
Corrigé de E3A 2010 PC math A

Partie I

1. (a) Pour x > 0 on a

∫ T

0

e−xtdt =
1

x

[
−e−xt

]t=T

t=0
=

1

x
(1− e−xT ) d’où

∫ +∞

0

e−xtdt =
1

x
.

(b) La propriété est vérifiée pour n = 0. Supposons la vérifiée pour un entier n− 1.∫ T

0

tne−xtdt =
1

x

[
−tne−xt

]t=T

t=0
+
n

x

∫ T

0

tn−1e−xtdt = − 1

x
Tne−xT +

n

x

∫ T

0

tn−1e−xtdt.

Avec lim
T→+∞

Tne−xT = 0 (x > 0) et l’hypothèse de récurrence on déduit:

In(x) =
n

x
In−1(x) =

n

x

(n− 1)!

xn
=

n!

xn+1
. La propriété est donc vraie pour tout n.

2. (a) E est une partie non vide de l’espace vectoriel des fonctions continues sur [0,+∞[ à valeurs
réelles. Si f ∈ E on a |f(t)| 6 Ctn pour t > A donc |αf(t)| 6 C|α|tn pour t > A. Si de
plus g ∈ E on a |g(t)| 6 C ′tn

′
pour t > A′. Pour t > max(A,A′, 1) on a alors |f(t) + g(t)| 6

Ctn + C ′tn
′
6 (C + C ′)tmax(n,n′) donc f + g ∈ E.

(b) Si f est bornée alors |f(t)| 6 C pour tout t donc n = 0 convient.

(c) Si f(t) =

n∑
k=0

akt
k alors

∣∣∣∣ 1

tn
f(t)

∣∣∣∣ 6 n∑
k=0

|ak|
tn−k

6
n∑

k=0

|ak| = C pour t > 1; on a bien |f(t)| 6 Ctn.

3. (a) Si f ∈ E alors f est continue et |f(t)| 6 Ctn pour t > A. On en déduit |f(t)e−xt| 6 Ctne−xt

qui est intégrable sur [A,+∞[ d’après la question I1b (il n’y a pas de problème sur [0, A]).

(b) Soit g telle que x 7→ g(x, t) soit continue sur I, que t 7→ g(x, t) soit intégrable sur J et qu’il existe

ϕ intégrable sur J vérifiant |g(x, t)| 6 ϕ(t) pour tout (x, t) ∈ I × J alors G(x) =

∫
J

g(x, t)dt

est continue sur I.

(c) Pour g(x, t) = f(t)e−xt, J = [0,+∞[, I = [x0,+∞[ et ϕ(t) = |f(t)|e−x0t les hypothèses du
théorème précédent sont vérifiées. L(f) est donc continue sur I = [x0,+∞[. Comme c’est vrai
pour tout x0 > 0 on en déduit que L(f) est continue sur ]0,+∞[.

4. L est linéaire par linéarité de l’intégrale. C’est donc bien une application linéaire de E dans
l’ensemble des fonctions continues sur ]0,+∞[.

Partie II

1. (a) |L(f)(x)| 6
∫ +∞

0

|f(t)|e−xtdt 6
∫ A

0

|f(t)|e−xtdt +

∫ +∞

A

Ctne−xtdt 6
∫ A

0

|f(t)|e−xtdt +

C
n!

xn+1
.

(b) Puisque f est continue sur [0, A] elle y est bornée: |f(t)| 6 M . Par suite,

∫ A

0

|f(t)|e−xtdt 6

M

∫ A

0

e−xtdt 6MI0(x) =
M

x
qui tend bien vers 0 quand x tend vers +∞.

(c) |L(f)(x)| 6 M

x
+ C

n!

xn+1
qui tend bien vers 0 quand x tend vers +∞.

2. (a) Soit g telle que x 7→ g(x, t) soit de classe C1 sur I, que t 7→ g(x, t) et t 7→ ∂g

∂x
(x, t) soient

intégrables sur J et qu’il existe ϕ intégrable sur J vérifiant

∣∣∣∣∂g∂x (x, t)

∣∣∣∣ 6 ϕ(t) pour tout

(x, t) ∈ I × J alors G(x) =

∫
J

g(x, t)dt est de classe C1 sur I et G′(x) =

∫
J

∂g

∂x
(x, t)dt.

Pour g(x, t) = f(t)e−xt,
∂g

∂x
(x, t) = −tf(t)e−xt, J = [0,+∞[, I = [x0,+∞[ et ϕ(t) =

|tf(t)|e−x0t les hypothèses du théorème précédent sont vérifiées puisque si f ∈ E alors t 7→ tf(t)
est aussi dans E (|tf(t)| 6 Ctn+1 pour t > A).
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(b) On a donc L(f)′(x) = −
∫ +∞

0

tf(t)e−xtdt pour tout x > x0, donc pour tout x > 0 puisque

x0 > 0 est arbitraire.

3. (a) En intégrant par parties on obtient:

∫ T

0

f ′(t)e−xtdt = [f(t)e−xt]t=T
t=0 + x

∫ T

0

f(t)e−xtdt =

f(T )e−xT − f(0) + x

∫ T

0

f(t)e−xtdt. Avec |f(T )e−xT | 6 CTne−xT qui tend vers 0 quand T

tend vers +∞ on obtient L(f ′)(x) = xL(f)(x)− f(0).

(b) Puique f ′ ∈ E on a |h(t)| = |tf ′(t)| 6 Ctn+1 pour t > A, donc h ∈ E. En intégrant par

parties on obtient:

∫ T

0

f ′(t)te−xtdt = [f(t)te−xt]t=T
t=0 −

∫ T

0

f(t)e−xtdt + x

∫ T

0

tf(t)e−xtdt =

Tf(T )e−xT −
∫ T

0

f(t)e−xtdt + x

∫ T

0

tf(t)e−xtdt. Avec |Tf(T )e−xT | 6 CTn+1e−xT qui tend

vers 0 quand T tend vers +∞ on obtient L(h)(x) = −L(f)(x)− xL(f)′(x).

(c) Il suffit d’appliquer le résultat du II3a à f ′ puis à f : L(f ′′)(x) = xL(f ′)(x) − f ′(0) =
x(xL(f)(x)− f(0))− f ′(0) = x2L(f)(x)− xf(0)− f ′(0).

Partie III

1. Le théorème de Cauchy s’applique puisque les fonctions t 7→ −t et t 7→ 2p sont continues sur R et
que le coefficient de y′′ ne s’annule pas. Il y a une unique solution, notée Y , qui vérifie la condition
initiale Y (0) = 1 et Y ′(0) = 0.

2. De f ′′(t)− tf ′(t) + 2pf(t) = 0 on déduit par linéarité de L et en posant h(t) = tf ′(t): L(f ′′)(x)−
L(h)(x) + 2pL(f)(x) = 0 d’où x2L(f)(x)−xf(0)−f ′(0)− (−L(f)(x)−xL(f)′(x)) + 2pL(f)(x) = 0
soit encore avec f(0) = 1 et f ′(0) = 0: xL(f)′(x) + (x2 + 2p + 1)L(f)(x) = x. U = L(f) est donc
bien solution de (J) sur ]0,+∞[.

3. (a) fn+1(x) =

∫ x

0

t2n+2te
t2

2 dt = [t2n+2e
t2

2 ]x0−(2n+2)

∫ x

0

t2n+1e
t2

2 dt = x2n+2e
x2

2 −2(n+1)fn(x).

(b) On en déduit
fn+1(x)

(−2)n+1(n+ 1)!
=

fn(x)

(−2)nn!
+

x2n+2e
x2

2

(−2)n+1(n+ 1)!
d’où par récurrence:

fn(x)

(−2)nn!
=

f0(x) +

n∑
k=1

x2ke
x2

2

(−2)kk!
. Avec f0(x) = e

x2

2 − 1 on obtient
fn(x)

(−2)nn!
= −1 +

n∑
k=0

x2ke
x2

2

(−2)kk!
d’où

fn(x) = −(−2)nn! +

n∑
k=0

(−2)n−kn!x2ke
x2

2

k!
= (−1)n+12nn! + n!e

x2

2

n∑
k=0

(−2)kx2n−2k

(n− k)!
après

avoir remplacé k par n− k.

4. (a) L’équation sans second membre associée à (J) s’écrit encore u′(x) +

(
x+

2p+ 1

x

)
u(x) = 0.

Une primitive de x 7→ x+
2p+ 1

x
est ϕ(x) =

x2

2
+(2p+1) ln(x) et eϕ(x) = x2p+1e

x2

2 . Par suite

(x2p+1e
x2

2 u(x))′ = (eϕ(x)u(x))′ = 0 donc une base de l’ensemble des solutions sur ]0,+∞[ de

l’équation sans second membre associée à (J) est la fonction x 7→ e−
x2

2

x2p+1
.

(b) Après avoir multiplié par x2pe
x2

2 (J) devient (x2p+1e
x2

2 u(x))′ = x2p+1e
x2

2 donc x2p+1e
x2

2 u(x) =

fp(x) + C ′ = p!e
x2

2

p∑
k=0

(−2)kx2p−2k

(p− k)!
+ C d’où u(x) = p!

p∑
k=0

(−2)k

x2k+1(p− k)!
+ C

e−
x2

2

x2p+1
.

5. (a) En utilisant le I1b on a: U0(x) = p!

p∑
k=0

(−2)k

x2k+1(p− k)!
= p!

p∑
k=0

(−2)k

(2k)!(p− k)!

∫ +∞

0

t2ke−xtdt =

L(R0)(x) si R0 est la restriction de R(x) = p!

p∑
k=0

(−2)k

(2k)!(p− k)!
x2k.
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(b) En reprenant les calculs faits au III2, on obtient que L(R′′0 −XR′0 + 2pR0) = 0 puisque L(R0)

est solution de (J) et qu’il vérifie de plus R0(0) =
p!

p!
= 1 et R′0(0) = 0. Or si P =

n∑
k=0

akX
k,

L(P )(x) =

n∑
k=0

ak
k!

xk+1
n’est la fonction nulle que si P = 0 (c’est l’injectivité de la transformée

de Laplace pour les polynômes). On en déduit que R′′0 −XR′0 + 2pR0 = 0 et puisque de plus
R0(0) = 1 et R′0(0) = 0, R est bien l’unique solution de (P ).

On peut aussi montrer directement à partir des coefficients du polynôme R qu’il vérifie bien
R′′ −XR′ + 2pR = 0, R(0) = 1 et R′(0) = 0.

Partie IV

1. L = L(f)(1).

2. g est continue (c’est une primitive) et bornée sur R+ car |g(t)| 6
∫ t

0

|f(s)|e−sds 6
∫ +∞

0

|f(s)|e−sds

qui existe car s 7→ f(s)e−s est intégrable sur R+ (montré au I3a). Avec le I2b on déduit que g ∈ E.

3. (a) g′(t) = f(t)e−t est dans E car elle est continue et |g′(t)| 6 |f(t)| 6 Ctn pour t > A. On ap-

plique le II3a: L(g′)(x) = xL(g)(x)−g(0) = xL(g)(x) donc L(g)(x) =
1

x

∫ +∞

0

f(t)e−te−xtdt =

1

x

∫ +∞

0

f(t)e−(x+1)tdt =
1

x
L(f)(x+ 1).

(b) i. ϕ est continue sur ]0, 1] car ln et g sont continues. Elle est aussi continue en 0 car
lim
u→0

g(− lnu) = lim
t→+∞

g(t) = L.

ii. Pour x > 0 la fonction t 7→ g(t)e−xt est intégrable sur R+ et l’application u 7→ − ln(u) est
une bijection de classe C1 de J =]0, 1] sur I =]0,+∞]; on peut donc écrire:∫ +∞

0

g(t)e−xtdt =

∫ 1

0

g(− ln(u))ux
1

u
du =

∫ 1

0

ϕ(u)ux−1du.

4. Pour x = n+1 on a

∫ 1

0

ϕ(u)undu =

∫ +∞

0

g(t)e−(n+1)tdt =
1

n+ 1
L(f)(n+2) = 0 puisque L(f) = 0.

5. (a) cos(pπu) =

+∞∑
n=0

(−1)n
(pπ)2n

(2n)!
u2n de rayon de convergence infini.

(b) Puisque ϕ est continue sur [0, 1] elle y est bornée: |ϕ(u)| 6M .

En posant gn(u) = (−1)n
(pπ)2n

(2n)!
u2nϕ(u) on a donc |gn(u)| 6 (pπ)2n

(2n)!
M sur [0, 1]. La série

de fonctions continues (
∑
gn) converge donc normalement sur [0, 1]. On peut donc écrire:∫ 1

0

cos(pπu)ϕ(u)du =

+∞∑
n=0

(−1)n
(pπ)2n

(2n)!

∫ 1

0

u2nϕ(u)du = 0.

(c) i. ψ est continue sur [−1, 1] car elle est paire et ϕ est continue sur [0, 1]. Par période 2 elle
est donc continue sur R.

ii. Seuls les coefficients ap sont à calculer car la fonction est paire. Pour une fonction

T−périodique ap =
2

T

∫ T

0

ψ(t) cos(
2π

T
pu)du donc avec T = 2 et la parité on obtient: ap =

2

∫ 1

0

ψ(t) cos(pπu)du = 0 avec le IV5b. L’égalité de Parseval entraine alors

∫ 2

0

(ψ(u))2du =

(
a0
2

)2 +
1

2

+∞∑
p=1

a2p = 0. Par continuité de ψ on en déduit ψ = 0 sur [0, 2] donc sur R par

période 2.

6. (a) On en déduit que ϕ est la fonction nulle sur [0, 1], donc g est la fonction nulle sur R+. Sa
dérivée t 7→ f(t)e−t est donc nulle, d’où f est la fonction nulle sur R+.
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(b) On a montré que L(f) = 0 entraine que f = 0; le noyau de L est donc réduit à 0: l’application
linéaire L est bien injective.

4


