j, donc Ei,j est nilpotente.

D’autre part : χΦ(E2

i,j
(X) = χE2

i,j
(X) = (−1)nXn car E2

i,j = 0, en utilisant

le théorème de Cayley-Hamiltion on conclut que Φ(E2n
i,j = 0, donc Φ(Ei,j)

est nilpotente.

5) a) D’aprés la supposition de la partie 3, on a : χAG = χΦ(A)Φ(G) = χΦ(A)

car Φ(G) = In.

b) Tout calcul fait Ei,jG est la matrice dont toutes les lignes sont nulle

sauf la i éme, Ei,jG =























0 . . . . . . . . . 0
...

...
0 . . . . . . . . . 0
gj,1 . . . gj,i . . . gj,n

0 . . . . . . . . . 0
...

...
0 . . . . . . . . . 0























, donc sont po-

lynôme caractéristique est (−1)nXn−1(X − gj,i).

c) Pour i 6= j, la matrice Φ(Ei,j) est nilpotente, donc χΦ(Ei,j ) =
(−1)nXn, or (−1)nXn−1(X − gj,i) = χEi,jG = χΦ(Ei,j ) = (−1)nXn,
donc gj,i = 0 si i 6= j, d’où G est diagonale.
D’autre part, χG2 = χΦ(G) (1), d’aprés 5.a) 3éme partie, or Φ(G) =
In et G2 = Diag(g2

1,1, . . . , g
2
n,n), (matrice diagonale), la relation (1)

devient (−1)n(X − 1)n = (−1)n

n
∏

i=1

(X − g2
i,i), d’où g2

i,i = 1 et par

suite G2 = In.

6) a) Soit A ∈ Mn(C), on a : χΨ(A) = χΦ(AG) = χAG2 = χA en utilisant
la question 5.a) 3éme partie pour AG et le fait que G2 = In. Donc
Ψ conserve le polynôme caractéristique.

b) On a Ψ conserve le polynôme caractéristique, d’aprés les résultats
de la 2ème partie ∃G inversible telle que Ψ = uP,P−1 ou Ψ = vP,P−1,
or Φ(M) = Ψ(MG−1) = Ψ(MG) car G−1 = G puisque G2 = In,
donc Φ(M) = Ψ(MG) = uP,P−1 = PMGP−1 ou Φ(M) = Ψ(MG) =
vP,P−1 = P tMGP−1.

7) a) Tr(AGBG) = Tr(AB) car le produit matriciel est commutatif à
l’interieur de la trace et que G2 = In.

b) D’aprés la question précédente et vu que la trace est linéaire, on
conclut que : Tr ((GBG − B)A) = 0 ∀A ∈ Mn(C), d’aprés la
question 2.b) 1ére partie, on concult que GBG − B = 0.

c) GBG = B =⇒ GB = BG−1 = BG et d’aprés 1.b) 1ére partie, on a
G = λIn, or G2 = In, d’où λ ∈ {−1, 1}.

8) Si w = εuP,P−1, on a : χw(A)w(B) = χεPAP−1εPBP−1 = χPABP−1 = χAB car
deux matrices semblables ont même polynôme caractéristique.
Le même raisonnement est encore valable pour le cas où w = εvP,P−1.

Fin.
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