
CORRECTION

Exercice 1.

1. On reconnaît une série alternée.

La suite
(
1
n

)
n∈N∗

est positive, décroissante et tend vers 0.

Alors, d’après le critère spécial des séries alternées, la série
∑
n>1

(−1)n+1

n
converge

2.

2.1. Nous allons appliquer, comme l’indique l’énoncé, le Théorème d’intégration terme à
terme.

On remarque tout d’abord que pour tout n > 0,
∫ 1

0
x2n (1 − x) dx =

1
2n + 1

−
1

2n + 2
=

1
(2n + 1)(2n + 2)

.

Alors, d’après le cours, comme :

- pour tout x ∈ [0, 1[,
∑
n>0

x2n(1 − x) = (1 − x)
∑
n>0

x2n qui est une série géométrique

de raison x2 ∈ [0, 1[ et ainsi, la série
∑
n>0

x2n(1 − x) de fonctions continues sur [0, 1[

converge simplement sur [0, 1[ vers la fonction x 7→ (1 − x) ·
1

1 − x2 =
1

1 + x
;

- la série
∑
n>0

1
(2n + 1)(2n + 2)

converge car
1

(2n + 1)(2n + 2)
∼

1
4n2 .

On peut appliquer le théorème d’intégration terme à terme, et donc :

+∞∑
n=0

(∫ 1

0
x2n (1 − x) dx

)
=

∫ 1

0

 +∞∑
n=0

x2n(1 − x)

 dx =

∫ 1

0

dx
1 + x

2.2. Pour tout N ∈ N,

N∑
n=0

(∫ 1

0
x2n (1 − x) dx

)
=

N∑
n=0

(
1

2n + 1
−

1
2n + 2

)

=

2N+2∑
k=1,k impair

1
k
−

2N+2∑
k=1,k pair

1
k

=

2N+2∑
k=1

(−1)k+1

k

On fait alors tendre N vers l’infini, ce qui donne :
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+∞∑
n=1

(−1)n+1

n
=

+∞∑
n=0

(∫ 1

0
x2n (1 − x) dx

)
=

∫ 1

0

dx
1 + x

d’après la question précédente.

Il reste à calculer cette intégrale :
∫ 1

0

dx
1 + x

= [ln(1 + x)]1
0 = ln(2) − ln(1) = ln(2) pour

obtenir :

+∞∑
n=1

(−1)n+1

n
= ln(2)

3. Il s’agit dans cette question de déterminer l’ensemble des réels x pour lesquels la série proposée
converge.

Cela revient à trouver le rayon de convergence de la série entière
∑
n>1

(−1)n+1 xn

n
.

Par exemple :

• Si |x| > 1, alors la suite
(
(−1)n+1 xn

n

)
n∈N∗

diverge. Ainsi, la fonction ϕ n’est pas définie pour

|x| > 1.

• Si |x| < 1, alors pour tout n > 1,
|x|n

n
6 |x|n et la série

∑
n>1

|x|n est une série géométrique

convergente. Ainsi, dans ce cas, la série
∑
n>1

(−1)n+1 xn

n
est absolument convergente et ϕ est au

moins définie sur ] − 1, 1[.

• Si x = 1, d’après la question 1., ϕ(1) est bien définie et ϕ(1) = ln(2)

• Si x = −1, le terme générique de la série proposée s’écrit (−1)n+1 (−1)n

n
= −

1
n

qui est le terme
générique d’une série qui diverge.

Conclusion : ϕ est définie sur ] − 1, 1]

4.

4.1. Le dénominateur de la fraction rationnelle à intégrer étant 1 + x2, dans le cours, on sait in-

tégrer soit
1

1 + x2 , soit
2x

1 + x2 . Il faut donc faire apparaître ces deux fractions rationnelles :

∫ 1

0

1 − x
1 + x2 dx =

∫ 1

0

1
1 + x2 dx −

∫ 1

0

x
1 + x2 dx

= [arctan(x)]1
0 −

[
1
2

ln(1 + x2)
]1

0

=
π

4
−

1
2

ln(2)

4.2. - Une première façon de calculer la somme proposée est de faire comme dans la question
2.1. en appliquant le théorème d’intégration terme à terme :
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•
1

(2n + 1)(2n + 2)
∼

1
4n2 , et la série

∑
n>0

(−1)n

(2n + 1)(2n + 2)
est absolument convergente.

• On remarque ensuite que pour tout x ∈ [0, 1[,
+∞∑
n=0

(−1)nx2n(1 − x) = (1 − x) ·
1

1 + x2 ,

et donc :

+∞∑
n=0

(−1)n

(∫ 1

0
x2n (1 − x) dx

)
=

∫ 1

0

 +∞∑
n=0

(−1)nx2n(1 − x)

 dx

=

∫ 1

0

1 − x
1 + x2 dx

=
π

4
−

1
2

ln(2).

- Mais on peut aussi commencer par calculer l’intégrale dans la somme :

pour tout n ∈ N, (−1)n
∫ 1

0
x2n (1 − x) dx =

(−1)n

(2n + 1)(2n + 2)
.

En conclusion, on a donc :

S =

+∞∑
n=0

(−1)n

(2n + 1)(2n + 2)
=
π

4
−

1
2

ln(2).

Exercice 2.

Question de cours

Soit a un nombre réel. On note I =] −∞, a[ et f une fonction continue et intégrable sur I.

1. Comme la fonction f est continue sur I et d’après le théorème fondamental de l’analyse, la
fonction F1 est de classe C1 sur I et pour tout x ∈ I, F′1(x) = f (x).

↪→ Pour bien voir ce dernier résultat : si H est une primitive de la fonction f sur I (qui existe

puisque f est continue sur I), alors F1(x) =

∫ x

a
f (t) dt = H(x) − H(a).

Comme H(a) est une constante, il vient naturellement : ∀ x ∈ I, F′1(x) = H′(x) = f (x)

2. Comme f est continue et intégrable sur I, la fonction F est bien définie sur I.

L’idée est de se ramener à la question précédente.

On va couper cette intégrale en deux morceaux en introduisant un b ∈ I.

Alors, pour tout x ∈ I, F(x) =

∫ b

−∞

f (t) dt +

∫ x

b
f (x) dt.

Or,
∫ b

−∞

f (t) dt est une constante et donc, d’après la question précédente, la fonction F est de

classe C1 sur I et pour tout x ∈ I, F′(x) = f (x)

7/20



* * * * * *

Pour tout entier naturel n supérieur ou égal à 2, on note En l’espace vectoriel des fonctions polyno-
miales de degré inférieur ou égal à n.
Pour tout k ∈ ~0, n�, on note ek la fonction réelle de la variable réelle t 7→ tk et B = (ek)k∈~0,n� la base
canonique de En.
On note D l’endomorphisme dérivation de En et Id l’endomorphisme identité de En.

3. Soient k ∈ N.

La fonction fk est continue sur ] −∞,−1].

On a facilement | fk(t)| =
t→+∞

o
(

1
t2

)
par croissances comparées.

Or la fonction t 7→
1
t2 est intégrable sur ] −∞,−1].

On en déduit (Théorème de comparaison) que : ∀ k ∈ N, fk est intégrable sur ] −∞,−1]

↪→ Noter que cela entraîne que pour tout k ∈ N, les fonctions fk sont intégrables sur tout

intervalle ]−∞, c] où c est un réel quelconque : il suffit d’écrire que
∫ c

−∞

fk(t) dt =

∫ −1

−∞

fk(t) dt+∫ c

−1
fk(t) dt.

4. • On commence par vérifier que l’application L est bien définie :

Pour toute fonction f de En, t 7→ f (t)et est une combinaison linéaire des f0, f1, . . . , fn.

En utilisant alors la question précédente, on peut affirmer que la fonction t 7→ f (t)et est inté-
grable sur ] −∞, x] pour tout réel x, ce qui prouve que l’application L est bien définie.

• Prouvons la linéarité de L :

Soient f et h deux éléments de En et λ un réel. Alors, pour tout x ∈ R,

L(λ f + g)(x) = e−x
∫ x

−∞

(λ f + g)(t)etdt

= λe−x
∫ x

−∞

f (t)etdt + e−x
∫ x

−∞

g(t)etdt

= λL( f )(x) + L(g)(x).

Ainsi, L est une application linéaire.

↪→ On aurait aussi pu dire que la linéarité de L découlait directement de la linéarité de l’inté-
grale.

Conclusion : L est une application linéaire sur En

5. Soit x ∈ R.

La fonction t 7→ f (t)et étant continue et intégrable sur ]−∞, x], en utilisant la question de cours,

on obtient que la fonction x 7→
∫ x

−∞

f (t) et dt est de classe C1 sur R et par suite, que g est de
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classe C1 sur R.

De plus, toujours d’après la question de cours, pour tout réel x, g′(x) = −g(x) + e−x f (x) ex =

−g(x) + f (x).

Cela revient à dire que : g est solution sur R de l’équation différentielle : y′ + y = f (x)

6. Une fonction f est dans Ker(L) si et seulement si g = L( f ) = 0.

Or d’après la question précédente, g = L( f ) ⇐⇒ g′ + g = f .

Ainsi, f ∈ Ker(L) ⇐⇒ f = 0En où 0En est la fonction nulle de En puisque g est nulle.

Conclusion : Ker(L) = {0En}

7.

7.1. Pour tout x ∈ R, L(e0)(x) = e−x
∫ x

−∞

etdt = e−xex = 1. Ainsi, L(e0) = e0

7.2. Soit k ∈ ~0, n − 1�.

On va faire une intégration par parties, qui est licite car :

• les fonctions t 7→ tk+1 et t 7→ et sont de classe C1 sur R,

• la limite lim
t→−∞

tk+1et existe et vaut 0 par croissances comparées,

• les fonctions sont intégrables sur ] −∞, c] pour tout c réel.

Ainsi, on a donc pour tout x ∈ R :

L(ek+1)(x) = e−x
∫ x

−∞

tk+1etdt

= e−x

([
tk+1et

]x

−∞
−

∫ x

−∞

(k + 1)tketdt
)

= e−x

(
xk+1ex − (k + 1)

∫ x

−∞

tketdt
)

= ek+1(x) − (k + 1)L(ek)(x).

ce qui prouve bien que : ∀ k ∈ ~0, n − 1�, L(ek+1) = ek+1 − (k + 1) L(ek)

7.3. Pour montrer que L est un endomorphisme de En, il reste à montrer que ∀ f ∈ En, L( f ) ∈
En.

Or, comme on sait que L est linéaire et que B = (e0, e1, ..., en) est une base de En, il suffit
de montrer que ∀ k ∈ ~0, n�, L( fk) ∈ En.

Pour ce faire, nous allons raisonner par récurrence sur k ∈ ~0, n�.

- Initialisation : d’après la question 7.7.1., L(e0) = e0 ∈ En, donc la propriété est vraie
pour k = 0.
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- Hypothèse de récurrence : Supposons que pour un k ∈ ~0, n − 1�, L(ek) ∈ En.

Montrons maintenant que L(ek+1) ∈ En.

D’après la question précédente, L(ek+1) = ek+1 − (k + 1) L(ek).

Alors, en utilisant hypothèse de récurrence et le fait que En est un espace vectoriel,
on obtient que L(ek+1) est un élément de En.

Conclusion : D’après le principe de récurrence, pour tout k ∈ ~0, n�, L(ek) ∈ En

Ainsi, d’après la remarque faite au début de la question, L est un endomorphisme de En

8. D’après la question 6., L est injective.

On vient de démontrer que L est un endomorphisme de En qui est de dimension finie, et donc,

L est un automorphisme de En

9. Recherche des sous-espaces propres de L.
Soit λ une valeur propre de L et f un vecteur propre associé.

9.1. D’après la question 6., L est injective, donc 0 n’est pas valeur propre de L.

9.2. Puisque f est un vecteur propre associé à la valeur propre λ, la fonction f vérifie L( f ) =

λ f .

En utilisant la question 5., λ f est solution de l’équation différentielle y′ + y = f .

Autrement dit, f vérifie λ f ′ + λ f = f , ce qui revient à λ f ′ + (λ − 1) f = 0.

Conclusion : f est solution de l’équation différentielle (∗)

9.3. Comme λ , 0, l’équation différentielle se réécrit y′ +
(
1 −

1
λ

)
y = 0

Donc :

• Si λ = 1, alors l’équation différentielle se réécrit : y′ = 0, dont les solutions sont les
fonctions constantes.

• Si λ , 1, alors les solutions sont les fonctions x 7→ Ke(−1+ 1
λ )x, avec K ∈ R.

9.4. • Si λ = 1, alors les solutions sont constantes et sont donc polynomiales.

• Si λ , 1, les fonctions x 7→ Ke(−1+ 1
λ )x ne sont polynomiales que si K = 0 car −1 +

1
λ

ne
s’annule pas.

Ainsi, les seules solutions polynomiales de l’équation (∗) sont les fonctions constantes
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9.5. Soit λ une valeur propre de L et f un vecteur propre associé.

Alors f est polynomiale (dans En) et est solution de (∗).

Ainsi, d’après la question précédente, la seule possibilité est λ = 1 et f ∈ Vect(e0).

Conclusion : L’endomorphisme L n’a qu’une seule valeur propre, et le sous espace
propre associé est de dimension 1.

Comme En est de dimension n+1 > 1 (car n > 2), on en déduit que L n’est pas diagonalisable

10. Soit f ∈ En et g = L( f ).

On a vu à la question 5. que : g = L( f ) ⇐⇒ g′ + g = f ⇐⇒ (D + Id)(g) = f

Mais aussi, g = L( f ) ⇐⇒ f = L−1(g) puisque l’on sait que L est un automorphisme de EDn.

On en déduit alors que L−1 = D + Id.

11. Pour tout k ∈ ~1, n�, L−1(ek) = (D+Id)(ek) = kek−1 + ek, et L−1(e0) = e0.

Donc

M =



1 1 0 · · · 0

0 1 2 . . .
...

... 0 1 . . . 0

...
. . .

. . . n
0 0 · · · 0 1


12. La matrice M est triangulaire supérieure et ses coefficients diagonaux sont tous égaux à 1.

Donc Sp(L−1) = {1}

Ensuite :

λ est valeur propre de L si et seulement s’il existe f ∈ En \ {0En} telle que L( f ) = λ f , soit encore
1
λ

f = L−1( f ).

Autrement dit λ est valeur propre de L ssi
1
λ

est valeur propre de L.

Conclusion : Sp(L) = {1}

Exercice 3.

1. D’après les relations coefficients racines, les racines, on a, en notant r1 et r2 les racines de
l’équation : 

r1 r2 = −1 (1)
et

r1 + r2 = 1 (2)
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Comme le discriminant ∆ = 5 > 0, les deux racines sont réelles et de signe contraire d’après
(1).

En utilisant les notations de l’énoncé, les deux racines s’écrivent donc, d’après (1) : γ et −
1
γ

.

De plus, γ = 1 −
−1
γ

= 1 +
1
γ
> 1

2. Soit (an) et (bn) définies par b0 = 0, b1 = 1, et les relations de récurrence :

∀n ∈ N,

an+1 = bn

bn+1 = an + bn

2.1. Soit n un entier strictement positif. Alors an = bn−1, donc bn+1 = an + bn = bn−1 + bn.

2.2. • Pour la première, en prenant n = 0, on trouve b0 =
1
√

5

(
1 −

1
γ

)
, 0, donc cette expres-

sion ne convient pas.

• Comme les racines de l’équation caractéristique associée à la suite (bn) sont γ et −
1
γ

,

l’expression doit être une combinaison linéaire de γn et
(−1)n

γn . La seconde expression est

une combinaison linéaire de (−γ)n et
1
γn , ce qui ne convient pas.

Ainsi, la troisième expression est l’expression correcte

2.3. Par définition des suites (an) et (bn), pour tout entier naturel n, an+1 = bn =
γn

√
5

+
(−1)n+1

γn
√

5
.

De plus, a0 = b1 − b0 = 1, et

γ−1

√
5

+
1

γ−1
√

5
=

1
√

5

(
γ +

1
γ

)
=

1
√

5

1 +
√

5
2

+
2

1 +
√

5


=

1
√

5

1 +
√

5
2

+
1 −
√

5
2


= 1

Donc, ∀ n ∈ N, an =
γn−1

√
5

+
(−1)n

γn−1
√

5

2.4. On peut soit procéder par récurrence, ou bien utiliser les expressions trouvées précédem-
ment :
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Soit n ∈ N,

an + bnγ =
γn−1

√
5

+
(−1)n

γn−1
√

5
+
γn+1

√
5

+
(−1)n+1

γn−1
√

5

=
γn−1

√
5

+
γn+1

√
5

=
γn

√
5

(
γ +

1
γ

)
= γn

en répétant le calcul de la question précédente.

3. En posant M =

(
0 1
1 1

)
, on vérifie alors directement que Vn+1 = M Vn.

4. Le polynôme caractéristique de M est

χM(λ) =

∣∣∣∣∣∣ λ −1
−1 λ − 1

∣∣∣∣∣∣ = λ2 − λ − 1.

Or, ce polynôme a deux racines γ et −
1
γ

qui sont distinctes (une est strictement positive, l’autre

strictement négative). Il est donc scindé à racines simples. La matrice M est diagonalisable.

On aurait aussi pu dire que comme M est une matrice symétrique réelle, elle est diagonalisable.

Les valeurs propres de M sont γ et −
1
γ

.

De plus,

M
(
x
y

)
= γ

(
x
y

)
⇐⇒

y = γx
x + y = γy

⇐⇒

y = γx
0 = γ2x − γx − x

⇐⇒ y = γx.

Donc Eγ =Vect
((

1
γ

))
.

De même on trouve E− 1
γ

=Vect
((
−γ
1

))
.

5. Pour prouver que pour tout n ∈ N on a la relation Mn = an I2+bn M, on effectue un raisonnement
par récurrence sur l’entier naturel n.

- Initialisation : comme a0 = 1 et b0 = 0, on a bien M0 = a0 I2 + b0 M.

- Hypothèse de récurrence : supposons que pour n > 0, on a : Mn = an I2 + bn M.

Alors

Mn+1 = M · Mn

= M (an I2 + bn M)

= an M + bn M2

= an M + bn (I2 + M)
= bn I2 + (an + bn) M
= an+1 I2 + bn+1 M
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Ainsi, la formule est vraie au rang n + 1.

Conclusion : d’après le principe de récurrence : ∀ n ∈ N, Mn = an I2 + bn M

6. Soit n ∈ N.

On commence par donner une autre expression de Cn en utilisant la question précédente :

Cn =

n∑
k=0

ak I2 + bk M
k !

=

 n∑
k=0

ak

k !

 I2 +

 n∑
k=0

bk

k !

 M

=
1
√

5

n∑
k=0

(
γk−1

k !
−

(−γ−1)k−1

k !

)
I2 +

1
√

5

n∑
k=0

(
γk

k !
−

(−γ−1)k

k !

)
M

Or, la série de terme général
γk

k !
converge vers eγ et la série de terme général

(−γ−1)k

k !
converge

vers e−
1
γ .

Il en résulte que la suite (Cn)n∈N converge vers

C =

 eγ

γ
√

5
+
γe−

1
γ

√
5

 I2 +
eγ − e−

1
γ

√
5

M

7. Comme M est diagonalisable, il existe une matrice P inversible telle que M = P D P−1, avec

D =

γ 0

0 −
1
γ

.
Or, on montre par une récurrence simple que pour tout n ∈ N, Mn = P Dn P−1.

Cela nous permet d’écrire que pour tout entier naturel n :

Cn =

n∑
k=0

Mk

k !
= P

 n∑
k=0

Dk

k !

 P−1

= P

 n∑
k=0

γk

k !

(
1 0
0 0

)
+

n∑
k=0

(−γ−1)k

k !

(
0 0
0 1

) P−1

En passant à la limite lorsque n tend vers l’infini et en utilisant la continuité de la fonction
M 7→ P M P−1, on trouve

C = P
(
eγ 0
0 e−

1
γ

)
P−1 = P ∆ P−1

et C est bien semblable à la matrice ∆.
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Exercice 4.

1. D’après le cours, pour démontrer que ( | ) est un produit scalaire, il faut prouver qu’il s’agit
d’une application bilinéaire symétrique, positive et définie.

- Symétrie : soient (P,Q) ∈ E2.

On a (P|Q) =

n∑
j=0

P(a j)Q(a j) =

n∑
j=0

Q(a j)P(a j) = (Q|P) et ( | ) est symétrique.

- Bilinéarité : soient (P,Q,R) ∈ E3 et λ ∈ R.

(λP + Q|R) =

n∑
j=0

(λP + Q)(a j)R(a j)

= λ

n∑
j=0

P(a j)R(a j) +

n∑
j=0

Q(a j)R(a j)

= λ(P|R) + (Q|R)

ce qui prouve la linéarité à gauche.

Par symétrie, on a la bilinéarité.

- Positivité : soit P ∈ E, (P|P) =

n∑
j=0

P(a j)2 > 0.

- Définition : soit P ∈ E tel que (P|P) = 0.

Alors
n∑

j=0

P(a j)2 = 0 donc pour tout j ∈ ~0, n�, P(a j) = 0.

Il en résulte que P admet n + 1 racines distinctes.

Comme P est de degré au maximum n, il ne peut avoir au maximum que n racines et donc,
c’est le polynôme nul.

Conclusion : ( | ) est un produit scalaire sur E

2. Soit P ∈ E.

(P|P0) =

n∑
j=0

P(a j)P0(a j) =

n∑
j=0

P(a j)

3. Pour tout j ∈ ~0, n�, on considère le polynôme L j(X) =

n∏
k=0
k, j

X − ak

a j − ak
.

3.1. Soit (i, j) ∈ ~0, n�2 tel que i , j. Alors L j(ai) =

n∏
k=0
k, j

ai − ak

a j − ak
= 0 car i , j.

En fait, pour tout i , j, X − ai est en facteur dans L j.

Ensuite, pour i = j, L j(a j) =

n∏
k=0
k, j

a j − ak

a j − ak
= 1.

15/20



3.2. Soit (i, j) ∈ ~0, n�2 avec i , j. D’après la question précédente,

(Li|L j) =

n∑
k=0

Li(ak)L j(ak) = Li(ai)L j(ai) + Li(a j)L j(a j) = 0.

Donc la famille B est une famille orthogonale.

3.3. Comme B est une famille orthogonale de vecteurs non nuls, elle est libre. Comme Card(B) =

n + 1 = dim(E), c’est une base de E.

De plus, pour tout i ∈ ~0, n�,

(Li|Li) =

n∑
k=0

Li(ak)2 = Li(ai)2 = 1.

et, B est une base orthonormale de E

3.4. Soit P ∈ E.

Comme B est une base orthonormale de E, les composantes de P sont données par :

(P|Li) =

n∑
k=0

P(ak)Li(ak) = P(ai)

Ainsi, P =

n∑
i=0

P(ai)Li

3.5. On remarque que P0 =

n∑
j=0

L j car pour tout i ∈ ~0, n�, P0(ai) = 1.

4.

4.1. L’application ϕ : P ∈ E 7→ (P0|P) =

n∑
j=0

P(a j) est linéaire car le produit scalaire est

bilinéaire.

Donc H =Ker(ϕ) est un sous-espace vectoriel de E

4.2. D’après le cours, on a H =Vect(P0)⊥, donc H⊥ = Vect(P0)

Comme dim(H⊥) = 1, on a dim(H) =dim(E) − 1 = n

5.
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5.1. D’après le cours, on sait bien projeter orthogonalement sur un sous-espace lorsque l’on a
une base orthonormale de ce sous-espace.

Comme ‖P0‖ =
√

n + 1, le vecteur R =
P0

‖P0‖
=

P0
√

n + 1
est une base orthonormée de H⊥.

Ainsi, le projeté orthogonal de Q sur H⊥ est donné par

(Q|R)R =
1

n + 1
(Q|P0)P0 =

1
n + 1

n∑
j=0

Q(a j)P0 =
1

n + 1

n∑
j=0

Q(a j)

soit

pH⊥(Q) =
1

n + 1

n∑
j=0

Q(a j)

5.2. Enfin, la distance de Q au sous-espace vectoriel H est égale à la norme du projeté ortho-
gonal de Q sur H⊥ :

d(Q,H) =

∥∥∥∥∥∥∥ 1
n + 1

n∑
j=0

Q(a j)P0

∥∥∥∥∥∥∥ =
1

√
n + 1

∣∣∣∣∣∣∣
n∑

j=0

Q(a j)

∣∣∣∣∣∣∣
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COMMENTAIRES

• Commentaires généraux
- Une première remarque importante : les correcteurs ont signalé à plusieurs reprises un nombre
important de copies mal ordonnées, mal présentées (la rédaction de la copie ne doit pas occasionner
un jeu de piste pour l’examinateur), les étudiants doivent s’appliquer à présenter une copie claire
et propre.

- Il semble judicieux d’éviter d’utiliser des expressions telles que ”il est trivial que ”, ” par une
récurrence immédiate ”, etc... rappelons que toute proposition énoncée dans une copie se doit d’être
démontrée.

- Les quatre exercices constituant le sujet permettaient de parcourir les parties les plus classiques du
programme de deuxième année de classe préparatoire MP.

Nous avons été déçus par le trop grand nombre d’étudiants qui ne maîtrisent pas les notions de base
d’algèbre linéaire, d’analyse et qui espèrent venir à bout du sujet grâce à des recettes toutes faites.

Nous constatons aussi une grande maladresse dans les calculs (parfois très simples) qui sont très
rapidement abandonnés.

- Enfin, notons une nouvelle fois que les examinateurs ne goûtent guère des arguments bidons ou
fallacieux pour arriver à toute force au résultat annoncé dans l’énoncé.

- Dans certaines copies on trouve beaucoup trop d’abréviations CVU, CVS, CSTP (comparaison de
séries à termes positifs) voire des symboles mathématiques en guise d’abréviation...

- La rédaction est souvent inadmissible : les flèches (voir rien du tout) remplacent les phrases, les
résultats ne sont pas encadrés, les théorèmes ont des noms aléatoires (lorsqu’ils en ont).

- Certains candidats recopient simplement le résultat demandé en guise de réponse en espérant que
cela passe.

- Les convergences d’intégrales et de séries ne sont justifiées que si cela est explicitement demandé.

•Commentaires exercice par exercice

Exercice 1

1. Question en général traitée : attention à ne pas oublier les hypothèses précises d’application du
critère spécial des séries alternées.

2. Cela ne doit pas être à l’examinateur de faire le choix des hypothèses énoncées en vrac pour
appliquer le théorème d’intégration terme à terme.

Beaucoup de candidats tentent de prouver la convergence uniforme de la série sur [0, 1] alors que la
non continuité de la fonction somme aurait dû les en dissuader.

Enfin, calculer la somme d’une série géométrique relève trop souvent de l’exploit...

3. Trop peu d’étudiants reconnaissent une série entière et répondent à la question.

On a trop souvent trouvé D =]−1, 1[, sans que le candidat soit géné lorsqu’on lui demande de calculer
ϕ(1) !
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4. Rappelons que l’intégration par parties n’est pas la panacée du calcul intégral.

On retrouve ensuite les mêmes problèmes que pour la question 2.

Exercice 2

1. et 2. Questions faciles si l’on utilise la notion de primitive, notion qui semble mal comprise voire
méconnue.

Trop de candidats pensent qu’il s’agit d’une intégrale à paramètre...

3. Soit la continuité de la fonction à intégrer est oubliée, soit c’est elle qui justifie l’intégrabilité sur
] −∞,−1].

Ne pas oublier que toute domination se fait sur des fonctions positives.

4. Question en général bien traitée.

5. et 6. Questions souvent mal comprise : trop de candidats tentent de résoudre l’équation différentielle
y′ + y = f (x) et veulent se servir des résultats obtenus pour traiter la question 6..

7.1. Question traitée correctement.

7.2. Ne pas oublier qu’il faut justifier l’utilisation d’une intégration par parties.

7.3. On a souvent rencontré une mauvaise justification de l’utilisation de la base canonique pour
conclure.

8. Le fait que En est de dimension finie n’est que trop peu souvent évoqué.

9. Question en général peu abordée. Le fait de rechercher des solutions polynomiales d’une équation
différentielle semble avoir désarçonné beaucoup d’étudiants.

Exercice 3

1. Trop rares sont les candidats qui ont utilisé les relations coefficients racines. Beaucoup de lourdeur
dans la résolution de cette question.

2.1. Question en général bien traitée.

2.2. L’objectif de cette question était de donner l’expression juste de yn sans que le candidat soit obligé
d’effectuer tous les calculs. Était-ce efficace?

3., 4. et 5. Questions en général bien traitées. La seule difficulté rencontrée s’est située au niveau du
calcul des vecteurs propres de la matrice M.

6. et 7. Même si certains candidats reconnaissent l’exponentielle de matrice, on demandait ici pour
répondre correctement à la question de montrer la convergence et de calculer explicitement la limite
obtenue en utilisant les questions précédentes.
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Exercice 4

1. Question en général bien traitée sauf quelques imprécisions pour démontrer le caractère défini du
produit scalaire.

2. Pas de problème sur cette question.

3. Questions classiques engénéral bien traitées.

Cela se gâte à partir de la question 3.4. et surtout 3.5.

4.1. Trop d’étudiants ont du mal à montrer que H est un sous-espace vectoriel de E !

4.2. L’orthogonal de H est rarement explicité clairement.

5.1. Les propriétés de la projection orthogonale sont en général bien citées mais on a remarqué de
grosses difficultés pour les mettre en oeuvre ici.

5.2. Les relations entre projection orthogonales sur H et projection orthogonale sur H⊥ ne sont pas
toujours bien maîtrisées.

FIN
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