CORRECTION

Exercice 1.

1. On reconnait une série alternée.

. 1 .. L.
La suite (—) est positive, décroissante et tend vers 0.
n
neN

Alors, d’apres le critere spécial des séries alternées,| la série Z

-1 n+1

n>1

converge

2.1. Nous allons appliquer, comme 1’indique 1’énoncé, le Théoréme d’intégration terme a

terme.

1
On remarque tout d’abord que pour tout n > 0, f (1 - x)dx = 5
0

1
2n+1)2n+2)

1 1

Alors, d’apres le cours, comme :

n+l 2n+2

- pour tout x € [0, 1[, Z "1 -x)=(1-x Z x*" qui est une série géométrique

n=0 n=0

de raison x? € [0, 1] et ainsi, la série Z x*(1 — x) de fonctions continues sur [0, 1]

converge simplement sur [0, 1[ vers la fonction x — (1 — x) -

n=0

1

1 | 1

- la série

Cn+1DH(2n+2)

Qn+ 1D2n+2)  4n

On peut appﬁquer le théoreme d’intégration terme a terme, et donc :

1—-x2 14+x

converge car —.

+00

2,

n=0

+00

1 1 1
2n1_ d):f[ 2n1_ )d :f
(Lx (1-x)dx ; ;x( x)|dx |

dx
1+x

2.2. Pour tout N € N,

N

1
Z(f (1 —x)dx) -
n=0 0

M=

n=0
2N+2 1 2N+2 1
2
k=1,k impair k=1,k pair
2N+2
B (_ 1)k+1
k=1 k

On fait alors tendre N vers I’infini, ce qui donne :
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(_1 n+1 +o

+00 1 1
d

Z = Z ( f (1= x) dX) = f = d’apres la question précédente.

n=1 n 0 0 1 + X

n=0

1
d
Il reste a calculer cette intégrale : f % = [In(1 + x)](l) = In(2) — In(1) = In(2) pour
0 X

obtenir :

+o (_1)n+1

]

=In(2)

n=1

3. Il s’agit dans cette question de déterminer I’ensemble des réels x pour lesquels la série proposée
converge.

. N PR BN ‘xn
Cela revient a trouver le rayon de convergence de la série entiere Z(— =,
n

n>1
Par exemple :
: : X! : o . P
e Si x| > 1, alors la suite ((—1)"“—) diverge. Ainsi, la fonction ¢ n’est pas définie pour
n neN
|x| > 1.

) x["
e Si |x| < 1, alors pour tout n > 1, il

< |x|" et la série Z |x|" est une série géométrique

n>1

convergente. Ainsi, dans ce cas, la série Z(—l)"“ — est absolument convergente et ¢ est au
n

n>1
moins définie sur | — 1, 1[.

e Si x = 1, d’apres la question 1., ¢(1) est bien définie et| (1) = In(2)

. : iy e -1)"
e Si x = —1, le terme générique de la série proposée s’écrit (—1)"*! u =
n

= —— qui est le terme
n
générique d’une série qui diverge.

Conclusion :| ¢ est définie sur | — 1, 1]

4.1. Le dénominateur de la fraction rationnelle a intégrer étant 1 + x2, dans le cours, on sait in-

1
tégrer soit ——, soit
& 1+ x2

7 Il faut donc faire apparaitre ces deux fractions rationnelles :
X

1 1 1
1- 1
f dex:f dx—f al dx
0 1+X 0 1+x2 0 1+.x2

1

= [arctan(x)], — [% In(1 + x?)

0

In(2)

I
M| —

4.2. - Une premicere facon de calculer la somme proposée est de faire comme dans la question
2.1. en appliquant le théoreme d’intégration terme a terme :
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1 1 =1

° T D2 ~ o et la série 24 @n+ D2n+2) est absolument convergente.
+00 1
e On remarque ensuite que pour tout x € [0, 1[, Z(—l)”xzn(l —x)=(1-x—,
o 1+x
et donc :
+00 1 1 +00
Gk ( f (1 = ) dx) - f D11 - )| dx
n=0 0 0 \u=0
1
1-
= f al dx
o 1+x?
n 1
= - — =1In(2).
;7@
- Mais on peut aussi commencer par calculer 1’intégrale dans la somme :
="

1
tout N, —1y 2n 1 - dx = .
pour tout n € N, (=1) fo (1 —x)dx (2n+ 1DH(2n+2)

En conclusion, on a donc :

3 — =" o1
S‘%&M+nmwm_4 5 ).

Exercice 2.

Question de cours

Soit @ un nombre réel. On note I =] — oo, a[ et f une fonction continue et intégrable sur /.

1. Comme la fonction f est continue sur / et d’apres le théoreme fondamental de 1’analyse, la
fonction F; est de classe C' sur I et pour tout x € I, Fi(x) = f(x).

< Pour bien voir ce dernier résultat : si H est une primitive de la fonction f sur / (qui existe

puisque f est continue sur [), alors F(x) = f f(t)dt = H(x) — H(a).

Comme H(a) est une constante, il vient naturellement : | V x € I, F{(x) = H'(x) = f(x)

2. Comme f est continue et intégrable sur /, la fonction F est bien définie sur /.
L’idée est de se ramener a la question précédente.

On va couper cette intégrale en deux morceaux en introduisant un b € /.

b X
Alors, pour tout x € I, F(x) = f f(H)dr + f f(x)dt.
—o0 b

b
Or, f f(¢) dt est une constante et donc, d’apres la question précédente, la fonction F est de

classe C! sur I et pour tout| x €I, F'(x) = f(x)
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H ok ok ok sk sk

Pour tout entier naturel n supérieur ou égal a 2, on note E, 1’espace vectoriel des fonctions polyno-
miales de degré inférieur ou égal a n.

Pour tout & € [0, ]}, on note ¢, la fonction réelle de la variable réelle 1 — t* et Z = (ex)kefo.ny 1a base
canonique de E,,.

On note D I’endomorphisme dérivation de E, et Id I’endomorphisme identité de E,.

3.

Soient k € N.
La fonction f; est continue sur | — oo, —1].
. 1 . .
On a facilement |f;(f)] = o (t_z) par croissances comparées.
—+00

1
Or la fonction ¢ — o est intégrable sur | — oo, —1].

On en déduit (Théoreme de comparaison) que :| VY k € N, f; est intégrable sur | — oo, —1]

— Noter que cela entraine que pour tout k € N, les fonctions f; sont intégrables sur tout

c —1
intervalle ] —oo, c] ou ¢ est un réel quelconque : il suffit d’écrire que f fi(tydt = f Sfi(H)det+

f fu(d) dt.
-1

e On commence par vérifier que I’application L est bien définie :
Pour toute fonction f de E,, t — f(¢)e’ est une combinaison linéaire des fy, fi, ..., fp-

En utilisant alors la question précédente, on peut affirmer que la fonction ¢ — f(f)e’ est inté-
grable sur ] — oo, x] pour tout réel x, ce qui prouve que ’application L est bien définie.

e Prouvons la linéarité de L :

Soient f et h deux éléments de E, et A un réel. Alors, pour tout x € R,
LAf +8)(x)=e™ f (Af + g)(n)e'dt

= e f ) f(He'dt +e™* f ) g(ne'de
= AL(f)(x) + L(g)(x).

Ainsi, L est une application linéaire.

< On aurait aussi pu dire que la linéarité de L découlait directement de la linéarité de 1’inté-
grale.

Conclusion :| L est une application linéaire sur E,

Soit x € R.
La fonction 7 — f(r)e’ étant continue et intégrable sur ] — oo, x], en utilisant la question de cours,
X

on obtient que la fonction x +— f(r)e' dt est de classe C! sur R et par suite, que g est de

—00
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classe C' sur R.

De plus, toujours d’apres la question de cours, pour tout réel x, g'(x) = —g(x) + e *f(x)e* =
—8(x) + f(x).
Cela revient a dire que :| g est solution sur R de I’équation différentielle : y" +y = f(x)

. Une fonction f est dans Ker(L) si et seulement si g = L(f) = 0.
Or d’apres la question précédente, g = L(f) < ¢ +g=f.

Ainsi, f € Ker(L) & f = 0g, ou Og, est la fonction nulle de E, puisque g est nulle.

Conclusion :| Ker(L) = {Og,}

X

7.1. Pour tout x € R, L(ep)(x) = e‘xf e'dt =e e = 1. Ainsi,| L(ep) = e

—00

7.2. Soitk € [0,n - 1].

On va faire une intégration par parties, qui est licite car :

k+1

e les fonctions ¢ — ™! et 1 — ¢’ sont de classe C' sur R,

e lalimite lim #*'e’ existe et vaut O par croissances comparées,

——00

e les fonctions sont intégrables sur | — oo, ¢] pour tout ¢ réel.

Ainsi, on a donc pour tout x € R :

L(eg)(x) = e™* f leldr

—00

= e ([tk“et]:o - f "k 1)tke’dt)
=" (xk“ex —(k+1) f ) tke’dt)

= ep+1(x) — (k + 1)L(ex)(x).

ce qui prouve bienque :| Vke€[[0,n— 1], L(exs1) = exr1 — (k+ 1) L(ex)

7.3. Pour montrer que L est un endomorphisme de E,, il reste a montrer que VY f € E,,, L(f) €
E,.

Or, comme on sait que L est linéaire et que 4 = (ey, ey, ..., ¢,) est une base de E,, il suffit
de montrer que Y k € [0, n]], L(fy) € E,.

Pour ce faire, nous allons raisonner par récurrence sur k € [0, n].

- Initialisation : d’apres la question 7.7.1., L(ey) = ey € E,, donc la propriété est vraie
pour k = 0.
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- Hypothese de récurrence : Supposons que pour un k € [0,n — 1], L(ey) € E,..
Montrons maintenant que L(ey;;) € E,.
D’apres la question précédente, L(exy1) = exr1 — (K + 1) L(ex).

Alors, en utilisant hypotheése de récurrence et le fait que E, est un espace vectoriel,
on obtient que L(ex;) est un élément de E,,.

Conclusion : D’apres le principe de récurrence,| pour tout k € [0, n]], L(ey) € E,

Ainsi, d’apres la remarque faite au début de la question,| L est un endomorphisme de E,,

8. D’apres la question 6., L est injective.

On vient de démontrer que L est un endomorphisme de E, qui est de dimension finie, et donc,

L est un automorphisme de E,

9. Recherche des sous-espaces propres de L.

Soit A une valeur propre de L et f un vecteur propre associé.

9.1. D’apres la question 6., L est injective, donc 0 n’est pas valeur propre de L.

9.2. Puisque f est un vecteur propre associé a la valeur propre A, la fonction f vérifie L(f) =

9.3.

9.4.

Af.
En utilisant la question 5., Af est solution de 1’équation différentielle y' + y = f.

Autrement dit, f vérifie Af' + Af = f,ce quirevienta Af" +(1—1)f = 0.

Conclusion :|  f est solution de I’équation différentielle (x)

1
Comme A # 0, I’équation différentielle se réécrit y" + (1 - Z) y=0

Donc :

e Si A = 1, alors I’équation différentielle se réécrit : y = 0, dont les solutions sont les
fonctions constantes.

e Si A # 1, alors les solutions sont les fonctions x — Ke(—“,%)x’ avec K € R.
e Si A =1, alors les solutions sont constantes et sont donc polynomiales.

1
e Si A # 1, les fonctions x — Ke(=1+)% ne sont polynomiales que si K = 0 car -1 + — ne
s’annule pas.

Ainsi,| les seules solutions polynomiales de 1’équation () sont les fonctions constantes
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10.

11.

12.

9.5. Soit A une valeur propre de L et f un vecteur propre associé.
Alors f est polynomiale (dans E,) et est solution de (x).
Ainsi, d’apres la question précédente, la seule possibilité est 4 = 1 et f € Vect(ey).

Conclusion : ’endomorphisme L n’a qu’une seule valeur propre, et le sous espace
propre associé est de dimension 1.

Comme E, estde dimensionn+1 > 1 (carn > 2),onen déduitque| L n’est pas diagonalisable

Soit f € E, et g = L(f).

Onavualaquestion5.que:g=L(f) = g +g=f < (D+Id)(g) =f

Mais aussi, g = L(f) & f = L™'(g) puisque I’on sait que L est un automorphisme de ED,.
On en déduit alors que L' = D + Id.

Pour tout k € [1,n]l, L™ (ex) = (D+1d)(e;) = ker_; + ex, et L™ (ep) = ey.

Donc
11 0 ---0
0 1 :
M=|: 0 1 0
n
00 - 0 1

La matrice M est triangulaire supérieure et ses coefficients diagonaux sont tous égaux a 1.

Donc| Sp(L™") = {1}

Ensuite :

A est valeur propre de L si et seulement s’il existe f € E, \ {Og,} telle que L(f) = Af, soit encore

| P
/_lf_L (f)-

1
Autrement dit A est valeur propre de L ssi 1 est valeur propre de L.

Conclusion :| Sp(L) = {1}

Exercice 3.

D’apres les relations coeflicients racines, les racines, on a, en notant r; et r, les racines de
I’équation :

rirnp=-1()
et
ry+r= 1 (2)
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Comme le discriminant A = 5 > 0, les deux racines sont réelles et de signe contraire d’apres

(1).

. . ) ) : . \ 1
En utilisant les notations de 1’énoncé, les deux racines s’écrivent donc, d’apres (1) : y et ——.
Y

-1 1
Deplus,y=1-—=14+->1
Y Y

. Soit (a,) et (b,) définies par by = 0, by = 1, et les relations de récurrence :

an1 = b
Vn e N, n+1 n
bni1 = a, + b,
2.1. Soit n un entier strictement positif. Alors a, = b,_, donc b,y = a, + b, = b,_| + b,.
2.2, e Pour la premiere, en prenant n = 0, on trouve by = 7 (1 - —) # 0, donc cette expres-
5 Y

sion ne convient pas.

. . ’ . . .z N : l
e Comme les racines de 1’équation caractéristique associée a la suite (b,) sont y et ——,
Y
(="

I’expression doit étre une combinaison linéaire de y" et . La seconde expression est

. o 1 . .
une combinaison linéaire de (—y)" et —, ce qui ne convient pas.
Y

Ainsi, | la troisieme expression est I’expression correcte

n -1 n+1
2.3. Par définition des suites (a,) et (b,), pour tout entier naturel n, a,.1 = b, = 14 + D .

De plus, ag = by — by = 1, et

Y .
V5 oy 15

)
= v+ —
Y

1+‘/§+ 2 J
2 1+ V5

1+\/§+1—\/§J
2 2

I e el

r, cr
V5 a5

Donc,| VneN,aq, =

2.4. On peut soit procéder par récurrence, ou bien utiliser les expressions trouvées précédem-
ment :
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Soitn € N,
n—1 (_l)n yn+1 (_1)n+1

Y
a, + b,y = + + +
\/5 ,yn—l \/5 \/3 ,yn—l \/g
,yn—l ,yn+l

+

V5 V5

A

< |

‘<=&|

en répétant le calcul de la question précédente.

3. En posant M = ((1) }) on vérifie alors directement que V,,,; = M V,,.

4. Le polyndme caractéristique de M est

_(4 - p
XM(/l)—‘_l /1_1‘—/1 -A-1

Or, ce polyndme a deux racines y et —— qui sont distinctes (une est strictement positive, I’autre
strictement négative). Il est donc scindé a racines simples. La matrice M est diagonalisable.

On aurait aussi pu dire que comme M est une matrice symétrique réelle, elle est diagonalisable.

1
Les valeurs propres de M sont y et ——.
Y

De plus,
M(x):y(x)<=> y=rx = y:y;c = y=1yx
y y xX+y=vyy O=yx—yx—x

Donc E, :Vect(()l/)).

De méme on trouve E_1 :Vect((_ly)).

5. Pour prouver que pour tout n € N on a larelation M" = a, I,+b, M, on effectue un raisonnement
par récurrence sur 1’entier naturel 7.

- Initialisation : comme ay = 1 et by = 0, on a bien M° = ag I, + by M.
- Hypothese de récurrence : supposons que pourn > 0,ona: M" =a, I, + b, M.
Alors
M = M. M

=M, L, +b, M)

=a, M + b, M?
a,M+b,(I,b+M)
b, + (a, +b,) M
=ap1 I + by M
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Ainsi, la formule est vraie au rang n + 1.

Conclusion : d’apres le principe de récurrence :| VYneN, M" =a,l, +b, M

6. Soitn € N.

On commence par donner une autre expression de C,, en utilisant la question précédente :

(5252
N P ]

k N
Or, la série de terme général al converge vers e’ et la série de terme général

converge

_1
VEISs € 7.

Il en résulte que la suite (C,),en converge vers

( ¢ +ye_;)l +ey_e_%M
= 2
yV5s 5

7. Comme M est diagonalisable, il existe une matrice P inversible telle que M = PD P!, avec

v 0
1

0 —1|
Y

Or, on montre par une récurrence simple que pour tout n € N, M" = PD" P!,

D =

Cela nous permet d’écrire que pour tout entier naturel n :

n

=~ MK DK}
Cn:;H:P(ZK)Pl

k=0

[5G 8- 256 )

En passant a la limite lorsque n tend vers I’infini et en utilisant la continuité de la fonction

M +— PM P~', on trouve
e 0

C=P
(O e

)P‘ =PAP!

et C est bien semblable a la matrice A.
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Exercice 4.

1. D’apres le cours, pour démontrer que (|) est un produit scalaire, il faut prouver qu’il s’agit
d’une application bilinéaire symétrique, positive et définie.

- Symétrie : soient (P, Q) € E>.
Ona (P|Q) = Z P(a)Q(a;)) = Z O(a;)P(a;) = (Q|P) et (|) est symétrique.
Jj=0 =0
- Bilinéarité : soient (P, Q,R) € E° et 1 € R.

(AP + QIR) = ) (AP + Q)(a))R(a))
j=0

=A Z P(aj)R(a]) + Z Q(aj)R(aJ)
j=0 Jj=0
= A(PIR) + (QIR)

ce qui prouve la linéarité a gauche.

Par symétrie, on a la bilinéarité.

- Positivité : soit P € E, (PIP) = Y P(a, > 0.
j=0
- Définition : soit P € E tel que (P|P) = 0.

Alors Z P(a j)2 = 0 donc pour tout j € [0, n]], P(a;) = 0.
=0
Il en résulte que P admet n + 1 racines distinctes.

Comme P est de degré au maximum #, il ne peut avoir au maximum que z racines et donc,
c’est le polyndme nul.

Conclusion :| (|) est un produit scalaire sur E

2. Soit P e E. i i
(PIPy) = > P(apPo(a)) = ) Pla)
J=0 J=0

X —
3. Pour tout j € [0, n], on considere le polyndme L;(X) = U .
w0 Gj — Gk
k#j
3.1. Soit (i, j) € [0.n] tel que i # j. Alors Li(a) = [ [ S—=% = 0 cari # J.
o 4j — Gk

k#j

En fait, pour tout i # j, X — a; est en facteur dans L;.

Ensuite, pour i = j, Li(a;) = 1—[

k=0



3.2

3.3.

34.

3.5.

4.1.

4.2

Soit (i, j) € [0,n]* avec i # j. D’apres la question précédente,
(LiIL;j) = Z Li(ay)Lj(ar) = Li(a;)Lj(a;) + Li(a;)Li(a;) = 0.
k=0
Donc la famille Z est une famille orthogonale.

Comme Z est une famille orthogonale de vecteurs non nuls, elle est libre. Comme Card(%) =
n+ 1 =dim(E), c’est une base de E.

De plus, pour tout i € [0, n]],

(LiL) = ) L)’ = L) = 1.

k=0

et,| % estune base orthonormale de E

Soit P € E.

Comme 4 est une base orthonormale de E, les composantes de P sont données par :

(PIL) = > Pa)Li(a) = P(a;)
k=0

Ainsi,| P = Z P(a)L;
i=0

On remarque que Py = Z L; car pour tout i € [0, n]l, Po(a;) = 1.
j=0

L’application ¢ : P € E — (Py|P) = Z P(a;) est linéaire car le produit scalaire est
Jj=0
bilinéaire.

Donc| H =Ker(yp) est un sous-espace vectoriel de E

D’apres le cours, on a H =Vect(Py)*, donc| H* = Vect(P)

Comme dim(H*) = 1,ona| dim(H)=dim(E)-1=n
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5.1. D’apres le cours, on sait bien projeter orthogonalement sur un sous-espace lorsque ’on a
une base orthonormale de ce sous-espace.

Comme ||Py|| = Vn + 1, le vecteur R = est une base orthonormée de H™.

P, P
lPoll  Vn+1

Ainsi, le projeté orthogonal de Q sur H* est donné par
(QIRIR = ——(QIPPy = — Z 0(a)Py = — Z 0(a))
= — = — a; = — a;
n+ 120 00 n+1 7o n+ 1 !

soit

1 n
pi(Q) = — >~ 0(a))
j=0

n+14

5.2. Enfin, la distance de Q au sous-espace vectoriel H est égale a la norme du projeté ortho-
gonal de Q sur H™ :

1

n+1

1 n
d(Q, H) = Hm ZO] 0(a,)Py

Zn] 0(a))
j=0
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COMMENTAIRES

« Commentaires généraux

- Une premiere remarque importante : les correcteurs ont signalé a plusieurs reprises un nombre
important de copies mal ordonnées, mal présentées (la rédaction de la copie ne doit pas occasionner
un jeu de piste pour I’examinateur), les étudiants doivent s’appliquer a présenter une copie claire
et propre.

2 2

- Il semble judicieux d’éviter d’utiliser des expressions telles que il est trivial que 7, ” par une
récurrence immédiate 7, etc... rappelons que toute proposition énoncée dans une copie se doit d’étre
démontrée.

- Les quatre exercices constituant le sujet permettaient de parcourir les parties les plus classiques du
programme de deuxieme année de classe préparatoire MP.

Nous avons été décus par le trop grand nombre d’étudiants qui ne maitrisent pas les notions de base
d’algebre linéaire, d’analyse et qui esperent venir a bout du sujet grace a des recettes toutes faites.

Nous constatons aussi une grande maladresse dans les calculs (parfois tres simples) qui sont tres
rapidement abandonnés.

- Enfin, notons une nouvelle fois que les examinateurs ne goltent guere des arguments bidons ou
fallacieux pour arriver a toute force au résultat annoncé dans 1’énoncé.

- Dans certaines copies on trouve beaucoup trop d’abréviations CVU, CVS, CSTP (comparaison de
séries a termes positifs) voire des symboles mathématiques en guise d’abréviation...

- La rédaction est souvent inadmissible : les fleches (voir rien du tout) remplacent les phrases, les
résultats ne sont pas encadrés, les théoremes ont des noms aléatoires (lorsqu’ils en ont).

- Certains candidats recopient simplement le résultat demandé en guise de réponse en espérant que
cela passe.

- Les convergences d’intégrales et de séries ne sont justifiées que si cela est explicitement demandé.

- Commentaires exercice par exercice

Exercice 1

1. Question en général traitée : attention a ne pas oublier les hypotheses précises d’application du
critere spécial des séries alternées.

2. Cela ne doit pas étre a I’examinateur de faire le choix des hypotheses énoncées en vrac pour
appliquer le théoreme d’intégration terme a terme.

Beaucoup de candidats tentent de prouver la convergence uniforme de la série sur [0, 1] alors que la
non continuité de la fonction somme aurait dii les en dissuader.

Enfin, calculer la somme d’une série géométrique releve trop souvent de I’exploit...
3. Trop peu d’étudiants reconnaissent une série entiere et répondent a la question.

On a trop souvent trouvé D =]—1, 1[, sans que le candidat soit géné lorsqu’on lui demande de calculer
(D!
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4. Rappelons que I’intégration par parties n’est pas la panacée du calcul intégral.

On retrouve ensuite les mémes problemes que pour la question 2.

Exercice 2

1. et 2. Questions faciles si I’on utilise la notion de primitive, notion qui semble mal comprise voire
méconnue.

Trop de candidats pensent qu’il s’agit d’une intégrale a parametre...

3. Soit la continuité de la fonction a intégrer est oubliée, soit c’est elle qui justifie I’intégrabilité sur
] ) _1]

Ne pas oublier que toute domination se fait sur des fonctions positives.
4. Question en général bien traitée.

5. et 6. Questions souvent mal comprise : trop de candidats tentent de résoudre I’équation différentielle
Yy +y = f(x) et veulent se servir des résultats obtenus pour traiter la question 6..

7.1. Question traitée correctement.
7.2. Ne pas oublier qu’il faut justifier ’utilisation d’une intégration par parties.

7.3. On a souvent rencontré une mauvaise justification de I'utilisation de la base canonique pour
conclure.

8. Le fait que E, est de dimension finie n’est que trop peu souvent évoqué.

9. Question en général peu abordée. Le fait de rechercher des solutions polynomiales d’une équation
différentielle semble avoir désarconné beaucoup d’étudiants.

Exercice 3

1. Trop rares sont les candidats qui ont utilisé les relations coefficients racines. Beaucoup de lourdeur
dans la résolution de cette question.

2.1. Question en général bien traitée.

2.2. L’ objectif de cette question était de donner I’expression juste de y, sans que le candidat soit obligé
d’effectuer tous les calculs. Etait-ce efficace ?

3., 4. et 5. Questions en général bien traitées. La seule difficulté rencontrée s’est située au niveau du
calcul des vecteurs propres de la matrice M.

6. et 7. Méme si certains candidats reconnaissent I’exponentielle de matrice, on demandait ici pour
répondre correctement a la question de montrer la convergence et de calculer explicitement la limite
obtenue en utilisant les questions précédentes.
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Exercice 4

1. Question en général bien traitée sauf quelques imprécisions pour démontrer le caractere défini du
produit scalaire.

2. Pas de probléme sur cette question.

3. Questions classiques engénéral bien traitées.

Cela se gate a partir de la question 3.4. et surtout 3.5.

4.1. Trop d’étudiants ont du mal & montrer que H est un sous-espace vectoriel de E !
4.2. L’orthogonal de H est rarement explicité clairement.

5.1. Les propriétés de la projection orthogonale sont en général bien citées mais on a remarqué de
grosses difficultés pour les mettre en oeuvre ici.

5.2. Les relations entre projection orthogonales sur H et projection orthogonale sur H* ne sont pas
toujours bien maitrisées.

FIN
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