Mines PC 2014 maths 1

Partie 1
Question 1
On détaille A = [aij](i,j)e[[l7n]]2 et A = [bij](i,j)e[[l,n]]2'

Pour tout p € [[1,n]], le p-iéme coefficient diagonal de AB est Z ap;ibjp, donc la trace de AB est

j=1

Z (Z Apj Jp> : cette somme est la somme des sommes des coefficients des colonnes du tableau

p=1
[apjbjp) ) einy2+ 2utrement dit la somme de tous les coefficients de ce tableau.

En échangeant les roles de A et B et en utilisant la commutativité de la multiplication des réels,

on trouve de méme que tr (BA) Z (Z @jp p]> : c’est la somme de tous les coefficients du

p=1
tableau [a;pbp;] , i n2-
Mais ces deux tableaux sont transposés I’'un de 'autre : les sommes de leurs coeflicients sont donc
les mémes.
Finalement : | tr (AB) = tr (BA) |.

Question 2

On considére A, et B deux bases de X, et on note () la matrice de passage de %, vers Hs.
On sait que Ty, = Q1T Q.

En appliquant le résultat de la question 1 & A = Q™! et B=T,Q , on trouve :

tr (Ty,) = tr (Tx,QQ "), donc tr (Tyg,) = tr (Ty,).

On a bien montré que la trace de la matrice T4 ne dépend pas du choix de £.

Question 3

On va utiliser le fait que X soit de dimension finie pour accélérer la démonstration.

e Comme P est un endomorphisme de X, R (P) et N (P) sont deux sous-espaces vectoriels de
X.

e Comme X est de dimension finie, la théoréme du rang donne :
dim (X) = dim (R (P)) + dim (N (P)).

e Comme R(P) et N (P) sont deux sous-espaces vectoriels de X, le vecteur nul Ox de X
appartient a R (P) NN (P).
Réciproquement, si y est un élément de R (P) N N (P), alors d'une part il existe z € X tel
que y = P (x), et d’autre part P (y) = Ox.
Ainsi, P (P (x)) =0x. Or P2=Po P =P, donc P (x) = 0x, donc y = Ox.
Finalement, R (P) NN (P) = {0x}.

e On peut bien conclure que| X = R(P)® N (P) |.




Question 4

e Comme P? = Ppour tout y € R(P), il existe z € X tel que y = P (z), et donc
P(y)=P%(x)=P(x) =y.

e On écrit la matrice de P relativement & une base % de X adaptée a la décomposition
X =R(P)® N (P).
A est formée de dim (R (P)) = rg(P) vecteurs de R (P) suivis de dim (X) — dim (R (P))
vecteurs de N (P).
Ainsi, les rg (P) premiers vecteurs de Z sont inchangés par P, et I'image par P des autres
est le vectaur nul, donc la matrice de P relativement & % est une matrice diagonale, dont
les rg (P) premiers coefficients diagonaux valent 1, et les autres coefficients diagonaux valent
0. La trace de cette matrice est rg (P), donc, d’aprés la définition donnée a la question 2,

’ tr (P) =rg(P) ‘

Ce qui précede est un résultat important, a connaitre et a savoir redémontrer.

Question 5

e La matrice de I — P dans la base & = (eq, - - ,e,) déja utilisée dans la question précédente
est la matrice diagonale D d’ordre n dont les rg (P) premiers coefficients valent 1 —1 =0 et
les n — rg (P) derniers valent 1 — 0 = 1.

Il s’agit d’une matrice de rang n — rg (P), donc, d’aprés le théoréme du rang,

dim (N (P")) = rg (P).

Mais on lit directement sur Dque les rg (P) premiers vecteurs de 2 appartiennent a N (P'),
et donc ils forment une famille libre de dim (N (P’)) vecteurs de N (P’), ¢’est-a-dire une base
de N (P).

De méme, les n—rg (P) derniers vecteurs de % forment une famille libre de vecteurs invariants
par P, donc forment une famille libre de dim (R (P’)) vecteurs de R (P’), autrement dit une
base de R (P").

e Le méme raisonnement effectué sur la matrice de P relativement a % prouve que les rg (P)
premiers vecteurs de % forment une base de R (P), et les n — rg (P) derniers forment une
base de N (P).

e On peut donc conclure que| R(P) = N (P) et N (P) = R(P') |

En fait, le cours affirme que P’ est le projecteur sur N (P) parallelement o R (P), ce qui répond
directement a la question.

Mais la fagon dont elle est posée me donne 'impression que auteur de [’énoncé ne supposait pas
ce résultat connu.

Question 6

En concaténant une base de F' et une base de GG, on obtient une famille génératrice de F' + G,
formée de dim (F') + dim (G) vecteurs.

Or la dimension de F'+ G est inférieure ou égale au nombre des vecteurs de n’importe quelle famille
génératrice de F' + G,

donc | dim (F 4+ G) < dim (F) +dim (G) |

On peut aussi utiliser la formule de Grassmann.




Question 7

e Par linéarité de la trace, la trace de S et la somme des traces de P, ..., B,,.
Or, d’aprés la question 4, la trace d’'un projecteur de X est égal a son rang,
donc tr (S) =rg(Py) + -+ +1g(Pn).
Ainsi, comme somme d’entiers naturels, la trace de S est encore un entier naturel.

e Siye R(S5), alors il existe x € X de sorte que y = S (x) = P, () + -+ - + P, (x).
Ainsi, y € (R(P1) + -+ R(Pn))-
On vient de prouver que R (S) C (R(FPy)+---+ R(P,)), donc, comme on travaille unique-
ment sur des espaces vectoriels de dimensions finies,
dim (R (S)) < dim (R (P1) + -+ + R(P,,)), et donc, d’aprés la question 6,
rg (S) < dim (R (Py)) + -+ +dim (R (P)).
Or dim (R (Py)) + -+ +dim (R (Py,)) =rg(P) + -+ - +1rg (Py,) = tr (5),
et donc : | rg (S) < tr (S) |

Partie 2
Question 8

J'utilise une notation un peu plus précise que celle de ’énoncé : Q;; désigne la matrice nulle a 7
lrgnes et j colonnes.
1 @1,1171

La matrice de P relativement a la base & s’écrit, par blocs, Py = [ 0 0
n—1,1 n—1n—1

L . .
é B | ol L est une ligne de n—1 coefficients,
C une colonne de n — 1 coefficients, p un réel, et B € .#,,_.
On peut alors effectuer le produit P4 T4 P4 par blocs : on obtient

B 1 L ) . U O1n—1 o
P%T% N @n—l,l @n—l,n—l » PUIS P%T%P% N |: @n—l,l @n—l,n—l :| N MP% .

Ainsi, les matrices relativement a 4 de PTP et uP sont égales, donc | PTP = uP |

Question 9

On effectue le méme découpage sur Ty, qui s’écrit {

C’est déja fait au 8 !
Je pense que auteur de I’énoncé avait une autre idée en téte que le produit par blocs.

Question 10

On va démontrer la contraposée de 'implication proposée.
On suppose que B est une matrice d’homothétie, donc qu’elle est de la forme SI,,_q, ot 8 est un
réel, et I,,_; la matrice identité d’ordre n — 1.

0 @1771,1
On-11 L
@n:l %11:_—11 } = BQ, et donc P'TP = 3P,

On a donc prouvé que, si Best une matrice d’homothétie, alors P"T'P’ est proportionnel & P’; ce
qui, par contraposition, est exactement le résultat demandé.

La matrice de P’ relativement & € est Q = [ ], donc celle de P'T' P’ est, toujours

en effectuant les produits par blocs, [



Partie 3
Question 11

On va encore travailler par contraposition : on suppose que, pour tout x € X, Tz est colinéaire a
x.

On fixe alors & = (e1,-- - ,€,) une base de X.

D’apres ’hypothése, il existe des réels Ay, ..., A, de sorte que T'e; = Aeq, ..., Te, = A\pé,.

Il existe aussi un réel p de sorte que T (eg + -+ +e,) = (e + -+ ey).

Mais, par linéarité de T, T'(e1 + -+ -+ e,) =Tey + -+ -+ Te, = Aeg + -+ -+ A\pen.

Ainsi, (A —p)er + -+ (A — i) e, = Ox, done, comme la famille (eq,--- ,e,) est libre, A\; — p,
weey Ap — 4 sont tous nuls, donc Ay =--- =\, = p.

La matrice de T relativement & % est donc ul,, donc T = pl, donc T est une homothétie.

Par contraposition, on a bien prouvé que, si 7' n’est pas une homothétie, il existe un vecteur x de
sorte que (z,T'z) soit libre.

C’est encore un grand classique, a savoir refaire!

Question 12

D’aprés le résultat de la question 11, il existe un vecteur x de X de sorte que la famille (z,Tz)
soit libre.
On pose alors e; = x, e = T'x, et on applique le théoréme de la base incompléte : on peut trouver

des vecteurs es, ..., e, de sorte que & = (e, ez, -+, €,) s0it une pase de X.
0
1

Comme ey = Teq, la premiére colonne de la matrice Ty est 0 | : ¢est le résulat demandé.
0

Question 13

On va procéder montrer par récurrence que, pour tout n > 2 et tout endomorphisme 7" de trace
nulle autr qu’une homothétie d’un espace vectoriel réel X de dimension n, il existe une base de X
relativement a laquelle la matrice de 71" soit de diagonale nulle.

e Lorsque n =2:
comme T n’est pas une homothétie, d’aprés la question 12, il existe une base %' de X

relativement & laquelle la matrice de T" est de la forme [ (1) g }, ot (o, f) € R%

D’aprés la définition de la question 2, la trace de T est donc f.

Mais cette trace est nulle, donc =0, donc Ty = [ [1) ((); }

e On considére un entier n > 2 pour lequel le résultat est vrai.
Soit alors 7' un endomorphisme autre qu’une homothétie de trace nulle d’un espace vectoriel
de dimension n + 1.
D’apreés la question 12, il existe une base #; de X relativement & laquelle la matrice de T

s’écrit ol Lest une ligne a n coefficients, C est la colonne dont le premier coeffi-

0 L
C B |’
cient vaut 1 et les n — 1 autres sont nuls, et B est une matrice carrée.
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Mais alors la trace de T' est a la fois nulle et égale a celle de B, donc B est une matrice d’ordre
n et de trace nulle.

— Si B est une matrice d’homothétie, et si A est le rapport de cette homothétie, alors
tr (B) = n\, donc A = 0, donc B est la matrice nulle d’ordre n, ce qui achéve I’étude de
ce cas.

— Dans le cas contraire, par hypothése de récurrence, il existe une base %, de R" rela-
tivement a laquelle la matrice de '’endomorphisme canoniquement associé a B soit de
diagonale nulle.

On note alors Q la matrice de passage de la base canonique de R" vers &, et %' la

famille de X de matrice [ 1 O, } relativement a %4;.

@n,l @

. . . 1 O . . .
Un produit par blocs immédiat montre que [ 0 (é" ] est inversible, d’inverse
n,l
1 O
[ O, Ql_? , donc B, est une base de X.

Enfin, d’aprés la formule de changement de base, la matrice de T relativement & %, est
1 Oy 0 L 1 Oy
@n,l Qil C B @n,l Q .

. . 0 L
On calcule encore ce produit par blocs, ce qui donne : Ty = [ Q

Q'C Q'BQ |

Enfin, Q7 !BQ est, par définition, une matrice de diagonale nulle, donc T ’est aussi.

e Le résultat demandé dans cette question est donc démontré par récurrence sur n.
C’est a nouveau un grand classique, au moins pour les concours “étoilés”.

Question 14

J’ai résolu cette question par “tatonnements” successifs, en essayant de “bricoler” une base (fi, f2)
qui ait un vecteur commun avec (eq,e2).
D’aprés le premier point de la démonstration précédente, comme 7' n’est pas une homothétie, il

existe une base (e, e2) de X relativement a laquelle la matrice de T' s’écrit ,ou a € R.

0 «
10
On pose alors f; = e et fo = —t1e1 + e5. fo n’est pas colinéaire & fi, donc (f1, f2)est une famille
libre de 2 = dim (X)) vecteurs de X, donc est une base de X.

Mais Te; = €9, donc T'f; = ey = fo +t1e1 = fo + 11 /1.

. . . S 13 . ,
La matrice de T relativement & (f1, f2) s’écrit donc [ , oll 1 et do sont réels.

1 01
1 09
Mais, d’apreés la question 2, la trace de cette matrice est t; + to, donc d9 = t9, donc les coefficients
diagonaux de la matrice de T relativement a la base (f1, f2) sont ¢; et to.

Question 15

On applique d’abord le résultat admis avec ¢t = ;. Le résultat demandé est alors une conséquance
directe des résultats des questions 9 et 10.
Le lecteur curieur peut bien sir rechercher une démonstration du résultat admis.



Question 16

e On va démontrer par récurrence que, pour tout n > 3, pour tout endomorphisme 7" d’un
espace vectoriel réel X de dimension n qui ne soit pas une homothétie et pour tout n-uplet
(t1,--- ,t,) de réels tel que ¢t + --- +t, = tr(T), il existe une base de X relativement a
laquelle la matrice représentative de 1" a pour coefficients diagonaux tq,--- ,,.

e Si Test un endomorphisme d’un espace vectoriel réel X de dimension 3 qui ne soit pas une
homothétie et si 1,1, t3 sont trois réels tels que ¢y + to + t3 = tr (7)) :

D’aprés la question 15, il existe une base € relativement a laquelle la matrice de T s’écrit
ty L
C B

Mais alors la trace de B est tr(T) — t; = t5 + t3 et B n’est pas une matrice d’homothétie,

donc, d’aprés la question 14, il existe une base de R? relativement & laquelle la matrice de

I’endomorphisme canoniquement associé & B a 5 et t3 pour coefficients diagonaux.

On termine alors comme dans la phase d’itération de la question 13 pour construire une base

A" de X relativement a laquelle la matrice représentative de T a pour coefficients diagonaux

ty, o, ts.

, ou B est une matrice carrée d’ordre 2 qui n’est pas une matrice d’homothétie.

e On considére n un entier naturel supérieur ou égal a 3 pour lequel le résultat est vrai.
Soit alors T" un endomorphisme autre qu'une homothétie d’un espace vectoriel réel de dimen-
sionn+ 1 et ty,--- ,t,01 n+ 1 réels dont la somme est la trace de 7T'.
On commence comme au point précédent, on applique ’hypothése de récurrence a ’endomorphisme
canoniquement associé a la matrice B, et on termine & nouveau comme dans la phase
d’itération de la question 13 pour construire une base de X relativement a laquelle la matrice
représentative de 1" a pour coefficients diagonaux ¢y, ,t,41.

e Le résutat demandé est donc bien prouvé par récurrence sur n.

Partie 4
Question 17

D’apreés le théoréme du rang, le noyau de 7" est de dimension n — p.

On part d’une base de %’ de X adaptée au noyau de T : elle s’écrit, (%1, Bs), ou A, est une base
du noyau de T

Il suffit alors d’écrire la matrice de T relativement & la base Z = (%, % ).

Question 18

La trace de T; est la méme que celle de T : c’est donc un entier naturel supérieur ou égal a p.
Ainsi, ty =1, ..., t,_1 = 1,t, = tr (T') — p sont p entiers naturels non nuls.

Lorsque p = 2, on applique directement la question 14 : il existe une base € de R? relativement 2
laquelle la matrice de I’endomorphisme canoniquement associé a T; a pour coefficients diagonaux
letty=1tr(T)—1.

Lorsque p > 3, on applique la question 16 : il existe ¥ de R’ relativement & laquelle la matrice V
de 'endomorphisme canoniquement associé a Ty a pour coefficients diagonaux

tl = ]., ceey tp—l = ].,tp = tr (T) —pP .

Dans les deux cas, on note Q la matrice de passage de la base canonique de R” vers % .



Q Oy } est une base de X,

Onpp Inp

Qil @p,n—p ] [ T, @p,n—p 1 [ Q @p,n—p ]
Onpp Inp Ty On-pnp Onrpp Inp |
Les formats des divers blocs permettent d’effectuer le produit pas blocs, et on trouve que la matrice
@_1T1@ ©p,n—p :|

TQQ (O)n—p,n—p .
Comme les coefficients diagonaux de Q'T1Q sont t; =1, ..., t,_1 = 1,t, = tr (T') — p, on vient de
prouver le résultat demandé.

Comme dans la question 13, la famille %’ de matrice {

relativement a laquelle la matrice de ¢ est {

de T relativement a %’ est{

Question 19

e On considére d’abord P une matrice carrée d’ordre n dont une seule colonne, la i-iéme, est non
- o -

nulle, et dont le ¢-iéme coefficient de la i-iéme colonne vaut 1: P = 1

On constate par un calcul direct que P? = P.

e On écrit la matrice A trouvée a la question 18 sous la forme Py +---+P,_; +¢,P,, ou, pour
tout ¢ € [[1,p — 1]], P; est la matrice carrée d’ordre n dont la i-iéme colonne est aussi celle
de A, et dont les autres sont nulles, et ou [P, est la matrice carrée d’ordre n dont la p-iéme

1
colonne est aussi - multipliée par celle de A, et dont les autres sont nulles.

p
On vient de voir que Py, --- ,IP, sont toutes des matrices de projecteurs, et, comme ¢, est un
entier naturel non nul, on vient donc d’écrire 7' comme la somme de tr (7") projecteurs de
rang 1.

Question 20

e Dans le cas ou tr (Ty) > p, on écrit Ty = P+ (Ty — P), ou P est la matrice carrée d’ordre
n dont le coefficient supérieur gauche vaut 1 et tous les autres 0.
La matrice T3 obtenue en retirant 1 au coefficient supérieur gauche de T; n’est plus une
matrice d’homothétie, et sa trace est un entier naturel supérieur ou égal & p, donc on peut
Opn—p

applique les résultats des questions 18 et 19 a la matrice [ ’]I‘3 0 } : on peut I'écrire
2

n—p,n—p
comme somme finie de matrices de projecteurs.

Quant a P, c’est elle-méme une matrice de projecteurs d’apreés la question 19, et donc T est
bien une somme finie de projecteurs.

e Dans le cas ou tr (T;) = p, le rapport de ’homothétie représentée par Ty est 1 (cf question
13), donc Ty =1,.
2 2
. T, O, I (O I (O .
Mais alors ! pne = | 7 pnp = | 7 PP (cest directement
T2 (O)n—p,n—p T2 (O)n—p,n—p T2 @n—p,n—p
un produit par blocs), et donc T est déja un projecteur
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