ÉCOLE POLYTECHNIQUE – ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES

CONCOURS D'ADMISSION 2014

FILIÈRE PC

COMPOSITION DE MATHÉMATIQUES - (XEULC)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

Ce sujet est consacré à l'étude de propriétés asymptotiques de certaines intégrales à paramètre.

NOTATIONS, DÉFINITIONS, RAPPELS.

Nombres. On note $\mathbb{N} = \{0, 1, 2, \ldots\}$ l'ensemble des entiers naturels, \mathbb{N}^* l'ensemble des entiers naturels non nuls, \mathbb{Z} l'ensemble des entiers relatifs et \mathbb{Z}^* l'ensemble des entiers relatifs non nuls.

Fonctions numériques. Si I est un intervalle de \mathbb{R} , on note $\mathcal{C}^0(I)$ (respectivement $\mathcal{C}^0(I,\mathbb{C})$), l'ensemble des fonctions continues sur I à valeurs réelles (respectivement à valeurs complexes). Pour $k \in \mathbb{N}^*$, on note $\mathcal{C}^k(I)$ (respectivement $\mathcal{C}^k(I,\mathbb{C})$), l'ensemble des fonctions de classe \mathcal{C}^k sur I à valeurs réelles (respectivement à valeurs complexes). On note $\mathcal{C}^{\infty}(I)$ (respectivement $\mathcal{C}^{\infty}(I,\mathbb{C})$) l'ensemble des fonctions de classe \mathcal{C}^{∞} sur I à valeurs réelles (respectivement à valeurs complexes).

Si g est une fonction bornée sur I, on note $||g||_{\infty,I}$ (ou simplement $||g||_{\infty}$) la valeur

$$||g||_{\infty,I} = \sup_{x \in I} |g(x)|.$$

Si I est un intervalle ouvert, on dit qu'une fonction $f: I \to \mathbb{R}$ est à support compact dans I s'il existe $\alpha, \beta \in I$, $\alpha < \beta$, tels que pout tout $x \in I \setminus [\alpha, \beta]$, f(x) = 0.

Séries indexées par \mathbb{Z} . Pour une famille de nombres réels ou complexes $(a_n)_{n\in\mathbb{Z}}$, on dit que la série $\sum a_n$ est convergente si les deux séries

$$\sum_{n=0}^{+\infty} a_n \quad \text{et} \quad \sum_{n=1}^{+\infty} a_{-n}$$

sont convergentes, et on pose alors

$$\sum_{n \in \mathbb{Z}} a_n = \sum_{n=0}^{+\infty} a_n + \sum_{n=1}^{+\infty} a_{-n}, \qquad \sum_{n \in \mathbb{Z}^*} a_n = \sum_{n=1}^{+\infty} a_n + \sum_{n=1}^{+\infty} a_{-n}.$$

Coefficients de Fourier. Si $\phi \in \mathcal{C}^0(\mathbb{R}, \mathbb{C})$ est périodique de période 2π , et si $n \in \mathbb{Z}$, le n-ième coefficient de Fourier de ϕ est

$$c_n(\phi) = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} \phi(x) dx.$$

Dans tout le sujet, a et b sont deux nombres réels tels que a < b.

Les trois parties du sujet sont indépendantes.

I - Intégrales à phase réelle

- 1. Deux cas particuliers. Soit d > 0. Soit $g \in \mathcal{C}^0([0,d])$ telle que $g(0) \neq 0$.
 - (a) Montrer que

$$\int_0^d e^{-tx} g(x) dx \underset{t \to +\infty}{\sim} \frac{g(0)}{t}.$$

Indication. Pour t > 0, on pourra construire une fonction g_t continue par morceaux sur $[0, +\infty[$, bornée, telle que

$$\int_0^d e^{-tx} g(x) dx = \frac{1}{t} \int_0^{+\infty} e^{-x} g_t(x) dx.$$

(b) Montrer de même que

$$\int_0^d e^{-tx^2} g(x) dx \underset{t \to +\infty}{\sim} \frac{\sqrt{\pi}}{2} \frac{g(0)}{\sqrt{t}}.$$

Indication. On rappelle l'égalité $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

Soit $f \in \mathcal{C}^0([a,b])$ telle que $f(a) \neq 0$ et $\varphi \in \mathcal{C}^1([a,b])$. Pour tout paramètre $t \in \mathbb{R}$, on note

$$F(t) = \int_{a}^{b} e^{-t\varphi(x)} f(x) dx.$$

Les deux cas étudiés à la question 1) correspondent à $\varphi(x) = x$ et $\varphi(x) = x^2$, respectivement, lorsque a = 0 et b = d.

- 2. Cas où la phase φ n'a pas de point critique dans [a,b]. On suppose que $\varphi'(x) > 0$ pour tout $x \in [a,b]$.
 - (a) Montrer que $\Phi: x \mapsto \varphi(x) \varphi(a)$ réalise une bijection de [a, b] sur un intervalle de la forme $[0, \beta]$, et qu'elle est de classe \mathcal{C}^1 .

(b) Montrer que

$$F(t) \underset{t \to +\infty}{\sim} \frac{e^{-t\varphi(a)}f(a)}{\varphi'(a)t}.$$

Indication. On se ramènera au cas traité à la question 1a) à l'aide d'un changement de variable.

- 3. Cas où la phase φ a un point critique en a. On suppose maintenant que $\varphi \in \mathcal{C}^2([a,b])$, $\varphi'(a) = 0$, $\varphi''(a) > 0$, et $\varphi'(x) > 0$ pour tout $x \in]a,b]$.
 - (a) Montrer que la formule $\psi(x) = \sqrt{\varphi(x) \varphi(a)}$ définit une fonction de classe \mathcal{C}^1 sur [a,b]. Calculer $\psi'(a)$.
 - (b) Montrer que ψ réalise une bijection de [a, b] sur un intervalle de la forme $[0, \beta]$.
 - (c) Montrer que

$$F(t) \underset{t \to +\infty}{\sim} \sqrt{\frac{\pi}{2\varphi''(a)}} \frac{e^{-t\varphi(a)}f(a)}{\sqrt{t}}.$$

Indication. On se ramènera au cas traité à la question 1b) à l'aide d'un changement de variable.

On admettra que le résultat se généralise de la façon suivante :

Résultat 1. Soit $f \in C^0(]0, +\infty[)$ et $\varphi \in C^2(]0, +\infty[)$. On suppose qu'il existe un unique c > 0 tel que $\varphi'(c) = 0$. On suppose de plus que $f(c) \neq 0$ et $\varphi''(c) > 0$. On suppose finalement que $\int_0^{+\infty} e^{-\varphi(x)} |f(x)| dx$ converge. Alors,

$$\int_0^{+\infty} e^{-t\varphi(x)} f(x) dx \underset{t \to +\infty}{\sim} \sqrt{\frac{2\pi}{\varphi''(c)}} \, \frac{e^{-t\varphi(c)} f(c)}{\sqrt{t}}.$$

- 4. Application. Pour tout $n \in \mathbb{N}^*$, on note $\Gamma(n) = \int_0^{+\infty} x^{n-1} e^{-x} dx$.
 - (a) Calculer $\Gamma(n)$ pour tout $n \in \mathbb{N}^*$. On utilisera une récurrence.
 - (b) En déduire l'équivalent suivant

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi} \, n^{n+1/2} e^{-n}.$$

Indication. On réécrira d'abord $\Gamma(n+1)$ sous la forme

$$\Gamma(n+1) = n^{n+1} \int_0^{+\infty} e^{-n(x-\ln x)} dx.$$

II - FONCTIONS PÉRIODIQUES

5. Séries de Fourier. Soit $\phi: \mathbb{R} \to \mathbb{C}$ une fonction périodique de période 2π , de classe \mathcal{C}^1 .

3

(a) Montrer que pour tout $n \in \mathbb{Z}^*$, $c_n(\phi) = \frac{c_n(\phi')}{in}$.

- (b) Montrer que la série $\sum_{n\in\mathbb{Z}}|c_n(\phi)|$ converge. Indication. Utiliser la formule de Parseval pour la fonction ϕ' .
- (c) Montrer que $\|\phi\|_{\infty} \leq \sum_{n \in \mathbb{Z}} |c_n(\phi)|$.

Soit $\psi : \mathbb{R} \to \mathbb{R}$ une fonction continue, périodique de période 2π . Soit $f : [a, b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 sur [a, b]. Pour tout paramètre $\varepsilon > 0$, on pose

$$J_{\varepsilon} = \int_{a}^{b} \psi\left(\frac{x}{\varepsilon}\right) f(x) dx.$$

- 6. Premier cas. Dans cette question, on suppose de plus que ψ est de classe \mathcal{C}^1 sur \mathbb{R} et que f est à support compact dans]a,b[.
 - (a) Montrer que pour tout $\varepsilon > 0$,

$$\left| J_{\varepsilon} - c_0(\psi) \left(\int_a^b f(x) dx \right) \right| \le \varepsilon (b - a) \|f'\|_{\infty} \sum_{n \in \mathbb{Z}^*} \frac{|c_n(\psi)|}{|n|}.$$

Indication. On pourra se ramener au cas où $\int_0^{2\pi} \psi(y) dy = 0$.

- (b) En déduire la limite de J_{ε} quand $\varepsilon \to 0$.
- 7. Deuxième cas. On suppose maintenant seulement que $\psi \in \mathcal{C}^0(\mathbb{R})$ est périodique de période 2π , et $f \in \mathcal{C}^1([a,b])$. Soit $\varepsilon > 0$. On définit une subdivision de l'intervalle [a,b] de la façon suivante. On note N_{ε} la partie entière de $\frac{b-a}{2\pi\varepsilon}$. On définit alors

 $x_k^{\varepsilon} = a + 2k\pi\varepsilon$, pour tout entier k tel que $0 \le k \le N_{\varepsilon}$.

- (a) Montrer que $\lim_{\varepsilon \to 0} x_{N_{\varepsilon}}^{\varepsilon} = b$.
- (b) En déduire que

$$\lim_{\varepsilon \to 0} \int_{x_{N_{\varepsilon}}^{\varepsilon}}^{b} \psi\left(\frac{x}{\varepsilon}\right) f(x) dx = 0.$$

(c) Montrer que pour tout entier k tel que $0 \le k \le N_{\varepsilon} - 1$, pour tout $x \in [x_k^{\varepsilon}, x_{k+1}^{\varepsilon}]$

$$|f(x) - f(x_k^{\varepsilon})| \le 2\pi\varepsilon ||f'||_{\infty}.$$

(d) Montrer que

$$\sum_{k=0}^{N_\varepsilon-1} \int_{x_k^\varepsilon}^{x_{k+1}^\varepsilon} \psi\left(\frac{x}{\varepsilon}\right) f(x_k^\varepsilon) dx = \left(\int_0^{2\pi} \psi(y) dy\right) \left(\varepsilon \sum_{k=0}^{N_\varepsilon-1} f(x_k^\varepsilon)\right).$$

(e) Montrer que

$$\left| \sum_{k=0}^{N_{\varepsilon}-1} \int_{x_k^{\varepsilon}}^{x_{k+1}^{\varepsilon}} \psi\left(\frac{x}{\varepsilon}\right) \left(f(x) - f(x_k^{\varepsilon})\right) dx \right| \leq \varepsilon (b-a) \|f'\|_{\infty} \left(\int_0^{2\pi} |\psi(y)| dy \right).$$

(f) En déduire que $\lim_{\varepsilon \to 0} J_{\varepsilon} = \left(\frac{1}{2\pi} \int_{0}^{2\pi} \psi(y) dy\right) \left(\int_{a}^{b} f(x) dx\right)$.

8. Application. Soit $\varepsilon > 0$. Soit $\alpha \in \mathbb{R}$. Soit $g : \mathbb{R} \to \mathbb{R}$ une fonction continue. On considère l'équation différentielle suivante

$$\begin{cases} u''(t) + u(t) = g\left(\frac{t}{\varepsilon}\right), \\ u(0) = \alpha, \ u'(0) = 0. \end{cases}$$
 (1)

- (a) Justifier l'existence et l'unicité d'une solution de (1), définie pour $t \in \mathbb{R}$.
- (b) Calculer cette solution au moyen de la méthode de variation des constantes. On notera cette solution u_{ε} .
- (c) On suppose que g est 2π -périodique. Montrer que pour tout $t \in \mathbb{R}$, $u_{\varepsilon}(t)$ admet une limite quand $\epsilon \to 0^+$, limite que l'on calculera.

III - INTÉGRALES OSCILLANTES

Dans cette partie, $\varphi:[a,b]\to\mathbb{R}$ et $f:[a,b]\to\mathbb{R}$ sont deux fonctions de classe \mathcal{C}^{∞} . On s'intéresse maintenant à des intégrales de la forme

$$I(\lambda) = \int_{a}^{b} e^{i\lambda\varphi(x)} f(x) dx$$

où λ est un paramètre réel strictement positif.

Dans toute la suite, on fixe $\lambda > 0$.

- 9. Cas d'une phase non stationnaire. On suppose dans cette question que $\varphi'(x) \neq 0$ pour tout $x \in [a, b]$.
 - (a) On définit $L: \mathcal{C}^{\infty}([a,b],\mathbb{C}) \to \mathcal{C}^{\infty}([a,b],\mathbb{C})$ et $M: \mathcal{C}^{\infty}([a,b],\mathbb{C}) \to \mathcal{C}^{\infty}([a,b],\mathbb{C})$ par : pour tout $g \in \mathcal{C}^{\infty}([a,b],\mathbb{C})$, tout $x \in [a,b]$,

$$Lg(x) = \frac{1}{i\lambda\varphi'(x)}g'(x), \quad Mg(x) = -\left(\frac{g}{i\varphi'}\right)'(x).$$

- i. Déterminer les fonctions $g \in \mathcal{C}^{\infty}([a,b],\mathbb{C})$ telles que Lg = g.
- ii. Soit $g, h \in \mathcal{C}^{\infty}([a, b], \mathbb{C})$. On suppose que h est à support compact dans]a, b[. Montrer que

$$\int_{a}^{b} h(x)Lg(x)dx = \frac{1}{\lambda} \int_{a}^{b} g(x)Mh(x)dx.$$

(b) Montrer que si f est à support compact dans]a, b[, alors pour tout $N \in \mathbb{N}^*$, il existe une constante γ_N indépendante de λ telle que

$$|I(\lambda)| \le \gamma_N \lambda^{-N}.$$

10. (a) On suppose que $|\varphi'(x)| \ge 1$ pour tout $x \in [a, b]$ et que φ' est monotone sur [a, b]. Montrer qu'il existe une constante $c_1 > 0$, indépendante de λ , φ et de a, b, telle que

$$\left| \int_{a}^{b} e^{i\lambda\varphi(x)} dx \right| \le c_1 \lambda^{-1}.$$

Indication. On pourra écrire

$$\int_{a}^{b} e^{i\lambda\varphi(x)} dx = \int_{a}^{b} i\lambda\varphi'(x) e^{i\lambda\varphi(x)} \frac{1}{i\lambda\varphi'(x)} dx$$

et intégrer par parties.

(b) Soit $\delta > 0$. On suppose que $|\varphi'(x)| \ge \delta$ pour tout $x \in [a,b]$ et que φ' est monotone sur [a,b]. Montrer que

$$\left| \int_a^b e^{i\lambda\varphi(x)} dx \right| \le c_1(\lambda\delta)^{-1}.$$

- 11. Cas où la phase peut être stationnaire. Dans toute cette question, on suppose que $|\varphi''(x)| \ge 1$ pour tout $x \in [a, b]$.
 - (a) Montrer que φ' est strictement monotone sur [a,b] et qu'il existe un unique point $c \in [a,b]$ tel que $|\varphi'(c)| = \inf_{x \in [a,b]} |\varphi'(x)|$.
 - (b) Si $x \in [a, b]$, montrer que $|\varphi'(x)| \ge |x c|$.
 - (c) Montrer que pour tout $\delta > 0$,

$$\left| \int_{a}^{b} e^{i\lambda\varphi(x)} dx \right| \le 2c_1(\lambda\delta)^{-1} + 2\delta.$$

(d) En déduire qu'il existe une constante c_2 , indépendante de λ, φ, a et b telle que

$$\left| \int_{a}^{b} e^{i\lambda\varphi(x)} dx \right| \le c_2 \lambda^{-1/2}.$$

(e) Montrer que

$$\left| \int_a^b e^{i\lambda\varphi(x)} f(x) dx \right| \le c_2 \lambda^{-1/2} \left(|f(b)| + \int_a^b |f'(x)| dx \right).$$

* *

*