Corrigé de E3A 2010 PC math A

Partie I
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1. (a) Pour z >0on a / e "dt = ~ [—e*“"t]z_OT = —(1—e*T) dou / e tdt = ~.
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(b) La propriété est vérifiée pour n = 0. Supposons la vérifiée pour un entier n — 1.

r t 1 =T | N T 1, —at 1 T N r 1, —axt
/ the tdt = — [—t"e "] _ + —/ " lemdt = —=T"e " + —/ e .
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Avec Tlirf Tme " =0 (z > 0) et hypotheése de récurrence on déduit:
— o0
n n (n—1)! n! o, )
I,(x) = p n—1(x) = P e La propriété est donc vraie pour tout n.

2. (a) E est une partie non vide de l'espace vectoriel des fonctions continues sur [0, +oo[ & valeurs
réelles. Si f € E on a |f(¢)| < Ct" pour t > A donc |af(t)] < Clajt™ pour t > A. Si de
plus g € E on a |g(t)] < C't" pour t > A’. Pour t > max(A, A’,1) on a alors |f(t) + g(t)| <
Ct" + C't" < (C + C)tmax(nn) done f + g € E.

(b) Si f est bornée alors |f(t)| < C pour tout ¢ donc n = 0 convient.

(¢) Sif(t)= Zn: ajt" alors
k=0

n

1 n
tnf(t)’ < kZOJ:kL < %\ak\ = C pour t > 1; on a bien | f(¢)| < Ct™.

3. (a) Si f € E alors f est continue et |f(t)| < Ct" pour t > A. On en déduit |f(t)e *t| < Ct"e !
qui est intégrable sur [A, 400 d’apres la question I1b (il n’y a pas de probleme sur [0, A4]).

(b) Soit g telle que 2 — g(z, t) soit continue sur I, que t — g(z,t) soit intégrable sur J et qu’il existe
¢ intégrable sur J vérifiant |g(z,t)| < ¢(t) pour tout (z,t) € I x J alors G(z) = /g(w,t)dt
J
est continue sur I.

(c) Pour g(z,t) = f(t)e ™", J = [0,400[, I = [zg,+0o0] et p(t) = |f(t)]e” " les hypotheses du
théoréme précédent sont vérifiées. L(f) est donc continue sur I = [zg, +oo[. Comme c’est vrai
pour tout zp > 0 on en déduit que L(f) est continue sur ]0, +o00[.

4. L est linéaire par linéarité de l'intégrale. C’est donc bien une application linéaire de E dans
I’ensemble des fonctions continues sur |0, +o00].

Partie I1
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(b) Puisque f est continue sur [0, A] elle y est bornée: |f(t)| < M. Par suite, / |f(t)]e”"dt <
0

A
M
M/ e dt < MIy(z) = — qui tend bien vers 0 quand x tend vers +oc.
0 x

M !
() 1L(f)(z)] < - + C’% qui tend bien vers 0 quand z tend vers +oo.

0
2. (a) Soit g telle que x + g(z,t) soit de classe C! sur I, que t — g(x,t) et t a—g(x,t) soient
x

0
intégrables sur J et qu’il existe ¢ intégrable sur J vérifiant ’89<x’t)‘ < ¢(t) pour tout
z

(x,t) € I x J alors G(z) = / g(z,t)dt est de classe C! sur I et G'(x) = %(m,t)dt.
J Jox
Pour g(z,t) = f(t)eiwt’ %(‘xat) = _tf(t)e_mv J = [0,40c[, I = [zg,+00[ et p(t) =

[tf(t)]e~ 0! les hypotheses du théoréme précédent sont vérifiées puisque si f € E alors t — tf(t)
est aussi dans E (|tf(t)| < Ct"*! pour t > A).



+oo
(b) On a donc L(f) (x) = —/ tf(t)e*dt pour tout x > x¢, donc pour tout x > 0 puisque
0

xg > 0 est arbitraire.

T
3. (a) En intégrant par parties on obtient: / fl(te™tdt = [f(t)e =L + / ft)e *tdt =
0

T
f(M)e =T — £(0) + m/ f(t)e " dt. Avec |f(T)e *T| < CT"e~*T qui tend vers 0 quand T

0
tend vers 400 on obtient L(f')(z) = zL(f)(z) — f(0).
(b) Puique f’ € F on a \h( )| = [tf'(t)] < Ct""! pour t > A, donc h € E. En intégrant par
T

parties on obtient: / (e "tdt = [f(t)te ™" / ft)e "tdt + x/ tf(t)e *'dt =
0

T

rrne e [ et / (e dt. Avee [TF(T)e="| < OT™ 16~ qui tend
0

vers 0 quand T tend vers +oo on obtient L(h)(x) = —=L(f)(x) — zL(f) ().

(¢) I suffit d’appliquer le résultat du II3a & f’ puis & f: L(f")(x) = zL(f)(x) — f'(0) =
2(@L(f)(x) — f(0)) — f'(0) = 2*L(f)(x) — 2f(0) — f'(0).

Partie III

1. Le théoreme de Cauchy s’applique puisque les fonctions ¢ — —t et ¢ — 2p sont continues sur R et
que le coefficient de y” ne s’annule pas. Il y a une unique solution, notée Y, qui vérifie la condition
initiale Y(0) =1 et Y’(0) = 0.

2. De f"(t) —tf'(t) + 2pf(t) = 0 on déduit par linéarité de L et en posant h(t) = tf'(t): L(f")(z) —
L(h)(z)+2pL(f)(x) = 0 dott 2?L(f)(x) —2f(0) — f'(0) = (=L(f)(x) — zL(f)' (x)) +2pL(f)(z) = 0
soit encore avec f(0) = 1 et f/(0) = 0: xL(f) (x) + (2 +2p + 1)£(f)( )=a. U= L(f) est donc

bien solution de (J) sur ]0, +oo].
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3. (a) fnﬂ(x):/ t2"+2t67dt:[t2"+23%]g—(2n+2)/ t e T dt = 22T 2eT —2(n+1)f,(2).
0 0

2
L1 fot1(z) _ fn(z) a?2e’s P 4 . fn(z) _
(b) On en déduit ) 1 (=2l + BB d’ou par récurrence: - 2)"n' =
no 2k, % n 2k s
)+ Z i e;k' Avec fo(x) = e% — 1 on obtient (f"( Z 2k d’on
2
B . n (_2)n—kn!x2ke% _ o 22 ( ) 2n—2k R
fal@) = —(=2rn + Y . = (—1)" 2l + le ,;W aprés
avoir remplacé k par n — k.
o s o / 2p+1
4. (a) L’équation sans second membre associée & (J) s’écrit encore u'(z) + | = + u(z) = 0.
x
2 1 2 a2
Une primitive de z — z+ Pt est p(z) = Ly (2p+1)In(z) et e#®) = 22PH1eT | Par suite

2

(J:Qp'*‘le%u(x))’ = (e#@y(x)) = 0 donc une base de I'ensemble des solutions sur |0, +-oo[ de

22

P’équation sans second membre associée a (J) est la fonction z — %.
(b) Apres avoir multiplié par 2P’ (J) devient (mQ”"‘le% u(x)) 22+ done .Z‘2p+12€ 2 u(x) =
p - _z=
Fola) + C' = ple™s ;0 W +C dott u(z) = p! ;0 x%fl—(i)i ot O;pil.
5. (a) En utilisant le I1b on a: Up(z) = p! Z (7 i /+OO ket =
Z2h 1 ( p k)l o
L(Rp)(z) si Ry est la restriction de R(x) = p! Z 2’“.



(b) En reprenant les calculs faits au II12, on obtient que L(R§ — X R{, + 2pRy) = 0 puisque L(Rp)

|
est solution de (J) et qu'il vérifie de plus Ry (0) = i'i; =let Ry(0)=0. Orsi P=> ap X",
p:

k=0
n

k!
L(P)(x) = Z ax 7 West la fonction nulle que si P = 0 (c’est 'injectivité de la transformée
x
k=0

de Laplace pour les polynémes). On en déduit que R — X R, + 2pRy = 0 et puisque de plus
Ry(0) =1 et Ry(0) =0, R est bien I'unique solution de (P).

On peut aussi montrer directement a partir des coefficients du polynéome R qu’il vérifie bien
R"— XR +2pR =0, R(0) =1et R'(0) =0.

Partie IV
1. L=L(f)(1).

+oo
2. g est continue (c’est une primitive) et bornée sur R car |g(t) / [f(s)]|e”?ds < / |f(s)|e™*°d

qui existe car s — f(s)e™® est intégrable sur R, (montré au I3a). Avec le I2b on déduit que g € F.
3. (a) ¢'(t) = f(t)e™! est dans E car elle est continue et |¢/(¢)| < |f(t)] < Ct" pour t > A. On ap-
1 [+
plique le IT3a: L(¢')(x) = xL(g)(x)—g(0) = 2L(g)(z) donc L(g)(x) = . / ft)e te "dt =
0

1o (a1t 1
— ft)e dt = —L(f)(z +1).
z Jo x

(b) i ¢ est continue sur ]0,1] car In et g sont continues. Elle est aussi continue en 0 car
lim g(—lnw) = lim g¢(t) = L.
u—0 t—-+oo

ii. Pour > 0 la fonction ¢ — g(t)e™** est intégrable sur R, et I'application u — — In(u) est
une bijection de classe C' de J =]0, 1] sur I =]0, +oc]; on peut donc écrire:

/O+°° g(t)eotdt = /01 o(— ln(u))uz%du _ /01 () du.

1 “+o00
4. Pour x = n+1on a/ plu)u"du = / g(t)e™ TV g = ———£(f)(n+2) = 0 puisque L(f) =
0 0

n+1
S qyn (T g, .
5. (a) cos(pmu) = Z(—l) @n)! de rayon de convergence infini.
n=0 :

(b) Puisque ¢ est continue sur [0, 1] elle y est bornée: |p(u)| < M.

]
)2n

2n
En posant g, (u) = (—=1)" (?g I u*™p(u) on a donc |g,(u)| < (1(0271-))' M sur [0,1]. La série
n)! n)!
de fonctions continues (> g,) converge donc normalement sur [0,1]. On peut donc écrire:
1 +oo 2n 1
(pm) 2
cos(pru)p(u)du = Y (—1)" u " p(u)du = 0.
/0 ,;) @n)! Jo

(¢) i. % est continue sur [—1,1] car elle est paire et ¢ est continue sur [0,1]. Par période 2 elle
est donc continue sur R.

ii. Seuls les coefficients a, sont a calculer car la fonction est paire. Pour une fonction

2 [T 2
T—périodique a), = T / P(t) cos(%pu)du donc avec T' = 2 et la parité on obtient: a), =
0

1 2
2/ (t) cos(pru)du = 0 avec le IV5b. L’égalité de Parseval entraine alors / (Y(u))?du =
0

+oo

(6120 Za = 0. Par continuité de 9 on en déduit ) = 0 sur [0,2] donc sur R par
p 1

période 2

6. (a) On en déduit que ¢ est la fonction nulle sur [0, 1], donc g est la fonction nulle sur Ry. Sa
dérivée t — f(t)e™t est donc nulle, d’ont f est la fonction nulle sur R .



(b) On a montré que L(f) = 0 entraine que f = 0; le noyau de £ est donc réduit a 0: Papplication
linéaire L est bien injective.



