
Mines PC 2014 maths 1

Partie 1

Question 1

On détaille A = [aij](i,j)∈[[1,n]]2 et A = [bij](i,j)∈[[1,n]]2 .

Pour tout p ∈ [[1, n]], le p-ième coe�cient diagonal de AB est
n∑

j=1

apjbjp, donc la trace de AB est

n∑
p=1

(
n∑

j=1

apjbjp

)
: cette somme est la somme des sommes des coe�cients des colonnes du tableau

[apjbjp](p,j)∈[[1,n]]2 , autrement dit la somme de tous les coe�cients de ce tableau.
En échangeant les rôles de A et B et en utilisant la commutativité de la multiplication des réels,

on trouve de même que tr (BA) =
n∑

p=1

(
n∑

j=1

ajpbpj

)
: c'est la somme de tous les coe�cients du

tableau [ajpbpj](p,j)∈[[1,n]]2 .
Mais ces deux tableaux sont transposés l'un de l'autre : les sommes de leurs coe�cients sont donc
les mêmes.
Finalement : tr (AB) = tr (BA) .

Question 2

On considère B1 et B2 deux bases de X, et on note Q la matrice de passage de B1 vers B2.
On sait que TB2 = Q−1TB1Q.
En appliquant le résultat de la question 1 à A = Q−1 et B = TB1Q , on trouve :
tr (TB2) = tr (TB1QQ−1), donc tr (TB2) = tr (TB1).
On a bien montré que la trace de la matrice TB ne dépend pas du choix de B.

Question 3

On va utiliser le fait que X soit de dimension �nie pour accélérer la démonstration.

• Comme P est un endomorphisme de X, R (P ) et N (P ) sont deux sous-espaces vectoriels de
X.

• Comme X est de dimension �nie, la théorème du rang donne :
dim (X) = dim (R (P )) + dim (N (P )).

• Comme R (P ) et N (P ) sont deux sous-espaces vectoriels de X, le vecteur nul 0X de X
appartient à R (P ) ∩N (P ).
Réciproquement, si y est un élément de R (P ) ∩ N (P ), alors d'une part il existe x ∈ X tel
que y = P (x), et d'autre part P (y) = 0X .
Ainsi, P (P (x)) = 0X . Or P 2 = P ◦ P = P , donc P (x) = 0X , donc y = 0X .
Finalement, R (P ) ∩N (P ) = {0X}.

• On peut bien conclure que X = R (P )⊕N (P ) .
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Question 4

• Comme P 2 = P,pour tout y ∈ R (P ), il existe x ∈ X tel que y = P (x), et donc
P (y) = P 2 (x) = P (x) = y.

• On écrit la matrice de P relativement à une base B de X adaptée à la décomposition
X = R (P )⊕N (P ).
B est formée de dim (R (P )) = rg (P ) vecteurs de R (P ) suivis de dim (X) − dim (R (P ))
vecteurs de N (P ).
Ainsi, les rg (P ) premiers vecteurs de B sont inchangés par P , et l'image par P des autres
est le vectaur nul, donc la matrice de P relativement à B est une matrice diagonale, dont
les rg (P ) premiers coe�cients diagonaux valent 1, et les autres coe�cients diagonaux valent
0. La trace de cette matrice est rg (P ), donc, d'après la dé�nition donnée à la question 2,
tr (P ) = rg (P ) .

Ce qui précède est un résultat important, à connaître et à savoir redémontrer.

Question 5

• La matrice de I − P dans la base B = (e1, · · · , en) déjà utilisée dans la question précédente
est la matrice diagonale D d'ordre n dont les rg (P ) premiers coe�cients valent 1− 1 = 0 et
les n− rg (P ) derniers valent 1− 0 = 1.
Il s'agit d'une matrice de rang n− rg (P ), donc, d'après le théorème du rang,
dim (N (P ′)) = rg (P ).
Mais on lit directement sur Dque les rg (P ) premiers vecteurs de B appartiennent à N (P ′),
et donc ils forment une famille libre de dim (N (P ′)) vecteurs de N (P ′), c'est-à-dire une base
de N (P ′).
De même, les n−rg (P ) derniers vecteurs de B forment une famille libre de vecteurs invariants
par P ′, donc forment une famille libre de dim (R (P ′)) vecteurs de R (P ′), autrement dit une
base de R (P ′).

• Le même raisonnement e�ectué sur la matrice de P relativement à B prouve que les rg (P )
premiers vecteurs de B forment une base de R (P ), et les n − rg (P ) derniers forment une
base de N (P ).

• On peut donc conclure que R (P ) = N (P ′) et N (P ) = R (P ′) .

En fait, le cours a�rme que P ′ est le projecteur sur N (P ) parallèlement à R (P ), ce qui répond

directement à la question.

Mais la façon dont elle est posée me donne l'impression que l'auteur de l'énoncé ne supposait pas

ce résultat connu.

Question 6

En concaténant une base de F et une base de G, on obtient une famille génératrice de F + G,
formée de dim (F ) + dim (G) vecteurs.
Or la dimension de F+G est inférieure ou égale au nombre des vecteurs de n'importe quelle famille
génératrice de F +G,
donc dim (F +G) 6 dim (F ) + dim (G) .
On peut aussi utiliser la formule de Grassmann.
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Question 7

• Par linéarité de la trace, la trace de S et la somme des traces de P1, ..., Pm.
Or, d'après la question 4, la trace d'un projecteur de X est égal à son rang,
donc tr (S) = rg (P1) + · · ·+ rg (Pm).
Ainsi, comme somme d'entiers naturels, la trace de S est encore un entier naturel.

• Si y ∈ R (S), alors il existe x ∈ X de sorte que y = S (x) = P1 (x) + · · ·+ Pm (x).
Ainsi, y ∈ (R (P1) + · · ·+R (Pm)).
On vient de prouver que R (S) ⊂ (R (P1) + · · ·+R (Pm)), donc, comme on travaille unique-
ment sur des espaces vectoriels de dimensions �nies,
dim (R (S)) 6 dim (R (P1) + · · ·+R (Pm)), et donc, d'après la question 6,
rg (S) 6 dim (R (P1)) + · · ·+ dim (R (Pm)).
Or dim (R (P1)) + · · ·+ dim (R (Pm)) = rg (P1) + · · ·+ rg (Pm) = tr (S),
et donc : rg (S) 6 tr (S) .

Partie 2

Question 8

J'utilise une notation un peu plus précise que celle de l'énoncé : Oi,j désigne la matrice nulle à i
lignes et j colonnes.

La matrice de P relativement à la base C s'écrit, par blocs, PC =

[
1 O1,n−1

On−1,1 On−1,n−1

]
.

On e�ectue le même découpage sur TC , qui s'écrit

[
µ L
C B

]
, où L est une ligne de n−1 coe�cients,

C une colonne de n− 1 coe�cients, µ un réel, et B ∈ Mn−1.
On peut alors e�ectuer le produit PCTCPC par blocs : on obtient

PCTC =

[
µ L

On−1,1 On−1,n−1

]
, puis PCTCPC =

[
µ O1,n−1

On−1,1 On−1,n−1

]
= µPC .

Ainsi, les matrices relativement à C de PTP et µP sont égales, donc PTP = µP .

Question 9

C'est déjà fait au 8 !
Je pense que l'auteur de l'énoncé avait une autre idée en tête que le produit par blocs.

Question 10

On va démontrer la contraposée de l'implication proposée.
On suppose que B est une matrice d'homothétie, donc qu'elle est de la forme βIn−1, où β est un
réel, et In−1 la matrice identité d'ordre n− 1.

La matrice de P ′ relativement à C est Q =

[
0 O1,n−1

On−1,1 In−1

]
, donc celle de P ′TP ′ est, toujours

en e�ectuant les produits par blocs,

[
0 O1,n−1

On−1,1 βIn−1

]
= βQ, et donc P ′TP ′ = βP ′.

On a donc prouvé que, si Best une matrice d'homothétie, alors P ′TP ′ est proportionnel à P ′, ce
qui, par contraposition, est exactement le résultat demandé.
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Partie 3

Question 11

On va encore travailler par contraposition : on suppose que, pour tout x ∈ X, Tx est colinéaire à
x.
On �xe alors B = (e1, · · · , en) une base de X.
D'après l'hypothèse, il existe des réels λ1, ..., λn de sorte que Te1 = λ1e1, ..., Ten = λnen.
Il existe aussi un réel µ de sorte que T (e1 + · · ·+ en) = µ (e1 + · · ·+ en).
Mais, par linéarité de T , T (e1 + · · ·+ en) = Te1 + · · ·+ Ten = λ1e1 + · · ·+ λnen.
Ainsi, (λ1 − µ) e1 + · · · + (λn − µ) en = 0X , donc, comme la famille (e1, · · · , en) est libre, λ1 − µ,
..., λn − µ sont tous nuls, donc λ1 = · · · = λn = µ.
La matrice de T relativement à B est donc µIn, donc T = µI, donc T est une homothétie.
Par contraposition, on a bien prouvé que, si T n'est pas une homothétie, il existe un vecteur x de
sorte que (x, Tx) soit libre.
C'est encore un grand classique, à savoir refaire!

Question 12

D'après le résultat de la question 11, il existe un vecteur x de X de sorte que la famille (x, Tx)
soit libre.
On pose alors e1 = x, e2 = Tx, et on applique le théorème de la base incomplète : on peut trouver
des vecteurs e3, ..., en de sorte que B = (e1, e2, · · · , en) soit une base de X.

Comme e2 = Te1, la première colonne de la matrice TB est


0
1
0
...
0

 : c'est le résulat demandé.

Question 13

On va procéder montrer par récurrence que, pour tout n > 2 et tout endomorphisme T de trace
nulle autr qu'une homothétie d'un espace vectoriel réel X de dimension n, il existe une base de X
relativement à laquelle la matrice de T soit de diagonale nulle.

• Lorsque n = 2 :
comme T n'est pas une homothétie, d'après la question 12, il existe une base B′ de X

relativement à laquelle la matrice de T est de la forme

[
0 α
1 β

]
, où (α, β) ∈ R2.

D'après la dé�nition de la question 2, la trace de T est donc β.

Mais cette trace est nulle, donc β = 0, donc TB′ =

[
0 α
1 0

]
.

• On considère un entier n > 2 pour lequel le résultat est vrai.
Soit alors T un endomorphisme autre qu'une homothétie de trace nulle d'un espace vectoriel
de dimension n+ 1.
D'après la question 12, il existe une base B1 de X relativement à laquelle la matrice de T

s'écrit

[
0 L
C B

]
, où Lest une ligne à n coe�cients, C est la colonne dont le premier coe�-

cient vaut 1 et les n− 1 autres sont nuls, et B est une matrice carrée.
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Mais alors la trace de T est à la fois nulle et égale à celle de B, donc B est une matrice d'ordre
n et de trace nulle.

� Si B est une matrice d'homothétie, et si λ est le rapport de cette homothétie, alors
tr (B) = nλ, donc λ = 0, donc B est la matrice nulle d'ordre n, ce qui achève l'étude de
ce cas.

� Dans le cas contraire, par hypothèse de récurrence, il existe une base B2 de Rn rela-
tivement à laquelle la matrice de l'endomorphisme canoniquement associé à B soit de
diagonale nulle.
On note alors Q la matrice de passage de la base canonique de Rn vers B, et B′ la

famille de X de matrice

[
1 O1,n

On,1 Q

]
relativement à B1.

Un produit par blocs immédiat montre que

[
1 O1,n

On,1 Q

]
est inversible, d'inverse[

1 O1,n

On,1 Q−1

]
, donc B2 est une base de X.

En�n, d'après la formule de changement de base, la matrice de T relativement à B2 est[
1 O1,n

On,1 Q−1

] [
0 L
C B

] [
1 O1,n

On,1 Q

]
.

On calcule encore ce produit par blocs, ce qui donne : TB =

[
0 LQ

Q−1C Q−1BQ

]
.

En�n, Q−1BQ est, par dé�nition, une matrice de diagonale nulle, donc TB l'est aussi.

• Le résultat demandé dans cette question est donc démontré par récurrence sur n.
C'est à nouveau un grand classique, au moins pour les concours �étoilés�.

Question 14

J'ai résolu cette question par �tâtonnements� successifs, en essayant de �bricoler� une base (f1, f2)
qui ait un vecteur commun avec (e1, e2).
D'après le premier point de la démonstration précédente, comme T n'est pas une homothétie, il

existe une base (e1, e2) de X relativement à laquelle la matrice de T s'écrit

[
0 α
1 0

]
, où α ∈ R.

On pose alors f1 = e1 et f2 = −t1e1 + e2. f2 n'est pas colinéaire à f1, donc (f1, f2)est une famille
libre de 2 = dim (X) vecteurs de X, donc est une base de X.
Mais Te1 = e2, donc Tf1 = e2 = f2 + t1e1 = f2 + t1f1.

La matrice de T relativement à (f1, f2) s'écrit donc

[
t1 δ1
1 δ2

]
, où δ1 et δ2 sont réels.

Mais, d'après la question 2, la trace de cette matrice est t1 + t2, donc δ2 = t2, donc les coe�cients
diagonaux de la matrice de T relativement à la base (f1, f2) sont t1 et t2.

Question 15

On applique d'abord le résultat admis avec t = t1. Le résultat demandé est alors une conséquance
directe des résultats des questions 9 et 10.
Le lecteur curieux peut bien sûr rechercher une démonstration du résultat admis.
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Question 16

• On va démontrer par récurrence que, pour tout n > 3, pour tout endomorphisme T d'un
espace vectoriel réel X de dimension n qui ne soit pas une homothétie et pour tout n-uplet
(t1, · · · , tn) de réels tel que t1 + · · · + tn = tr (T ), il existe une base de X relativement à
laquelle la matrice représentative de T a pour coe�cients diagonaux t1, · · · , tn.

• Si T est un endomorphisme d'un espace vectoriel réel X de dimension 3 qui ne soit pas une
homothétie et si t1, t2, t3 sont trois réels tels que t1 + t2 + t3 = tr (T ) :
D'après la question 15, il existe une base C relativement à laquelle la matrice de T s'écrit[
t1 L
C B

]
, où B est une matrice carrée d'ordre 2 qui n'est pas une matrice d'homothétie.

Mais alors la trace de B est tr (T ) − t1 = t2 + t3 et B n'est pas une matrice d'homothétie,
donc, d'après la question 14, il existe une base de R2 relativement à laquelle la matrice de
l'endomorphisme canoniquement associé à B a t2 et t3 pour coe�cients diagonaux.
On termine alors comme dans la phase d'itération de la question 13 pour construire une base
B′′ de X relativement à laquelle la matrice représentative de T a pour coe�cients diagonaux
t1, t2, t3.

• On considère n un entier naturel supérieur ou égal à 3 pour lequel le résultat est vrai.
Soit alors T un endomorphisme autre qu'une homothétie d'un espace vectoriel réel de dimen-
sion n+ 1 et t1, · · · , tn+1 n+ 1 réels dont la somme est la trace de T .
On commence comme au point précédent, on applique l'hypothèse de récurrence à l'endomorphisme
canoniquement associé à la matrice B, et on termine à nouveau comme dans la phase
d'itération de la question 13 pour construire une base de X relativement à laquelle la matrice
représentative de T a pour coe�cients diagonaux t1, · · · , tn+1.

• Le résutat demandé est donc bien prouvé par récurrence sur n.

Partie 4

Question 17

D'après le théorème du rang, le noyau de T est de dimension n− ρ.
On part d'une base de B' de X adaptée au noyau de T : elle s'écrit (B1,B2), où B1 est une base
du noyau de T .
Il su�t alors d'écrire la matrice de T relativement à la base B = (B2,B1).

Question 18

La trace de T1 est la même que celle de T : c'est donc un entier naturel supérieur ou égal à ρ.
Ainsi, t1 = 1, ..., tρ−1 = 1,tρ = tr (T )− ρ sont ρ entiers naturels non nuls.
Lorsque ρ = 2, on applique directement la question 14 : il existe une base C de R2 relativement à
laquelle la matrice de l'endomorphisme canoniquement associé à T1 a pour coe�cients diagonaux
1 et t2 = tr (T )− 1.
Lorsque ρ > 3, on applique la question 16 : il existe C de Rρ relativement à laquelle la matrice V
de l'endomorphisme canoniquement associé à T1 a pour coe�cients diagonaux
t1 = 1, ..., tρ−1 = 1,tρ = tr (T )− ρ .
Dans les deux cas, on note Q la matrice de passage de la base canonique de Rρ vers C .
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Comme dans la question 13, la famille B′ de matrice

[
Q Oρ,n−ρ

On−ρ,ρ In−ρ

]
est une base de X,

relativement à laquelle la matrice de t est

[
Q−1 Oρ,n−ρ

On−ρ,ρ In−ρ

] [
T1 Oρ,n−ρ

T2 On−ρ,n−ρ

] [
Q Oρ,n−ρ

On−ρ,ρ In−ρ

]
.

Les formats des divers blocs permettent d'e�ectuer le produit pas blocs, et on trouve que la matrice

de T relativement à B′ est

[
Q−1T1Q Oρ,n−ρ

T2Q On−ρ,n−ρ

]
.

Comme les coe�cients diagonaux de Q−1T1Q sont t1 = 1, ..., tρ−1 = 1,tρ = tr (T )− ρ, on vient de
prouver le résultat demandé.

Question 19

• On considère d'abord P une matrice carrée d'ordre n dont une seule colonne, la i-ième, est non

nulle, et dont le i-ième coe�cient de la i-ième colonne vaut 1 : P =



a1i

(0)
... (0)

ai−1,i

1
(0) ai+1,i (0)

...
an,i


.

On constate par un calcul direct que P2 = P.

• On écrit la matrice A trouvée à la question 18 sous la forme P1 + · · ·+Pρ−1 + tρPρ, où, pour
tout i ∈ [[1, ρ− 1]], Pi est la matrice carrée d'ordre n dont la i-ième colonne est aussi celle
de A, et dont les autres sont nulles, et où Pρ est la matrice carrée d'ordre n dont la ρ-ième

colonne est aussi
1

tρ
multipliée par celle de A, et dont les autres sont nulles.

On vient de voir que P1, · · · ,Pρ sont toutes des matrices de projecteurs, et, comme tρ est un
entier naturel non nul, on vient donc d'écrire T comme la somme de tr (T ) projecteurs de
rang 1.

Question 20

• Dans le cas où tr (T1) > ρ, on écrit TB′ = P+ (TB′ − P), où P est la matrice carrée d'ordre
n dont le coe�cient supérieur gauche vaut 1 et tous les autres 0.
La matrice T3 obtenue en retirant 1 au coe�cient supérieur gauche de T1 n'est plus une
matrice d'homothétie, et sa trace est un entier naturel supérieur ou égal à ρ, donc on peut

applique les résultats des questions 18 et 19 à la matrice

[
T3 Oρ,n−ρ

T2 On−ρ,n−ρ

]
: on peut l'écrire

comme somme �nie de matrices de projecteurs.
Quant à P, c'est elle-même une matrice de projecteurs d'après la question 19, et donc T est
bien une somme �nie de projecteurs.

• Dans le cas où tr (T1) = ρ, le rapport de l'homothétie représentée par T1 est 1 (cf question
13), donc T1 = Iρ.

Mais alors

[
T1 Oρ,n−ρ

T2 On−ρ,n−ρ

]2
=

[
Iρ Oρ,n−ρ

T2 On−ρ,n−ρ

]2
=

[
Iρ Oρ,n−ρ

T2 On−ρ,n−ρ

]
(c'est directement

un produit par blocs), et donc T est déjà un projecteur
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