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2 n—1

1. Définition du réel p : V(X)=

1z xp? - ozt

a.  Quand on remplace X par AX, la deuxiéme colonne est multipliée par ), la troisiéme par A2 etc.. Donc :

n(n—1)

V(AX) = AN A (X)) = AT 2 p(X).

En particulier si X = || X||.Y :

v(X) = [[X]|" 2

b. v (X) estune fonction polynomiale des coordonnées de X sur la base canonique de C™ donc

‘ v est continue de E,, dans C.

Par composition par la fonction module, qui est continue de C dans R, I’application |v| est continue de E,, dans R. La sphére
unité .S étant un compact de £,

L’application X — |v(X)| admet un maximum p sur .S, atteint pour au moins un vecteur 1.

c. SoitXekE,.
i.  On peut toujours trouver Y tel que ||Y]| = 1 et X = ||X]].Y :si X = 0 on prend Y quelconque de norme 1; sinon on

X
prendY = —.
[1X1]
n(n—1)

Onadonc [v(X)|=||X]|" 2 |v(Y)|et|v(Y)| < ppuisqueY € S. Donc

n(n—1)
VX € By, (X)) < plIX|| "

ii.  En particulier, si X € Setesttel que |[v(X)| = p (untel X existe d’aprés b.), soit W de norme 1 tel que X = || X||W.
n(n—1)
Onadonc: p=[v(X)|=[IX]|[" 2 [v(W)[<[v(W)|<p, quiimplique (W) =p:

Il existe au moins un vecteur unitaire W de E,, tel que |v(W)| = p.

1

2.Casn=2: SiX = est un vecteur de F>, X est sur la sphéere unité .S si et seulement si I’'une de ses composantes a un

)
module égal & 1 et I’autre a un module inférieur ou égal a 1.
1
Onaalors v(X) = ‘1 il =1z — 1z et [v(X)| = |xg — 21| < |zo| + |21] < 2.
2

. 1
La valeur 2 est atteinte, par exemple pour X = [_1] donc :

[p=2]

Si,pour X € S,ona2=|v(X)| = |za — z1| < |22| + |z1] < 2, ondoitavoir |z1| + |zo| = 2.

Compte tenu de |z1| < 1 et |z2| < 2, cela nécessite 1| = |za| = 1.

On doitavoir aussi |x2 — x1| = |z2| + | — 1] et on sait que le module d’une somme de complexes non nuls n’est égal a la somme
des modules que si le quotient de ces complexes est un réel positif. Ici on doit donc avoir xo = k.(—x1) avec k réel positif. Comme

I

|x1| = |x2| = 1, on a nécessairement k = 1 donc x5 = —x;. X doit donc étre de la forme ,avec |u| =1.

Réciproguement, un tel vecteur X estdans Set |v(X)| = | —p —p| =|2p| =2|u] =2 =p. Résumons



T
Les vecteurs X tels que v(X)| = p sont les vecteurs [_M ] ,avec |p| = 1. lls sont donc tous colinéaires a [_1].
3. Casn=3:
a.  Lafonction exponentielle est convexe sur R ; I’inégalité de convexité donne, pour tous réels w1, us, us :

b.

U1 + U + us 1
e 3 < 3 (e"t +e“2 +¢"?) ou:e't.eh2 et < 77 (et +e*2 + e“3)3. En appliquant cela aux trois réels u; =

In(t;) si t1, ta, t3 sont strictement positifs, cela donne, (et le résultat est évidemment vrai aussi si I’un des réels est nul, les autres
étant positifs ou nuls) :

ttt<1(t+t+t)3
1-2-3_271 2 3

Pour fixer les idées, supposons que t; < ts < t3.

Sit; =ty = t3, I’inégalité devient égalité.

Réciproguement, supposons que t1,to et t3 ne soient pas tous égaux. Si ¢; est nul, on ne peut avoir I’égalité. Sinon on a
0 < t; < t3, donc uy < ug puisque la fonction in est strictement croissante.

: , witus 1
Sur [uq, ug], Le graphe de I’exponentielle est strictement “sous la corde” donc e 7 < 3 (e“t +e"3).
L’inégalité de convexité donne ensuite :
Fustu 2 (witus +u
STETE o g (M) < %e% + §€u12u3 < %6“2 + ;% (et +e¥) %(eul + etz 4 e3)

. 1
3. puis  titats < 2—7(t1 +to + t3)°.

~—

donc evrtuatus < 2—17(6“1 +e“2 e

L’inégalité ne devient égalité que si t; = to = t3

On a redémontré dans un cas particulier un résultat plus général, mais qui ne semble pas étre au programme :
Si f est strictement convexe sur I’intervalle I, I’inégalité de convexité appliquée a des points de I affectés de coefficients
strictement posititifs ne peut étre une égalité que si ces points sont tous confondus.

A= (x1 —22)(T1 — T2) + (x2 — 23) (T2 — T3) + (23 — 21)(T3 — T1) = 2(x1Z71 + 2 analogues ) — (z1Z3 + 5 analogues ).
B = 2177 +2analogues et C = (z1 + @2 + 23)(T1 + T2 + T3) = (177 + 2 analogues ) + (z1Z3 + 5 analogues ).
On voit que
A=3B-C
Les vecteurs de .S sont ceux dont les trois composantes sont en module inférieures a 1, I’une au moins étant de module 1.
Que dire de plus?
x1
SiX = |z2f, ona v(X)=(z2—x1)(x3—21)(x3 —22) dONC
x3

v(X))? = |2 — 21|z — 21|25 — 22|

. . o1 PP
D’aprés 3.a., ceci est inférieur a > (Jz2 — 21> + |zg — 21)* + |23 — 3:2|2)3 lui-méme égal a

1 3 3 2\ ? 1 3 3 3
2 i mame infariarr 3 2| _ 2
77 3;;_1 |xk]® — k§—1xk lui-méme inférieur a 77 (3 ;;_1 |2k ) = (g_l |2k )

Comme chacun des |z|? est inférieura 1, si || X|| = 1, ona donc |v(X)|? < 27 donc p < v/27.

3

On peut présumer que p = v/27.

Pour le prouver, il faut exhiber un X de norme 1 tel que |v(X)|? = 27 donc exhiber z1, z2, 23 tels que |z1], |z2| et |z3]
soient < 1 et tels que les inégalités précédentes soient des égalités.

Dlaprés3a., |v(X)|?= 5 (lza — 212 + |23 — 21 |* + s — 2))” s etseulementsi les trois nombres |2y —y |, [ — 3
et |zs — x| sont égaux.

2\ 3

3 3 3
1 ) , L . _
< 77 (3 ;;_1 |k ] ) n’est une égalité que si E zr = 0.

3
1
Ensuite Iinégalité — | 3 2_
galite - ];ll’kl 2
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3
Enfin Z |zx|* = 3 si et seulement si |z1| = |xs| = |23] = 1 (compte tenu du fait qu’on veut |z, |z et |z3] < 1.)
k=1
Finalement, on prouvera que p = /27 si et seulement si on peut exhiber trois complexes x1, 2, x3 tels que

|.I'2 —1‘1| = |l‘2 —1‘3| = |l‘3 —x1|, |l‘1| = |l‘2| = |l‘3| =letx1+x22o+23=0.

Un tel triplet existe

Il suffit de prendre z1 = 1,20 = j et z3 = 52,

ol j est la racine cubique usuelle de I’unité. En effet la somme de ces trois complexes de module 1 est nulle et
1—5%=17° =72 =17%li = 1| =[5 — 1 et|j — j?| = [4]|1 — j| = [1 = j| = |7 — 1|. On a donc bien

p=2T.

4. Une minoration du réel p
a.  Le terme général a,, de la matrice V(Q) est: a,, = (w,)? ' = e2ile=D(a=1)7/n,
Le terme general mk de la matrice V (Q) V() est donc :

- Zamsask — Ze—Qz(m 1)(s— 1)7r/n 21(5 ) (k—=1)7/n _ 2621(5 1) (k—1—m+1)n/n _ 2621(5 1)(k— m)ﬂ'/n

s=1 s=1 s=1 s=1
Il s’agit de la somme des termes d’une progression géométrique de raison r = e2*(*=")7/n  qui vaut 1 si et seulement si
n

k —

est un entier; cela ne peut se falre, puisque m et k sontentre 1 et n, que Sli k = m. On aalors bmk = Z 1=n.
s=1
n

Sik#m, ona by = = 0, puisque r est une racine n-iéme de I’unité. Finalement :

VQV(Q) = nl,.

b.  Onadonc det (W) .det (V(Q)) = det (nl,) =n™. Comme det (V(Q)) = det (V(Q)), cela donne

et (V(Q))] = n"/2.

Puisque les w,, sont de module 1, 2 est de norme 1. Comme |v(Q2)| = n™/2, on a donc

P > nn/Z-

5. Une inégalité de Hadamard : o
a. SiV, = (z5)1<i<n €t Vy = (yi)1<i<n, ON trouve, sur la p-iéme ligne de M, les z; et, sur la g-iéme colonne de M, les y;. Le
n

terme général b,,, de 7M. M est donc Z Ty, qui est donc nul si p # ¢, puisque Vi, Va, ..., V,, sont deux a deux orthogonaux.
1=1

n
Par contre, by, = > _ [xil” = [|V3]3.

Si Vi, Va, ..., V, sontdeux a deux orthogonaux, B = 7M. M est diagonale, de termes diagonaux ||Vi]|3, .. ., ||Val|3-
Ona: detB=det” M.det M = det M.det M = |det M|? etaussi: det B = ||V4]|3.---.||[Vi||3. Donc:
| det M| = [[Villo. - - [|[Va][2.

b.  Puisque U; = Vi, ona:det M(Uy,Us,...,U,) =det M(V1,Us, ..., Uy).
Ensuite det M (V1,Us, Us, ..., U,) = det M (V4, V5, Us, ..., U,) car on ne change pas det M (Vy,Us, Us, ..., Uy,) en ajoutant
a la deuxiéme colonne le vecteur proj,(V2), qui est colinéaire & la premiére colonne.
Supposons par récurrence (limitée au rang n) que det M (U1, Us, ..., Uy) =det M(Vy, Vo, ..., Vi1, Uy, ..., Uy).
On ne change pas ce dernier déterminant en ajoutant & la i-iéme colonne le vecteur proj;_1(V;), qui est combinaison linéaire
des ¢ — 1 premiéres colonnes. Donc det M (Vq, Va, ..., Vi1,U;, ..., Uy) =det M(Vy, Va, ..., V;, Uiy, ..., Uy). On continue
jusqu’aurang n :
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det M (U, Us, ..., U,) =det M(V1, Vs, ..., Vy).

c. (W,..., V) sont supposés linéairement indépendants dans F), de dimension n (il n’était pas nécessaire de préciser qu’au-
cun n’est nul). Ces vecteurs forment donc une base de F,, et (Us,...,U,) n’est autre que la base orthogonale qu’on ob-
tient & partir de la précédente par le procédé de Schmidt. Les U; sont donc deux a deux orthogonaux. D’aprés a., on a donc
detM(Vl,Vg,...,Vn):detM(Ul,Ug,..., :||U1||2 ..... ||U||2
V; est la somme des deux vecteurs U; et W; = proj;—1(V;). Par définition de la projection orthogonale, U; et W; sont orthogo-
naux. Pythagore donne : ||V;||3 = ||Ui]13 + ||W3][3. Donc ||Us]|2 < [|Villa.

Donc ||U1]l2. - - - ||Unll2 < |IVAll2- - - - -||Val]2- En rassemblant :

[det M(V1, Vo, ..o, Vi) | < [[Valfae [ Valfo:

En multipliant membre & membre les inégalités 0 < ||U;||2 < ||V4]|2, on obtient ci-dessus une inégalité stricte sauf si toutes les
inégalités ||U;]|2 < ||Vil||2 sont des égalités donc si les W; sont tous nuls. Or W; est nul si et seulement si V; est orthogonal &
Vi,...,V;_1. Donc

|det M (V1, Va, ..., Vo) = ||Vill2. - .. [|Val|2 si et seulement si V4, ..., V,, sont deux & deux orthogonaux.
6. Une majoration du réel p : Notons que I’inégalité | det M (V1, Va, ..., V,,)|? < [|VAl|3. .. ..][V.||3 est vraie m&me si la famille
Vi, ..., V, estliée, caralors | det M (V1, Va, ..., V,)|? = 0.
Appliquons cette inégalité en prenant Vi = (1,2q,...,277Y), ...,V = (1, p, ..., 277 1).
MOV, ...,V,) estalors la transposée de V(X), o0 X = (z1,...,2,). etdonc |det M (Vi,..., V)| = [v(X)].

Comme ||Vy[[3 = |x[**~ Y, I'inégalité donne :

p=1

n n
2 < H Z |xq|2(p_1)'
q=1p=1

n
Pour X unitaire, les |z,| sont tous inférieurs a 1 et Z 242"~ < n. Donc |v(X)[? < n™ et
p=1

MI:

(X)) <n

3

En particulier pour W unitaire tel que |v(W)| = p, celadonne: p < n2. Comme on a obtenu auparavent I’inégalité inverse,
on en déduit

|3

7. Recherche des vecteurs W :

n
a. Si X a deux coordonnées égales , |v(X)]| est nul donc |v(W)| = p = n2 nécessite que W n’ait pas deux coordonnées
égales.

Pour tout couple d’entiers p et ¢, p # ¢, xp # x4

b. Reprenons6 :
g2 = W2 < |IVAIE x - x Vallg = T (1 -+ fwgl? 4 o g 20) < [T+ 4 1) =" = g2,
q=1 q=1

n n
Les inégalités sont donc toutes des égalités. Notamment ] | (1 +|zgP 4+ |xq|2("‘1)) [T+ +1) ne peut se faire
q=1

q=1
que si et seulement si

x1,...,x, onttoutes un module égal a 1.

On peut aussi appliquer I’inégalité de Hadamard & la matrice de Van der Monde V(W) elle-mé&me, au lieu de sa transposée : Si
(S1,...,S,) sontses colonnes, ona: p? = [p(W)|? = |det V(W)]2 < [|S1][3.. ... ||Snl|3.

Or Sy = (zy~',...,2k=1). Puisque tous les z; sont de module 1, ona: ||S||» = v/n. Donc

p? = |det V(IW)|2 <||S1]I3 x ... x ||Sn]|3 = n™ = p?. On est donc dans le cas d’égalité de Hadamard :
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Les S; sont donc orthogonaux deux a deux. En particulier, So, . . ., S,, sont tous orthogonauxa S; = (1, ..., 1), ce qui se traduit

par
n n n
Doa,=0, Y (2,)°=0,..., ) (x,)"" =0.
p=1 p=1 p=1
n
c.  Petite faute d’énoncé : lire Z axt® au lieu de Z axt®. Celadit: Py (t H (t — x,,) est un polyndme unitaire, donc :
k=0 k=1 p=1
a, = 1.
n
ag=Pw(0 H : ¢’est un complexe de module 1.

p=1

On peut poser ag = —e? avec 6, réel.

d Pwt)=t—z1)(t—22) --(t—x,) donc
Plyt)=(0t—a2)---(t—xpn)+({t—z)(t—a3)- - (t —xp)+---+ (t—x1)(t —22)--- (L —2p—1) donC,

PL(t) 1 1
our ¢ ey Fyy(t) = 2L = .
pourt # zy,..own  Fw(t) = 5 oy = st T

. L1
Sur I’ensemble de définition de Fyy, ona: Fy (t) = Z

= t—ux,
. , 1 1 1 . -
Puisque x,, n’est pas nul, on a : = —— X ————. Pour |—| < 1, autrement dit pour |t| < 1 et en particulier
t—xp Tp 1_ t Tp
Lp
1 i tk 1 =tk
pour t réel €] — 1, 1], on peut écrire = —» donc =— i1
1——  k=0'p t=p k=0 TP

Lp
Par addition, Fyy est développable en série entiére sur | — 1, 1[.  On peut dire aussi :

Il existe R > 1 tel que Fyy soit développable en série entiére sur | — R, R].

(on peut méme préciser que R = 1, car on peut montrer que le cercle de convergence du développement en série entiére d’une
fraction rationnelle passe par le pdle de cette fraction, pdle réel ou complexe, qui est le plus proche de O).

o0 n
e.  Enajoutant les développements, on obtient : Fyy (t) = — Z (Z k+1) t*. Avec les notations de I’énoncé :
k=0

n

1
fr== -

p=17"P
1 n
x,, tant de module 1, . est le conjugué de x,, donc f;, = — Z x’;“, qui est nul, d’aprés b., pour k = 0,...,n — 2. Donc
p p=1
Les coefficients fq, f1,..., fn_2 sontnuls.

f. Py, fonction polyndme de degré n — 1, est développable en série entiére sur R donc sur | — 1, 1[. L’unicité du développement
fait que le coefficient de ¢* est nul pour k& > n.
Par ailleurs P}, (t) = Pw (t).Fw(t) : P}, apparait comme produitde deux fonctions développables en séries entiéres sur | —1, 1[.
Le développement de Py, est donc le produit de Cauchy des deux développements mais, les coefficients fo, f1,. .., fn—2 des
premiers termes de Fy étant nuls, il en est de mé&me des coefficients dans Py, .
Py, est donc un mondme de degré n — 1. Comme Py est unitaire :

Ply(t) =nt"Let Py (t) =t" + ao.
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Onadonc Py (t) = t" — e, xq,...,x,, quisont les différents zéros de Py, sont donc les diverses racines n-iémes de e*%,
dans un ordre qu’on ne peut préciser puisque, de toute fagon, si T est un vecteur répondant au probléme posé, tout vecteur
obtenu a partir de W par permutation des composantes convient aussi. Retenons :

L’ensemble {x1,...,x,} est égal & I’ensemble {e?(@o+2km)/n  — 1 . n}.

Un tel vecteur a toutes ses composantes de module 1. On retrouve donc ||W|| = 1. ||W||3 est la somme des carrés des modules
des composantes de W donc ||[W]|2 = v/n.

On ne s’est pas encore préoccupé de savoir si, réciproquement, les vecteurs T trouvés conviennent quel que soit le choix de
6y dans R.

En fait, on sait depuis le début qu’il y a au moins une solution. Il existe donc un 6;, dans R tel que le vecteur W’ = (24, ..., ),
oll z}, = e'(®o+2km)/n sojt solution,
Pour 6 réel quelconque, les composantes e*(%0+2+km)/m dy vecteur W = (z1, . . ., z,,) sont obtenues par multiplication de celles

de W’ par le méme complexe ¢#(?o=65)/" dont le module est 1.

En revenant a la formule, admise dans I’énoncé et qui donne la valeur du déterminant de Van der Monde, on voit que |v(W)| =
|v(W")| = p. Le vecteur W est donc solution du probléme, ainsi que tous ceux qui s’en désuisent par permutation des coor-
données, quel que soit le choix de 6.

Les coordonnées de W, élevées a la puissance n, donnent toutes e*?. Si 1 figure parmi elles, c’est que e’ = 1™ = 1. Les
coordonnées de T sont donc les racines n-iémes de I’unité, écrites dans un certain ordre.

I1'y a donc n! vecteurs W dont I’une des coordonnées est égale a 1.

FIN DU CORRIGE
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