Partie 1.

LA.

1.B1.

1.B2.

1.B3.

La fonction exponentielle est DSe sur R avec

+ooxk
T __
Vr e R, e¥ = g ol
k=0

I en est donc de méme de e” (composition) et de (14 22)e™ (produit de fonctions DSE sur R)
et on a (c’est un produit de Cauchy élémentaire)

k>1 k>0

(E) est une équation différentielle linéaire du premier ordre & coefficients continus. L’ensemble
des solutions de (FE) sur R est donc un espace affine de dimension 1 dirigé par l'espace des

solutions de '’équation homogene. Comme z +— %- est une primitive sur R de x — =z, la fonction
2 . , . N . . .
Yo : = — e /2 est solution de 1’équation homogene. Par ailleurs, pour que cyp soit solution de

(E), il suffit que
Vo, ¢ (z)yo(z) = (1 +a?)e”/?

c(z) = z + x3/3 convient et la solution générale de (E) est donc

3
T <a+x+2) ™’ /2

ou a est une constante réelle.

f(0) =1 impose la valeur a = 1 et on a donc

3
x
Ve e R, f(x) = <1 +x+ 3> e’ /2 = P(:z:)e_wz/2
P'(x) = 2% + 1 est positif strictement. P est donc strictement croissante. Etant continue, elle
réalise une bijection de R dans son image P(R) = R (limites infinies en l'infini) et admet une
unique racine a qui est I'unique zéro de f.

p(_BY_ L o op( )18
10) ~ 375 10 1000

Le théoréme des valeurs intermédiaires (P est continue) indique alors que

c 9 8
a _—— _—
107 10
Le principe de la méthode de Newton est de partir d’'une premiere valeur approchée ug de «,
d’assimiler le graphe de f & sa tangente en (ug, f(up)). Cette tangente coupe 1’axe des abscisses

en un point u; que l'on prend comme nouvelle approximation. On voit aisément (en posant
I’équation de la tangente) que
f(uo)

[ (uo)

Ici, on applique la méthode de Newton en partant de ug = ag pour obtenir uq puis us etc.
u,, est notre candidat pour la valeur approchée. On aura |u, — a| < 1076 si f(u,) > 0 et
f(un, —107%) < 0 (théoreme des valeurs intermédiaires). Il en est de méme si f(u,) < 0 et
flup +107%) > 0.

En pratique, on gere un test qui nous indique quand on peut sortir de la boucle.

On a

UL = ug —



fo=x->(1+x+x"3/3) *exp(x~2/2);
fprime:=D(f);
a:=-0.9:test:=true:
while test do
a:=a-(f(a)/fprime(a));
if (£(a)<0 and f(a+10~(-6))>0) or
(f(a)>0 and f(a-10"(-6))<0) then test:=false fi
od:

On obtient
—0.817732 < o« < —0.817731

Partie II.

IT.A1. L’intégration est immédiate

Ii(x) = / e PP dt = [—e_tQ/Q]: =1-—¢ /2
0

I1.A2. Une intégration par parties donne (en primitivant te*t2/2) pour p > 2,
x
() = [ 271 4 (o~ Dlpafa) =~ 4 (p - Do)

II.B. Montrons par récurrence l'existence de A € R et Ay € R[X] tels que
Vo € R, Topi1(z) = Mp + e /2 Ay ()

- Pour £k =0, \o = 1 et Ag(z) = —1 conviennent.

- Supposons le résultat vrai au rang k > 0. On a alors
Lopy(w) = —a? 272 4 (24 2) By () = 2K+ )M+ (26 + 2) Ag () — 2242) 712
ce qui donne la relation voulue avec

New1 =2k + )N et Appq(z) = 2(k + 1) Ap(2) — 22+2
qui sont bien respectivement un réel et un polynéme.
Une récurrence immédiate montre que
Vk €N, A, = 2k!

Montrons aussi par récurrence que
k
k' oo
Ak(l’) _ Z ‘72142 Z.’L'Ql

7!
i=0

- Clest vrai pour k =0 (Ag(x) = —1).

- Supposons le résultat vrai au rang k. On a alors
S I %42  (k+ 1) ktl—i, 20 2k+2
Ak+1(a:):—2(k+1)252 - :_ZTQ ¥ —x
i=0 i=0

ce qui donne le résultat au rang k + 1.



II.C. Montrons par récurrence l'existence de pi € R et By € R[X] tels que
Vo € R, ng(x) = ,uho(x) + 673:2/2316(1’)

- Pour k=0, po = 1 et Bo(z) = 0 conviennent.

- Supposons le résultat vrai au rang k > 0. On a alors
Dopsa(w) = —a e 242k 1) () = (2k+ D) Io)+ (2 + 1) By(z) — 22+1) e=*/2
ce qui donne la relation voulue avec
fr+1 = (2k + D)pg et Byi1(x) = (2k + 1) By(z) — 2!

qui sont bien respectivement un réel et un polynome.

Montrons par récurrence que

. 2%k)!
Vk e N*, g = (2,%)‘ et deg(By)=2k—1

- On pup = po =1 et By(zr) = Bo(x) — x = —x. Le résultat est donc vrai au rang 1.

- Supposons le résultat vrai au rang k. On a alors directement deg(Bj4+1) = 2k + 1 avec la
relation de récurrence. En outre

C@k+2)2k+1)  (2k+2)!
Pl =0+ 1) M T 2R+ 1)

ce qui donne la relation au rang k + 1.
On sait aussi que pp = 1 (formule précédente encore valable) et By = 0 (degré non défini).
IL.D1. Si deg(P) = n alors deg(XP) =n+1 > deg(P'+1). On a donc
deg(1+ P — XP)=n+1

II.D2. g : t — e~t*/2 ¢tant continue, le théoreme fondamental indique que Iy est une primitive de g.
Soit h: x +— Ip(z) + P(av)e*"’ﬁz/2 ou P est un polynome. Cette fonction est dérivable et

W(z)=e /2 (1+ P'(z) — 2P(z))

Si h est constante alors 1 + P/ — xP = 0. Si P = 0, ceci n’a pas lieu. Si P # 0, la question
précédente apporte aussi une contradiction en étudiant le degré. On ne peut donc choisir P €
R[X] telle que h soit constante.

Partie I11.

III.A1. Par linéarité de la dérivation (entre autres) on a
Vo R, o(f +kg)(z) = f'(x) + kg'(z) — xf () — kxg(x) = 6(f)(x) + ko(g)(x)
c’est a dire ¢(f + kg) = ¢(f) + ko(g). ¢ est donc linéaire.

ITI.A2. Le noyau de f est I’ensemble des solution de I’équation homogene asssociée a (E); La premiere

partie indique donc que ,
Ker(¢) = Vect(z — * /?)



IT1.A3.

II1.A4.

II1.B1.

111.B2.

II1.C1.
II1.C2.

¢ n’est pas injective puisque son noyau n’est pas restreint a {0}. Le théoréeme de Cauchy-
Lipschitz, cas linéaire, indique que pour tout choix d’un second membre continu (E) possede
une solution. Si le second membre est de classe C*°, il en est de méme pour toute solution
(récurrence immédiate). ¢ est donc surjective de F dans E.

Soit g € E. Soit yg : x +— e’ /2, Pour que cyp soit solution de y' — zy = g, il suffit (méthode de
variation de la constante) que

Va, d(x)yo(r) = g(z)
11 suffit donc de choisir

c(z) = /Ox g(t)e*’fz/2 dt

On a alors I’ensemble des solutions de 3 — xy = g c’est a dire ¢~!(g) (puisque toutes les solutions

sont dans E).
o 1(g) = {a: s 212 (a —i—/ g(t)e*t2/2 dt) /ac€ R}
0

Ve, ¢od(f)(x) = ¢(f) (¢) — 2o(f)(x) = f"(2) — 22 f'(x) + (2* — 1) f(2)

L’équation proposée est homogene, linéaire du second ordre a coefficients continus. L’ensemble
de ses solutions est donc un espace vectoriel de dimension 2. f en est une solution si et seulement
si ¢(f) est dans le noyau de ¢ c’est a dire est du type x — ae®’ /2.

On montre comme en début de probleme que la solution générale de 3/ — zy = e
2’ /2 + ce®®/2. On en déduit que la solution générale de I’équation du seond ordre proposée est

On a

2
/2 st 1

z— (a+ bx)ez2/2

. . . ;. 2 2
On peut aussi faire le calcul au brouillon et se contenter de vérifier que x — €% /2 et x — xe® /2

sont deux solutions indépendantes. FElles engendrent alors l’espace des solutions.
On vient de résoudre ¢?(f) = 0 & la question précédente.

Montrons par récurrence que
Ker(én) = {z — P(z)e*/2/ P € R,_1[X]}

- Le résultat a été prouvé pour n =1 et n = 2.

- Supposons le résultat vrai au rang n > 2. On a ¢""!(f) = 0 si et seulement si ¢(f) €
Ker(¢™). D’apres I'hypothese de récurrence ceci aura lieu si et seulement si il existe P €
R,,—1[X] tel que

Vo € R/ f(z) — af(x) = P(x)e” /?

La question I11.A4. indique que ceci équivaut a ’existence d’un constante a telle que
2 x
Ve eR, f(z)=e"/? <a +/ P(t) dt)
0
Quand P varie dans R,,_1[X],  — [ P(t) dt varie dans Vect(X,...,X"). On a donc

montré que

ker(¢"t!) = {z — Q(2)e” %/ Q € Ry [X]}

Partie IV.



IV.A.

IV.B.

IV.C1.

IvV.C2.

IV.C3.

Si P # 0 alors deg(X P) = deg(P) + 1 > deg(P’) et P’ — X P est de degré égal a 1 + deg(P) et
est non nul. On a donc Ker(¢g) = {0} et ¢g est injective.
Soit f € ¢~ 1(1). La question IT1.A4. indique I'existence d’une constante a telle que

Vr eR, f(x)= "’/ (a+ Ip(z))

On a alors e~/ f(z) — Ip(x) = a ce qui est impossible avec la question I1.D2. quand f est un
polynéme. Ainsi, 1 n’admet pas d’antécédent par ¢g et ¢p n’est pas surjective de R[X]| dans lui
méme.

D’apres la question I11.A4, La fonction f € E vérifie ¢(f) = X?"*! si et seulement si il existe
une constante a telle que ,
Vz € R, f(z)=e"/?(a+ Ins1(2))

Cette condition équivaut a ,
Ingi(z) = e "2 f(z) —a

Pour f(z) = Aj(z), une telle constante a existe (—Ax convient). On a donc ¢(Ag) = X2+ et
ainsi

D Gan= Ker(¢o)

Par linéarité de ¢g, toute combinaison linéaire des X?"*! est dans Im(¢g). Ce sous-espace
contient donc tous les polynomes ne possédant que des puissances impaires c’est a dire le sous-
espace des polynomes impairs.

Le méme raisonnement que ci-dessus montre que ¢(f) = X24 — (2¢ — 1) X292 si et seulement si
il existe une constante a telle que

Vo € R, Ig(x) — (2 — 1)Iag—a(z) = f(x)e > /? —a
On en déduit avec la partie II que
Bo(~X71) = X2 — (2 — 1)X %2
(la constante a = 0 convient alors).
Comme le fait remarquer I’énoncé (et comme g = (2k — 1)ug—1), on a

X2k: X2k:—2 X2k:—1
i i He; HEk—1

Sommons ces inégailtés de k = 1 a k = ¢q. Un telescopage s’opeére et on obtient

i@k(x)_){?q 1
P Hq Ho

On en déduit que

q
1
XQq_Nq:ZiQkEP
o1 Mk

On sait que Vect(X?¥) et Vect(X?*1) sont en somme directe (car (X*) est libre). Comme
P C Vect(X?F), on en déduit, a fortiori, que P et Vect(X, X?,...) sont en somme directe.



IV.C4. D’apres les questions B2 et C1, les deux sous espaces P et Vect(X, X?3,...) sont inclus dans
Im(¢o). On a donc, avec la question précédente,

P @ Vect(X,X3,...) C Im(o)
Comme (1, X, X2, ...) est une base de R[X], on a
Im(go) = Veat($(X™))nen = Veet(¢(X*")ner + Veat(§(X*" 1) nen

Le second sous-espace est P par définition (¢(X2471) = @,). Le premier est constitué de
polynémes impairs (car ¢(X?") I’est pour tout n). On a donc

Im(¢o) C P @ Vect(X, X3,...)

ce qui donne finalement 1’égalité demandée.
Partie V.

V.A. On utilise & nouveau I11.A4 pour obtenir 1 solution générale de (1) qui est

s %2 (a + / (1 + 1)l e /2 dt> =12 (a+ H(z))
0

V.B. Soit y : @ — >0 a,x?" ! la somme d’une série entiere de rayon R > 0 solution de (1). On
peut dériver et sommer terme les séries entieres sur 'intervalle ouvert de convergence et on a
donc

Vz €] — R, R|, ¥ (z) — zy(z) = ap + Z((Zn + Dap — ap_1)z*"
n>1

Avec la question I.A et par unicité du DSE (comme R > 0 on en déduit que

1
ap=1 et Vn e N*, 2n+ 1)a, —an—1 = n+'
n!
Une récurrence simple montre alors que
1
vn, a, = —
n!
On en déduit alors que
x2n+1 5
Vz €] — R, R], y(z) = Z = xe”
n>0

Réciproquement (et le reste aurait pu étre fait au brouillon) on vérifie que x +— ze®” est solution
impaire de (1). Cette solution est DSE de rayon infini comme z — €”.

V.C. Il existe donc a tel que

2

Y, exz/Q(a + H(z)) = xe”

La valeur en x = 0 donne a = 0 et donc

Ve, H(z) = ze /2



