
Partie I.

I.A. La fonction exponentielle est DSe sur R avec

∀x ∈ R, ex =
+∞∑
k=0

xk

k!

Il en est donc de même de ex2
(composition) et de (1 + x2)ex2

(produit de fonctions DSE sur R)
et on a (c’est un produit de Cauchy élémentaire)

∀x ∈ R, (1 + x2)ex2
= 1 +

∑
k≥1

(
1
k!

+
1

(k − 1)!

)
x2k =

∑
k≥0

k + 1
k!

x2k

I.B1. (E) est une équation différentielle linéaire du premier ordre à coefficients continus. L’ensemble
des solutions de (E) sur R est donc un espace affine de dimension 1 dirigé par l’espace des
solutions de l’équation homogène. Comme x 7→ x2

2 est une primitive sur R de x 7→ x, la fonction
y0 : x 7→ ex2/2 est solution de l’équation homogène. Par ailleurs, pour que cy0 soit solution de
(E), il suffit que

∀x, c′(x)y0(x) = (1 + x2)ex2/2

c(x) = x + x3/3 convient et la solution générale de (E) est donc

x 7→
(

a + x +
x3

3

)
ex2/2

où a est une constante réelle.

I.B2. f(0) = 1 impose la valeur a = 1 et on a donc

∀x ∈ R, f(x) =
(

1 + x +
x3

3

)
ex2/2 = P (x)e−x2/2

P ′(x) = x2 + 1 est positif strictement. P est donc strictement croissante. Etant continue, elle
réalise une bijection de R dans son image P (R) = R (limites infinies en l’infini) et admet une
unique racine α qui est l’unique zéro de f .

I.B3. On a

P

(
− 8

10

)
=

11
375

et P

(
− 9

10

)
= − 143

1000

Le théorème des valeurs intermédiaires (P est continue) indique alors que

α ∈
[
− 9

10
,− 8

10

]
Le principe de la méthode de Newton est de partir d’une première valeur approchée u0 de α,
d’assimiler le graphe de f à sa tangente en (u0, f(u0)). Cette tangente coupe l’axe des abscisses
en un point u1 que l’on prend comme nouvelle approximation. On voit aisément (en posant
l’équation de la tangente) que

u1 = u0 −
f(u0)
f ′(u0)

Ici, on applique la méthode de Newton en partant de u0 = α0 pour obtenir u1 puis u2 etc.
un est notre candidat pour la valeur approchée. On aura |un − α| ≤ 10−6 si f(un) > 0 et
f(un − 10−6) < 0 (théorème des valeurs intermédiaires). Il en est de même si f(un) < 0 et
f(un + 10−6) > 0.
En pratique, on gère un test qui nous indique quand on peut sortir de la boucle.

1



f:=x->(1+x+x^3/3)*exp(x^2/2);
fprime:=D(f);
a:=-0.9:test:=true:
while test do
a:=a-(f(a)/fprime(a));
if (f(a)<0 and f(a+10^(-6))>0) or

(f(a)>0 and f(a-10^(-6))<0) then test:=false fi
od:

On obtient
−0.817732 ≤ α ≤ −0.817731

Partie II.

II.A1. L’intégration est immédiate

I1(x) =
∫ x

0
e−t2/2t dt =

[
−e−t2/2

]x

0
= 1− e−x2/2

II.A2. Une intégration par parties donne (en primitivant te−t2/2) pour p ≥ 2,

Ip(x) =
[
−e−t2/2tp−1

]x

0
+ (p− 1)Ip−2(x) = −xp−1e−x2/2 + (p− 1)Ip−2(x)

II.B. Montrons par récurrence l’existence de λk ∈ R et Ak ∈ R[X] tels que

∀x ∈ R, I2k+1(x) = λk + e−x2/2Ak(x)

- Pour k = 0, λ0 = 1 et A0(x) = −1 conviennent.

- Supposons le résultat vrai au rang k ≥ 0. On a alors

I2k+3(x) = −x2k+2e−x2/2 +(2k+2)I2k+1(x) = (2k+2)λk +
(
(2k + 2)Ak(x)− x2k+2

)
e−x2/2

ce qui donne la relation voulue avec

λk+1 = 2(k + 1)λk et Ak+1(x) = 2(k + 1)Ak(x)− x2k+2

qui sont bien respectivement un réel et un polynôme.

Une récurrence immédiate montre que

∀k ∈ N, λk = 2kk!

Montrons aussi par récurrence que

Ak(x) = −
k∑

i=0

k!
i!

2k−ix2i

- C’est vrai pour k = 0 (A0(x) = −1).

- Supposons le résultat vrai au rang k. On a alors

Ak+1(x) = −2(k + 1)
k∑

i=0

k!
i!

2k−ix2i − x2k+2 = −
k∑

i=0

(k + 1)!
i!

2k+1−ix2i − x2k+2

ce qui donne le résultat au rang k + 1.
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II.C. Montrons par récurrence l’existence de µk ∈ R et Bk ∈ R[X] tels que

∀x ∈ R, I2k(x) = µkI0(x) + e−x2/2Bk(x)

- Pour k = 0, µ0 = 1 et B0(x) = 0 conviennent.

- Supposons le résultat vrai au rang k ≥ 0. On a alors

I2k+2(x) = −x2k+1e−x2/2+(2k+1)I2k(x) = (2k+1)µkI0(x)+
(
(2k + 1)Bk(x)− x2k+1

)
e−x2/2

ce qui donne la relation voulue avec

µk+1 = (2k + 1)µk et Bk+1(x) = (2k + 1)Bk(x)− x2k+1

qui sont bien respectivement un réel et un polynôme.

Montrons par récurrence que

∀k ∈ N∗, µk =
(2k)!
2kk!

et deg(Bk) = 2k − 1

- On µ1 = µ0 = 1 et B1(x) = B0(x)− x = −x. Le résultat est donc vrai au rang 1.

- Supposons le résultat vrai au rang k. On a alors directement deg(Bk+1) = 2k + 1 avec la
relation de récurrence. En outre

µk+1 =
(2k + 2)(2k + 1)

2(k + 1)
µk =

(2k + 2)!
2k+1(k + 1)!

ce qui donne la relation au rang k + 1.

On sait aussi que µ0 = 1 (formule précédente encore valable) et B0 = 0 (degré non défini).

II.D1. Si deg(P ) = n alors deg(XP ) = n + 1 > deg(P ′ + 1). On a donc

deg(1 + P ′ −XP ) = n + 1

II.D2. g : t 7→ e−t2/2 étant continue, le théorème fondamental indique que I0 est une primitive de g.
Soit h : x 7→ I0(x) + P (x)e−x2/2 où P est un polynôme. Cette fonction est dérivable et

h′(x) = e−x2/2
(
1 + P ′(x)− xP (x)

)
Si h est constante alors 1 + P ′ − xP = 0. Si P = 0, ceci n’a pas lieu. Si P 6= 0, la question
précédente apporte aussi une contradiction en étudiant le degré. On ne peut donc choisir P ∈
R[X] telle que h soit constante.

Partie III.

III.A1. Par linéarité de la dérivation (entre autres) on a

∀x ∈ R, φ(f + kg)(x) = f ′(x) + kg′(x)− xf(x)− kxg(x) = φ(f)(x) + kφ(g)(x)

c’est à dire φ(f + kg) = φ(f) + kφ(g). φ est donc linéaire.

III.A2. Le noyau de f est l’ensemble des solution de l’équation homogène asssociée à (E); La première
partie indique donc que

Ker(φ) = V ect(x 7→ ex2/2)
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III.A3. φ n’est pas injective puisque son noyau n’est pas restreint à {0}. Le théorème de Cauchy-
Lipschitz, cas linéaire, indique que pour tout choix d’un second membre continu (E) possède
une solution. Si le second membre est de classe C∞, il en est de même pour toute solution
(récurrence immédiate). φ est donc surjective de E dans E.

III.A4. Soit g ∈ E. Soit y0 : x 7→ ex2/2. Pour que cy0 soit solution de y′ − xy = g, il suffit (méthode de
variation de la constante) que

∀x, c′(x)y0(x) = g(x)

Il suffit donc de choisir
c(x) =

∫ x

0
g(t)e−t2/2 dt

On a alors l’ensemble des solutions de y′−xy = g c’est à dire φ−1(g) (puisque toutes les solutions
sont dans E).

φ−1(g) =
{

x 7→ ex2/2

(
a +

∫ x

0
g(t)e−t2/2 dt

)
/ a ∈ R

}
III.B1. On a

∀x, φ ◦ φ(f)(x) = φ(f)′(x)− xφ(f)(x) = f ′′(x)− 2xf ′(x) + (x2 − 1)f(x)

III.B2. L’équation proposée est homogène, linéaire du second ordre à coefficients continus. L’ensemble
de ses solutions est donc un espace vectoriel de dimension 2. f en est une solution si et seulement
si φ(f) est dans le noyau de φ c’est à dire est du type x 7→ aex2/2.
On montre comme en début de problème que la solution générale de y′ − xy = ex2/2 est x 7→
xex2/2 + cex2/2. On en déduit que la solution générale de l’équation du seond ordre proposée est

x 7→ (a + bx)ex2/2

On peut aussi faire le calcul au brouillon et se contenter de vérifier que x 7→ ex2/2 et x 7→ xex2/2

sont deux solutions indépendantes. Elles engendrent alors l’espace des solutions.

III.C1. On vient de résoudre φ2(f) = 0 à la question précédente.

III.C2. Montrons par récurrence que

Ker(φn) = {x 7→ P (x)ex2/2/ P ∈ Rn−1[X]}

- Le résultat a été prouvé pour n = 1 et n = 2.

- Supposons le résultat vrai au rang n ≥ 2. On a φn+1(f) = 0 si et seulement si φ(f) ∈
Ker(φn). D’après l’hypothèse de récurrence ceci aura lieu si et seulement si il existe P ∈
Rn−1[X] tel que

∀x ∈ R/ f ′(x)− xf(x) = P (x)ex2/2

La question III.A4. indique que ceci équivaut à l’existence d’un constante a telle que

∀x ∈ R, f(x) = ex2/2

(
a +

∫ x

0
P (t) dt

)
Quand P varie dans Rn−1[X], x 7→

∫ x
0 P (t) dt varie dans V ect(X, . . . , Xn). On a donc

montré que
ker(φn+1) = {x 7→ Q(x)ex2/2/ Q ∈ Rn[X]}

Partie IV.
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IV.A. Si P 6= 0 alors deg(XP ) = deg(P ) + 1 > deg(P ′) et P ′ −XP est de degré égal à 1 + deg(P ) et
est non nul. On a donc Ker(φ0) = {0} et φ0 est injective.
Soit f ∈ φ−1(1). La question III.A4. indique l’existence d’une constante a telle que

∀x ∈ R, f(x) = ex2/2 (a + I0(x))

On a alors e−x2/f(x)− I0(x) = a ce qui est impossible avec la question II.D2. quand f est un
polynôme. Ainsi, 1 n’admet pas d’antécédent par φ0 et φ0 n’est pas surjective de R[X] dans lui
même.

IV.B. D’après la question III.A4, La fonction f ∈ E vérifie φ(f) = X2n+1 si et seulement si il existe
une constante a telle que

∀x ∈ R, f(x) = ex2/2 (a + I2n+1(x))

Cette condition équivaut à
I2n+1(x) = e−x2/2f(x)− a

Pour f(x) = Ak(x), une telle constante a existe (−λk convient). On a donc φ(Ak) = X2n+1 et
ainsi

X2n+1 ∈ Ker(φ0)

Par linéarité de φ0, toute combinaison linéaire des X2n+1 est dans Im(φ0). Ce sous-espace
contient donc tous les polynômes ne possédant que des puissances impaires c’est à dire le sous-
espace des polynômes impairs.

IV.C1. Le même raisonnement que ci-dessus montre que φ(f) = X2q − (2q− 1)X2q−2 si et seulement si
il existe une constante a telle que

∀x ∈ R, I2q(x)− (2q − 1)I2q−2(x) = f(x)e−x2/2 − a

On en déduit avec la partie II que

φ0(−X2q−1) = X2q − (2q − 1)X2q−2

(la constante a = 0 convient alors).

IV.C2. Comme le fait remarquer l’énoncé (et comme µk = (2k − 1)µk−1), on a

Qk(x)
µk

=
X2k

µk
− (2k − 1)

X2k−2

µk
=

X2k−1

µk−1

Sommons ces inégailtés de k = 1 à k = q. Un telescopage s’opère et on obtient

q∑
k=1

Qk(x)
µk

=
X2q

µq
− 1

µ0

On en déduit que

X2q − µq =
q∑

k=1

µq

µk
Qk ∈ P

IV.C3. On sait que V ect(X2k) et V ect(X2k+1) sont en somme directe (car (Xk) est libre). Comme
P ⊂ V ect(X2k), on en déduit, a fortiori, que P et V ect(X, X3, . . . ) sont en somme directe.
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IV.C4. D’après les questions B2 et C1, les deux sous espaces P et V ect(X, X3, . . . ) sont inclus dans
Im(φ0). On a donc, avec la question précédente,

P ⊕ V ect(X, X3, . . . ) ⊂ Im(φ0)

Comme (1, X,X2, . . . ) est une base de R[X], on a

Im(φ0) = V ect(φ(Xn))n∈N = V ect(φ(X2n))n∈N + V ect(φ(X2n+1))n∈N

Le second sous-espace est P par définition (φ(X2q−1) = Qq). Le premier est constitué de
polynômes impairs (car φ(X2n) l’est pour tout n). On a donc

Im(φ0) ⊂ P ⊕ V ect(X, X3, . . . )

ce qui donne finalement l’égalité demandée.

Partie V.

V.A. On utilise à nouveau III.A4 pour obtenir l solution générale de (1) qui est

x 7→ ex2/2

(
a +

∫ x

0
(1 + t2)et2e−t2/2 dt

)
= ex2/2 (a + H(x))

V.B. Soit y : x 7→
∑+∞

n=0 anx2n+1 la somme d’une série entière de rayon R > 0 solution de (1). On
peut dériver et sommer terme les séries entières sur l’intervalle ouvert de convergence et on a
donc

∀x ∈]−R,R[, y′(x)− xy(x) = a0 +
∑
n≥1

((2n + 1)an − an−1)x2n

Avec la question I.A et par unicité du DSE (comme R > 0 on en déduit que

a0 = 1 et ∀n ∈ N∗, (2n + 1)an − an−1 =
n + 1

n!

Une récurrence simple montre alors que

∀n, an =
1
n!

On en déduit alors que

∀x ∈]−R,R[, y(x) =
∑
n≥0

x2n+1

n!
= xex2

Réciproquement (et le reste aurait pu être fait au brouillon) on vérifie que x 7→ xex2
est solution

impaire de (1). Cette solution est DSE de rayon infini comme x 7→ ex.

V.C. Il existe donc a tel que
∀x, ex2/2(a + H(x)) = xex2

La valeur en x = 0 donne a = 0 et donc

∀x, H(x) = xex2/2
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