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1. Définition du réel ρ : V (X) =


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a. Quand on remplace X par λX , la deuxième colonne est multipliée par λ, la troisième par λ2 etc.. Donc :

ν(λX) = λ.λ2. . . . .λn−1ν(X) = λ
n(n−1)

2 ν(X).

En particulier si X = ||X||.Y :

ν(X) = ||X||
n(n−1)

2 ν(Y ).

b. ν(X) est une fonction polynomiale des coordonnées de X sur la base canonique de Cn donc

ν est continue de En dans C.

Par composition par la fonction module, qui est continue de C dans R, l’application |ν| est continue de En dans R. La sphère
unité S étant un compact de En,

L’application X 7→ |ν(X)| admet un maximum ρ sur S, atteint pour au moins un vecteur W .

c. Soit X ∈ En.
i. On peut toujours trouver Y tel que ||Y || = 1 et X = ||X||.Y : si X = 0 on prend Y quelconque de norme 1 ; sinon on

prend Y =
X

||X|| .

On a donc |ν(X)| = ||X||
n(n−1)

2 |ν(Y )| et |ν(Y )| ≤ ρ puisque Y ∈ S. Donc

∀X ∈ En, |ν(X)| ≤ ρ||X||
n(n−1)

2 .

ii. En particulier , si X ∈ S et est tel que |ν(X)| = ρ (un tel X existe d’après b.), soit W de norme 1 tel que X = ||X||W .

On a donc : ρ = |ν(X)| = ||X||
n(n−1)

2 |ν(W )| ≤ |ν(W )| ≤ ρ, qui implique |ν(W )| = ρ :

Il existe au moins un vecteur unitaire W de En tel que |ν(W )| = ρ.

2. Cas n = 2 : Si X =

[

x1

x2

]

est un vecteur de E2, X est sur la sphère unité S si et seulement si l’une de ses composantes a un

module égal à 1 et l’autre a un module inférieur ou égal à 1.

On a alors ν(X) =

∣

∣

∣

∣

1 x1

1 x2

∣

∣

∣

∣

= x2 − x1 et |ν(X)| = |x2 − x1| ≤ |x2|+ |x1| ≤ 2.

La valeur 2 est atteinte, par exemple pour X =

[

1
−1

]

donc :

ρ = 2.

Si, pour X ∈ S, on a 2 = |ν(X)| = |x2 − x1| ≤ |x2| + |x1| ≤ 2, on doit avoir |x1| + |x2| = 2.
Compte tenu de |x1| ≤ 1 et |x2| ≤ 2, cela nécessite |x1| = |x2| = 1.

On doit avoir aussi |x2 − x1| = |x2|+ | − x1| et on sait que le module d’une somme de complexes non nuls n’est égal à la somme
des modules que si le quotient de ces complexes est un réel positif. Ici on doit donc avoir x2 = k.(−x1) avec k réel positif. Comme

|x1| = |x2| = 1, on a nécessairement k = 1 donc x2 = −x1. X doit donc être de la forme

[

µ

−µ

]

, avec |µ| = 1.

Réciproquement, un tel vecteur X est dans S et |ν(X)| = | − µ − µ| = |2µ| = 2|µ| = 2 = ρ. Résumons
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Les vecteurs X tels que ν(X)| = ρ sont les vecteurs

[

µ

−µ

]

, avec |µ| = 1. Ils sont donc tous colinéaires à

[

1
−1

]

.

3. Cas n = 3 :
a. La fonction exponentielle est convexe sur R ; l’inégalité de convexité donne, pour tous réels u1, u2, u3 :

e

u1 + u2 + u3

3 ≤ 1

3
(eu1 + eu2 + eu3) ou : eu1 .eu2 .eu3 ≤ 1

27
(eu1 + eu2 + eu3)

3. En appliquant cela aux trois réels ui =

ln(ti) si t1, t2, t3 sont strictement positifs, cela donne, (et le résultat est évidemment vrai aussi si l’un des réels est nul, les autres
étant positifs ou nuls) :

t1.t2.t3 ≤ 1

27
(t1 + t2 + t3)

3

Pour fixer les idées, supposons que t1 ≤ t2 ≤ t3.
Si t1 = t2 = t3, l’inégalité devient égalité.
Réciproquement, supposons que t1, t2 et t3 ne soient pas tous égaux. Si t1 est nul, on ne peut avoir l’égalité. Sinon on a
0 < t1 < t3, donc u1 < u3 puisque la fonction ln est strictement croissante.

Sur [u1, u3], Le graphe de l’exponentielle est strictement ”sous la corde” donc e
u1+u3

2 <
1

2
(eu1 + eu3).

L’inégalité de convexité donne ensuite :

e
u1+u2+u3

3 = e
u2

3 + 2
3

(

u1+u3

2

)

≤ 1

3
eu2 +

2

3
e

u1+u3

2 <
1

3
eu2 +

2

3
.
1

2
(eu1 + eu3 ) =

1

3
(eu1 + eu2 + eu3)

donc eu1+u2+u3 <
1

27
(eu1 + eu2 + eu3)3 puis t1t2t3 <

1

27
(t1 + t2 + t3)

3.

L’inégalité ne devient égalité que si t1 = t2 = t3

On a redémontré dans un cas particulier un résultat plus général, mais qui ne semble pas être au programme :
Si f est strictement convexe sur l’intervalle I , l’inégalité de convexité appliquée à des points de I affectés de coefficients
strictement posititifs ne peut être une égalité que si ces points sont tous confondus.

b. A = (x1 − x2)(x1 − x2) + (x2 − x3)(x2 − x3) + (x3 − x1)(x3 − x1) = 2(x1x1 + 2 analogues )− (x1x2 + 5 analogues ).
B = x1x1 + 2 analogues et C = (x1 + x2 + x3)(x1 + x2 + x3) = (x1x1 + 2 analogues ) + (x1x2 + 5 analogues ).
On voit que

A = 3B − C

c. Les vecteurs de S sont ceux dont les trois composantes sont en module inférieures à 1, l’une au moins étant de module 1.
Que dire de plus ?

d. Si X =





x1

x2

x3



, on a ν(X) = (x2 − x1)(x3 − x1)(x3 − x2) donc

|ν(X)|2 = |x2 − x1|2|x3 − x1|2|x3 − x2|2.

D’après 3.a., ceci est inférieur à
1

27

(

|x2 − x1|2 + |x3 − x1|2 + |x3 − x2|2
)3

lui-même égal à

1

27



3
3
∑

k=1

|xk|2 −
∣

∣

∣

∣

∣

3
∑

k=1

xk

∣

∣

∣

∣

∣

2




3

lui-même inférieur à
1

27

(

3
3
∑

k=1

|xk|2
)3

=

(

3
∑

k=1

|xk|2
)3

.

Comme chacun des |xk|2 est inférieur à 1, si ||X|| = 1, on a donc |ν(X)|2 ≤ 27 donc ρ ≤
√

27.

On peut présumer que ρ =
√

27.

Pour le prouver, il faut exhiber un X de norme 1 tel que |ν(X)|2 = 27 donc exhiber x1, x2, x3 tels que |x1|, |x2| et |x3|
soient ≤ 1 et tels que les inégalités précédentes soient des égalités.

D’après 3.a., |ν(X)|2 =
1

27

(

|x2 − x1|2 + |x3 − x1|2 + |x3 − x2|2
)3

si et seulement si les trois nombres |x2−x1|, |x2−x3|
et |x3 − x1| sont égaux.

Ensuite l’inégalité
1

27



3

3
∑

k=1

|xk|2 −
∣

∣

∣

∣

∣

3
∑

k=1

xk

∣

∣

∣

∣

∣

2




3

≤ 1

27

(

3

3
∑

k=1

|xk|2
)3

n’est une égalité que si
3
∑

k=1

xk = 0.
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Enfin
3
∑

k=1

|xk|2 = 3 si et seulement si |x1| = |x2| = |x3| = 1 (compte tenu du fait qu’on veut |x1|, |x2| et |x3| ≤ 1.)

Finalement, on prouvera que ρ =
√

27 si et seulement si on peut exhiber trois complexes x1, x2, x3 tels que

|x2 − x1| = |x2 − x3| = |x3 − x1|, |x1| = |x2| = |x3| = 1 et x1 + x2 + x3 = 0.

Un tel triplet existe

Il suffit de prendre x1 = 1, x2 = j et x3 = j2,

où j est la racine cubique usuelle de l’unité. En effet la somme de ces trois complexes de module 1 est nulle et
|1− j2| = |j3 − j2| = |j2||j − 1| = |j − 1| et |j − j2| = |j||1− j| = |1− j| = |j − 1|. On a donc bien

ρ =
√

27.

4. Une minoration du réel ρ :
a. Le terme général apq de la matrice V (Ω) est : apq = (ωp)

q−1
= e2i(p−1)(q−1)π/n.

Le terme général bmk de la matrice V (Ω)V (Ω) est donc :

bmk =
n
∑

s=1

amsask =
n
∑

s=1

e−2i(m−1)(s−1)π/n.e2i(s−1)(k−1)π/n =
n
∑

s=1

e2i(s−1)(k−1−m+1)π/n =
n
∑

s=1

e2i(s−1)(k−m)π/n.

Il s’agit de la somme des termes d’une progression géométrique de raison r = e2i(k−m)π/n, qui vaut 1 si et seulement si
k − m

n
est un entier ; cela ne peut se faire, puisque m et k sont entre 1 et n, que si k = m. On a alors bmk =

n
∑

s=1

1 = n.

Si k 6= m, on a bmk =
1 − rn

1 − r
= 0, puisque r est une racine n-ième de l’unité. Finalement :

V (Ω)V (Ω) = nIn.

b. On a donc det
(

V (Ω)
)

. det (V (Ω)) = det (nIn) = nn. Comme det
(

V (Ω)
)

= det (V (Ω)), cela donne

|det (V (Ω))| = nn/2.

Puisque les ωp sont de module 1, Ω est de norme 1. Comme |ν(Ω)| = nn/2, on a donc

ρ ≥ nn/2.

5. Une inégalité de Hadamard :
a. Si Vp = (xi)1≤i≤n et Vq = (yi)1≤i≤n, on trouve, sur la p-ième ligne de T M , les xi et, sur la q-ième colonne de M , les yi . Le

terme général bpq de T M.M est donc
n
∑

i=1

xiyi, qui est donc nul si p 6= q, puisque V1, V2, . . . , Vn sont deux à deux orthogonaux.

Par contre, bpp =

n
∑

i=1

|xi|2 = ||Vp||22.

Si V1, V2, . . . , Vn sont deux à deux orthogonaux, B = T M.M est diagonale, de termes diagonaux ||V1||22, . . . , ||Vn||22.

On a : det B = detT M. det M = det M. det M = | det M |2 et aussi : det B = ||V1||22. · · · .||Vn||22. Donc :

| det M | = ||V1||2. · · · .||Vn||2.

b. Puisque U1 = V1, on a : det M (U1, U2, . . . , Un) = det M (V1, U2, . . . , Un).
Ensuite det M (V1, U2, U3, . . . , Un) = det M (V1, V2, U3, . . . , Un) car on ne change pas det M (V1, U2, U3, . . . , Un) en ajoutant
à la deuxième colonne le vecteur proj1(V2), qui est colinéaire à la première colonne.
Supposons par récurrence (limitée au rang n) que det M (U1, U2, . . . , Un) = det M (V1, V2, . . . , Vi−1, Ui, . . . , Un).
On ne change pas ce dernier déterminant en ajoutant à la i-ième colonne le vecteur proji−1(Vi), qui est combinaison linéaire
des i−1 premières colonnes. Donc det M (V1, V2, . . . , Vi−1, Ui, . . . , Un) = det M (V1, V2, . . . , Vi, Ui+1, . . . , Un). On continue
jusqu’au rang n :
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det M (U1, U2, . . . , Un) = det M (V1, V2, . . . , Vn).

c. (V1, . . . , Vn) sont supposés linéairement indépendants dans Fn de dimension n (il n’était pas nécessaire de préciser qu’au-
cun n’est nul). Ces vecteurs forment donc une base de Fn et (U1, . . . , Un) n’est autre que la base orthogonale qu’on ob-
tient à partir de la précédente par le procédé de Schmidt. Les Ui sont donc deux à deux orthogonaux. D’après a., on a donc
det M (V1, V2, . . . , Vn) = det M (U1, U2, . . . , Un) = ||U1||2. . . . .||Un||2.
Vi est la somme des deux vecteurs Ui et Wi = proji−1(Vi). Par définition de la projection orthogonale, Ui et Wi sont orthogo-
naux. Pythagore donne : ||Vi||22 = ||Ui||22 + ||Wi||22. Donc ||Ui||2 ≤ ||Vi||2.
Donc ||U1||2. . . . .||Un||2 ≤ ||V1||2. . . . .||Vn||2. En rassemblant :

| det M (V1, V2, . . . , Vn)| ≤ ||V1||2. . . . .||Vn||2.

En multipliant membre à membre les inégalités 0 < ||Ui||2 ≤ ||Vi||2, on obtient ci-dessus une inégalité stricte sauf si toutes les
inégalités ||Ui||2 ≤ ||Vi||2 sont des égalités donc si les Wi sont tous nuls. Or Wi est nul si et seulement si Vi est orthogonal à
V1, . . . , Vi−1. Donc

| det M (V1, V2, . . . , Vn)| = ||V1||2. . . . .||Vn||2 si et seulement si V1, . . . , Vn sont deux à deux orthogonaux.

6. Une majoration du réel ρ : Notons que l’inégalité | det M (V1, V2, . . . , Vn)|2 ≤ ||V1||22. . . . .||Vn||22 est vraie même si la famille
V1, . . . , Vn est liée, car alors | det M (V1, V2, . . . , Vn)|2 = 0.

Appliquons cette inégalité en prenant V1 = (1, x1, . . . , x
n−1
1 ), . . . , Vn = (1, xn, . . . , xn−1

n ).
M (V1, . . . , Vn) est alors la transposée de V (X), où X = (x1, . . . , xn). et donc | det M (V1, . . . , Vn)| = |ν(X)|.

Comme ||Vq||22 =
n
∑

p=1

|xq|2(p−1), l’inégalité donne :

|ν(X)|2 ≤
n
∏

q=1

n
∑

p=1

|xq|2(p−1).

Pour X unitaire, les |xq| sont tous inférieurs à 1 et
n
∑

p=1

|xq|2(p−1) ≤ n. Donc |ν(X)|2 ≤ nn et

|ν(X)| ≤ n
n
2 .

En particulier pour W unitaire tel que |ν(W )| = ρ, cela donne : ρ ≤ n
n
2 . Comme on a obtenu auparavent l’inégalité inverse,

on en déduit

ρ = n
n
2 .

7. Recherche des vecteurs W :
a. Si X a deux coordonnées égales , |ν(X)| est nul donc |ν(W )| = ρ = n

n
2 nécessite que W n’ait pas deux coordonnées

égales.

Pour tout couple d’entiers p et q, p 6= q, xp 6= xq .

b. Reprenons 6 :

ρ2 = |ν(W )|2 ≤ ||V1||22 × · · · × ||Vn||22 =

n
∏

q=1

(

1 + |xq|2 + · · ·+ |xq|2(n−1)
)

≤
n
∏

q=1

(1 + · · ·+ 1) = nn = ρ2.

Les inégalités sont donc toutes des égalités. Notamment
n
∏

q=1

(

1 + |xq|2 + · · ·+ |xq|2(n−1)
)

=

n
∏

q=1

(1+ · · ·+1) ne peut se faire

que si et seulement si

x1, . . . , xn ont toutes un module égal à 1.

On peut aussi appliquer l’inégalité de Hadamard à la matrice de Van der Monde V (W ) elle-même, au lieu de sa transposée : Si
(S1, . . . , Sn) sont ses colonnes, on a : ρ2 = |ν(W )|2 = | det V (W )|2 ≤ ||S1||22. . . . .||Sn||22.
Or Sk =

(

xk−1
1 , . . . , xk−1

n

)

. Puisque tous les xi sont de module 1, on a : ||S||2 =
√

n. Donc
ρ2 = | det V (W )|2 ≤ ||S1||22 × . . .× ||Sn||22 = nn = ρ2. On est donc dans le cas d’égalité de Hadamard :
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Les Si sont donc orthogonaux deux à deux. En particulier, S2, . . . , Sn sont tous orthogonaux à S1 = (1, . . . , 1), ce qui se traduit
par

n
∑

p=1

xp = 0,

n
∑

p=1

(xp)
2 = 0 , . . . ,

n
∑

p=1

(xp)
n−1 = 0.

c. Petite faute d’énoncé : lire
n
∑

k=0

αktk au lieu de
n
∑

k=1

αktk . Cela dit : PW (t) =

n
∏

p=1

(t − xp) est un polynôme unitaire, donc :

αn = 1.

α0 = PW (0) =

n
∏

p=1

(−xp) : c’est un complexe de module 1.

On peut poser α0 = −eiθ0 avec θ0 réel.

d. PW (t) = (t − x1)(t − x2) · · · (t − xn) donc
P ′

W (t) = (t − x2) · · · (t − xn) + (t − x1)(t − x3) · · · (t − xn) + · · ·+ (t − x1)(t − x2) · · · (t − xn−1) donc,

pour t 6= x1, . . . , xn : FW (t) =
P ′

W (t)

PW (t)
=

1

t − x1
+

1

t − x2
+ · · ·+ 1

t − xn
.

Sur l’ensemble de définition de FW , on a : FW (t) =

n
∑

p=1

1

t − xp
.

Puisque xp n’est pas nul, on a :
1

t − xp
= − 1

xp
× 1
(

1 − t

xp

) . Pour

∣

∣

∣

∣

1

xp

∣

∣

∣

∣

< 1, autrement dit pour |t| < 1 et en particulier

pour t réel ∈] − 1, 1[, on peut écrire
1

1 − t

xp

=

∞
∑

k=0

tk

xk
p

, donc
1

t − xp
= −

∞
∑

k=0

tk

xk+1
p

.

Par addition, FW est développable en série entière sur ] − 1, 1[. On peut dire aussi :

Il existe R ≥ 1 tel que FW soit développable en série entière sur ] − R, R[.

(on peut même préciser que R = 1, car on peut montrer que le cercle de convergence du développement en série entière d’une
fraction rationnelle passe par le pôle de cette fraction, pôle réel ou complexe, qui est le plus proche de O).

e. En ajoutant les développements, on obtient : FW (t) = −
∞
∑

k=0

(

n
∑

p=1

1
xk+1

p

)

tk . Avec les notations de l’énoncé :

fk = −
n
∑

p=1

1

xk+1
p

.

xp étant de module 1,
1

xp
est le conjugué de xp, donc fk = −

n
∑

p=1

xk+1
p , qui est nul, d’après b., pour k = 0, . . . , n − 2. Donc

Les coefficients f0, f1, . . . , fn−2 sont nuls.

f. P ′
W , fonction polynôme de degré n−1, est développable en série entière sur R donc sur ]−1, 1[. L’unicité du développement

fait que le coefficient de tk est nul pour k ≥ n.
Par ailleurs P ′

W (t) = PW (t).FW (t) : P ′
W apparaı̂t comme produit de deux fonctions développables en séries entières sur ]−1, 1[.

Le développement de P ′
W est donc le produit de Cauchy des deux développements mais, les coefficients f0, f1, . . . , fn−2 des

premiers termes de FW étant nuls, il en est de même des coefficients dans P ′
W .

P ′
W est donc un monôme de degré n − 1. Comme PW est unitaire :

P ′
W (t) = ntn−1 et PW (t) = tn + α0.
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On a donc PW (t) = tn − eiθ0 . x1, . . . , xn, qui sont les différents zéros de PW , sont donc les diverses racines n-ièmes de eiθ0 ,
dans un ordre qu’on ne peut préciser puisque, de toute façon, si W est un vecteur répondant au problème posé, tout vecteur
obtenu à partir de W par permutation des composantes convient aussi. Retenons :

L’ensemble {x1, . . . , xn} est égal à l’ensemble {ei(θ0+2kπ)/n, k = 1, . . . , n}.

Un tel vecteur a toutes ses composantes de module 1. On retrouve donc ||W || = 1. ||W ||22 est la somme des carrés des modules
des composantes de W donc ||W ||2 =

√
n.

g. On ne s’est pas encore préoccupé de savoir si, réciproquement, les vecteurs W trouvés conviennent quel que soit le choix de
θ0 dans R.
En fait, on sait depuis le début qu’il y a au moins une solution. Il existe donc un θ′0 dans R tel que le vecteur W ′ = (x′

1, . . . , x
′
n),

où x′
k = ei(θ′

0+2kπ)/n, soit solution.
Pour θ0 réel quelconque, les composantes ei(θ0+2kπ)/n du vecteur W = (x1, . . . , xn) sont obtenues par multiplication de celles
de W ′ par le même complexe ei(θ0−θ′

0)/n, dont le module est 1.
En revenant à la formule, admise dans l’énoncé et qui donne la valeur du déterminant de Van der Monde, on voit que |ν(W )| =
|ν(W ′)| = ρ. Le vecteur W est donc solution du problème, ainsi que tous ceux qui s’en désuisent par permutation des coor-
données, quel que soit le choix de θ0.
Les coordonnées de W , élevées à la puissance n, donnent toutes eiθ0 . Si 1 figure parmi elles, c’est que eiθ0 = 1n = 1. Les
coordonnées de W sont donc les racines n-ièmes de l’unité, écrites dans un certain ordre.

Il y a donc n! vecteurs W dont l’une des coordonnées est égale à 1.

FIN DU CORRIGÉ
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