Épreuve: MATHÉMATIQUES II

Filière PSI

Calculatrices autorisées

Préliminaires

Dans le problème, \mathbb{R} désigne l'ensemble des nombres réels; $\mathcal{M}_n(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. L'espace vectoriel euclidien \mathbb{R}^n est muni du produit scalaire usuel. On identifie l'espace vectoriel \mathbb{R}^n et l'espace des matrices colonnes réelles d'ordre n.

On peut ainsi écrire le produit scalaire $\langle X, Y \rangle$ de deux vecteurs X et Y de \mathbb{R}^n sous la forme ${}^t\!XY$ et la norme $||X|| = \sqrt{\langle X, X \rangle}$ sous la forme $\sqrt{{}^t\!XX}$.

Pour $\lambda_1, \ldots, \lambda_n$ des réels, on note $\operatorname{Diag}(\lambda_1, \ldots, \lambda_n) \in \mathcal{M}_n(\mathbb{R})$ la matrice diagonale avec $\lambda_1, \ldots, \lambda_n$ comme coefficients diagonaux.

On note O(n) l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

Si \mathscr{B} est une base de \mathbb{R}^n , on note $(x_1, \ldots, x_n)_{\mathscr{B}}$ le vecteur de \mathbb{R}^n de coordonnées (x_1, \ldots, x_n) dans la base \mathscr{B} .

Si $\mathscr{B}_1 = (e_1, e_2, \dots, e_n)$ et $\mathscr{B}_2 = (e'_1, e'_2, \dots, e'_n)$ sont deux bases de \mathbb{R}^n , on note $P_{\mathscr{B}_1 \to \mathscr{B}_2}$ la matrice de passage de \mathscr{B}_1 vers \mathscr{B}_2 .

Si f est un endomorphisme de \mathbb{R}^n , on note $\mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)$ la matrice de l'endomorphisme f par rapport à la base \mathscr{B}_1 au départ et \mathscr{B}_2 à l'arrivée, c'est-à-dire la matrice

dont les colonnes sont les vecteurs $(f(e_1))_{\mathscr{B}_2}$, $(f(e_2))_{\mathscr{B}_2}$, ..., $(f(e_n))_{\mathscr{B}_2}$. En particulier, si $\mathscr{B}_1 = \mathscr{B}_2 = \mathscr{B}$, on note $\mathrm{Mat}_{\mathscr{B}}(f) = \mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)$ la matrice de l'endomorphisme f dans la base \mathscr{B} .

Partie I - Valeurs propres de AB et BA

Soit $n \ge 2$ un entier et A, B deux matrices appartenant à $\mathcal{M}_n(\mathbb{R})$.

On propose de démontrer que AB et BA ont les mêmes valeurs propres avec le même ordre de multiplicité.

- **I.A** Cas de la valeur 0.
- I.A.1) Démontrer que 0 est valeur propre de AB si, et seulement si, det(AB) = 0.
- I.A.2) Démontrer que 0 est valeur propre de AB si, et seulement si, 0 est valeur propre de BA.
- **I.B -** Soit λ une valeur propre réelle non nulle de AB, $X \in \mathbb{R}^n$ un vecteur propre de AB associé à cette valeur propre λ .
- I.B.1) Démontrer que les vecteurs *ABX* et *BX* sont non nuls.
- I.B.2) Démontrer que le vecteur BX est vecteur propre pour la matrice BA.
- I.B.3) Démontrer que AB et BA ont les mêmes valeurs propres réelles.
- **I.C -** On suppose que *A* est inversible. On note *I* la matrice identité d'ordre *n*.
- I.C.1) En factorisant de deux façons différentes la matrice ABA xA, démontrer que pour tout x réel ou complexe, on a : $\det(AB xI) = \det(BA xI)$.
- I.C.2) En déduire que AB et BA ont les mêmes valeurs propres réelles ou complexes, avec le même ordre de multiplicité.

On admet que ce résultat est encore vrai si A n'est pas inversible.

Partie II - Valeurs singulières d'une matrice

Dans cette partie II, on fixe un entier n, $n \ge 2$, une matrice A appartenant à $\mathcal{M}_n(\mathbb{R})$ et on pose $r = \operatorname{rg}(A)$.

On note f et g les deux endomorphismes de \mathbb{R}^n dont les matrices dans la base canonique \mathscr{B} sont respectivement A et tAA .

II.A - Diagonalisation de A^tA et de tAA .

II.A.1)

- a) Démontrer que pour tout $X \in \mathbb{R}^n$, $AX = 0 \Longrightarrow {}^t AAX = 0$.
- b) On suppose que $X \in \mathbb{R}^n$ est tel que ${}^t AAX = 0$.

Calculer ${}^tX{}^tAAX$ et en déduire que AX = 0.

- c) En déduire que Ker g = Ker f puis que $rg(A) = \text{rg } ({}^t\!AA)$.
- II.A.2) Démontrer que ^tAA et A ^tA sont deux matrices symétriques.
- II.A.3) En utilisant la partie I, démontrer qu'il existe $P,Q\in O(n)$ et $D\in \mathcal{M}_n(\mathbb{R})$ diagonale telles que

$${}^{t}AA = PD {}^{t}P$$
 et $A {}^{t}A = QD {}^{t}Q$

On pose $D = Diag(\lambda_1, ..., \lambda_n)$

II.A.4) Démontrer que *D* possède exactement *r* termes diagonaux non nuls.

On suppose par la suite que $\lambda_1, \ldots, \lambda_r$ sont non nuls et donc

$$\lambda_{r+1} = \cdots = \lambda_n = 0.$$

II.A.5)

- a) En utilisant ${}^tAA = PD {}^tP$, démontrer qu'on peut écrire D sous la forme tMM , avec $M \in \mathcal{M}_n(\mathbb{R})$.
- b) Démontrer que $\lambda_1, \ldots, \lambda_n \in [0, +\infty[$.

Pour $i \in \{1, ..., n\}$, on appelle « valeurs singulières de A » les n nombres σ_i définis par $\sigma_i = \sqrt{\lambda_i}$.

II.A.6) Soient $U, V \in O(n)$.

Démontrer que les valeurs singulières de *UAV* sont exactement celles de *A*.

II.A.7) Dans cette question seulement, on suppose que $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice symétrique réelle.

Déterminer les valeurs singulières de A en fonction des valeurs propres de A.

- **II.B** On rappelle que $A = \operatorname{Mat}_{\mathscr{B}}(f)$ et ${}^t A A = \operatorname{Mat}_{\mathscr{B}}(g)$ et dans cette section, on note $\rho = \operatorname{rg}({}^t A A) = \operatorname{rg}(g)$.
- II.B.1) Justifier l'existence d'une base orthonormée de \mathbb{R}^n notée $\mathcal{B}_1 = (X_1, \dots, X_n)$ telle que :
- Pour tout entier $i \in [1, \rho]$, ${}^t AAX_i = \lambda_i X_i$;
- $(X_{\rho+1},...,X_n)$ soit une base de Ker f.
- II.B.2) Démontrer que la famille $(AX_1, ..., AX_\rho)$ est une famille orthogonale de vecteurs non nuls et une base de Im (f).
- II.B.3) Pour tout entier $i \in [1, \rho]$, calculer $||AX_i||$.
- II.B.4) Démontrer qu'il existe une base orthonormée \mathscr{B}_2 de \mathbb{R}^n telle que $\mathrm{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(f)=\mathrm{Diag}(\sigma_1,\ldots,\sigma_n).$
- II.B.5) Démontrer qu'il existe deux matrices orthogonales $P_1, P_2 \in O(n)$ telles que $A = P_1 \cdot \text{Diag}(\sigma_1, \dots, \sigma_n) \cdot P_2$.

II.C -

II.C.1) Soient $\sigma_1, \ldots, \sigma_n \in \mathbb{R}^+$ des réels positifs.

Démontrer qu'il existe deux matrices Q_1 et Q_2 dans O(n) telles que :

 $A = Q_1 \cdot \text{Diag}(\sigma_1, \dots, \sigma_n) \cdot Q_2 \iff \sigma_1, \dots, \sigma_n \text{ sont les valeurs singulières de } A.$

II.C.2) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices réelles. Démontrer que :

A et B ont les mêmes valeurs singulières $\iff \exists (R_1, R_2) \in O(n)^2, A = R_1BR_2.$

Partie III - Étude géométrique d'un exemple

Dans cette partie, on pose $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A et \mathscr{B} la base canonique de \mathbb{R}^3 .

- III.A Dans cette section, on utilise les notations et résultats de la partie II.
- III.A.1) Déterminer le rang de A et calculer tAA .
- III.A.2) Déterminer les valeurs singulières de A que l'on notera $\sigma_1, \sigma_2, \sigma_3$ avec $\sigma_1 > \sigma_2 > \sigma_3$.

Filière PSI

III.A.3) Déterminer une base orthonormée de vecteurs propres de tAA que l'on notera $\mathcal{B}_1 = (X_1, X_2, X_3)$.

On rangera les vecteurs dans l'ordre décroissant des valeurs propres correspondantes.

III.A.4) Déterminer une base orthonormée $\mathscr{B}_2 = (Y_1, Y_2, Y_3)$ telle que $\operatorname{Mat}_{\mathscr{B}_1, \mathscr{B}_2}(f) = \operatorname{Diag}(\sigma_1, \sigma_2, \sigma_3)$.

III.A.5) Démontrer que $A = P_{\mathscr{B} \to \mathscr{B}_2} \cdot \operatorname{Diag}(\sigma_1, \sigma_2, \sigma_3) \cdot {}^tP_{\mathscr{B} \to \mathscr{B}_1}$. On pose pour la suite $P = P_{\mathscr{B} \to \mathscr{B}_1}$, $Q = P_{\mathscr{B} \to \mathscr{B}_2}$ et $D = \operatorname{Diag}(\sigma_1, \sigma_2, \sigma_3)$.

III.B - On étudie la partie S de \mathbb{R}^3 définie par

$$S = \{AX; X \in \mathbb{R}^3, ||X|| = 1\} = \{f(x); x \in \mathbb{R}^3, ||x|| = 1\}.$$

C'est donc l'ensemble décrit par f(x) quand x décrit l'ensemble des vecteurs de norme 1 (sphère unité de \mathbb{R}^3).

III.B.1) Démontrer que $\mathcal S$ est une partie d'un plan dont on déterminera une base et une équation cartésienne.

III.B.2) Démontrer que $S = \{QDX', X' \in \mathbb{R}^3, ||X'|| = 1\}.$

III.B.3) Démontrer que dans une base adaptée \mathscr{B}' à déterminer,

$$y = (y_1, y_2, y_3)_{\mathscr{B}'} \in \mathcal{S} \iff \begin{cases} \frac{y_1^2}{\sigma_1^2} + \frac{y_2^2}{\sigma_2^2} \leqslant 1\\ y_3 = 0 \end{cases}$$

III.B.4) Préciser la nature géométrique de l'ensemble S.

Partie IV - Image de la sphère unité

Dans cette partie, comme dans la Partie III, A est une matrice de $\mathcal{M}_3(\mathbb{R})$ et on étudie \mathcal{S} l'ensemble $\mathcal{S} = \{AX; X \in \mathbb{R}^3, ||X|| = 1\}.$

IV.A -

Dans cette section on suppose que rg(A) = 3.

IV.A.1) Démontrer que A admet trois valeurs singulières σ_1 , σ_2 , σ_3 strictement positives, distinctes ou non.

IV.A.2) Démontrer qu'il existe une base orthonormée de \mathbb{R}^3 notée \mathscr{B}' telle que :

$$y = (y_1, y_2, y_3)_{\mathscr{B}'} \in \mathscr{S} \iff \frac{y_1^2}{\sigma_1^2} + \frac{y_2^2}{\sigma_2^2} + \frac{y_3^2}{\sigma_3^2} = 1$$

IV.A.3) Préciser la nature géométrique de \mathscr{S} .

IV.B -

Dans cette section, on suppose que $\operatorname{rg}(A) = 1$.

IV.B.1) Démontrer qu'une seule des valeurs singulières de A est non nulle. On la note σ_1 .

IV.B.2) Démontrer que ${\mathscr S}$ est un segment dont on donnera la longueur.

Partie V - Pseudo-inverse d'une matrice

Soit n un entier, $n \ge 2$ et $A \in \mathcal{M}_n(\mathbb{R})$, qu'on écrit, comme dans la Partie II, sous la forme $A = Q_1 \cdot \text{Diag}(\sigma_1, \dots, \sigma_p, 0, \dots, 0) \cdot Q_2$, où $Q_1, Q_2 \in O(n)$ sont deux matrices orthogonales et $\sigma_1, \dots, \sigma_p$ des réels strictement positifs.

On définit le pseudo-inverse A^+ de A par

$$A^+ = {}^tQ_2 \cdot \operatorname{Diag}\left(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_p}, 0, \dots, 0\right) \cdot {}^tQ_1$$

On pose $P = AA^+$.

V.A - Démontrer que rg(A) = p.

V.B - Simplifier le produit matriciel AA^+ et en déduire que, si A est une matrice inversible, $A^+ = A^{-1}$.

V.C - On note f et h les endomorphismes \mathbb{R}^n dont les matrices dans la base canonique sont respectivement A et P.

Démontrer que h est un projecteur orthogonal dont on donnera le rang.

V.D - Démontrer que Im (f) = Im (h).

V.E - Soit $Y \in \mathbb{R}^n$ fixé.

On considère le système linéaire AX = Y, où $X \in \mathbb{R}^n$ est l'inconnu. On suppose que ce système n'a pas de solution et, à défaut, on recherche les vecteurs X tels que la norme de Y - AX soit minimale.

Démontrer que $X = A^{+}Y$ est l'un de ces vecteurs.

• • • FIN • • •