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Partie I

Pour tout nombre réel s, on considere I’équation différentielle linéaire homogene du second
ordre (&) suivante :

(&) (1—2?) y"(2) =2(s+2) z y/(x) = 2(s + 1) y(z) =0

On note f; la solution de (&) sur | — 1, 1[ qui vérifie les conditions initiales fs(0) = 0 et

fi(0) =1
I.1. Soit g4 la fonction définie sur | — 1, 1] par gs(x) = fs(x) + fs(—2z).

I.1.1.0n a f; est de classe C? sur | — 1, 1], donc g, est de classe C? sur | — 1, 1][.

Ona Ve €] - L1[, gi(x) = fi(x) — fi(=x) et g{(x) = f(x) + [{(=x), et puisque f; est

solution de (&, ) sur ] —1,1[ alors

(1-22) g!(2)~2(s+2) @ g\(a)—2(s+1) g.(2) = [(1 - a?) 1) — 2(s + 2) r f(x) —2(s + 1) fs(@)]
+{(1 = (=2)*) fi(=2) = 2(s +2) (=2) fi—2) = 2s + 1) fo(—2)] =

Ainsi g est solution de (&) sur | — 1, 1].

L.1.2. On a g,(0) = 2£,(0) = 0 et go(0) = f5(0) — £:(0) = 0.

gs est solution de (&) sur | — 1, 1] qui vérifie les conditions initiales g5(0) = 0 et ¢.(0) = 0.
Or la fonction nulle est aussi solution de (&) sur | — 1, 1] qui vérifie les mémes conditions
initiales. Donc d’apres le théoreme de Cauchy-Lipschitz , on a g, = 0.

Ainsi, Vo €] — 1, 1] fs(—x) = —fs(x) et donc fs est impaire.

I.2. Soient o € R et h,, la fonction définie sur | — 1, 1] par hq(z) = (1 — 2%)°.
On a h, est de classe C? sur | — 1,1, Vo €] — 1,1[ hl(z) = —2a x (1 —2*)*7 et
R (z) = —2a (1 —2?)* ' +4a (a—1) 22 (1 — 23! donc
(1—2?) hl(x) —2(s+2) x hl(z) — 2(s + 1) halx) =
[—2(a+ s+ 1)+ (4a® + (6 + 4s)a + 2(s + 1))2?] (1 —2?)* 1,

h, est solution de (&) sur | — 1, 1[<=Vz €] — 1, 1],
—2(a—|—s+1) (4a? + (64 4s)a+2(s+1))z* =0
— —2(a+s+1)=0et 40+ (6+4s)a+2(s+1) =0
= a=—(s+1).

1.3. Soit u, la fonction définie sur | — 1, 1[ par us(x) = (1 — 2?)*™ f,(z).

1.3.1. On a wuj, est de classe C? sur | — 1,1], et

Vo e|—1,1] ul(z) = —2(5 +1) (1 — 22)* fo(x) + (1 —2?)"T fi(z) et

() = 2+ D)1= (1429) 22 1) ) —A(s+1) @ (1=22)* o)+ (1=22) )
Donc Vr €] — 1,1[, (1 —2?) u’(z) +2s x u'(z) = 0.

Ainsi u/, est solution sur | — 1, 1] de I'équation différentielle :

(&) (1-2%) y'(x)+2s 2 y(z) =0



1.3.2.

2s x

1— 22 4
<~ JINER,Vre]-1,1] ylx)=A1-2?°

y est solution de (&) sur | — 1,1] <= Vz €] -1,1] ¢'(x)+ () =0

Ainsi les solutions de (€) sur | — 1, 1] sont les fonctions y, définies sur | — 1, 1] par

() = A1 —22)°* A eR.

I.3.3. On a w,(0) = f1(0) =1 et us(0) = f5(0) = 0.
u’, est solution sur | — 1, 1] de I'équation différentielle (£!) donc d’apres la question 1.3.2,
il existe A € R tel que Vz €] — 1,1] v (z) = A(1 — 2?)°.

De u,(0) =1, ona A =1 et alors Vo €] — 1,1 u.(z) = (1 — 2?)*.

Puisque u,(0) = 0 alors uy(x) = [;(1 —¢*)*dt pour tout z €] —1,1].

1.4. Soit y une fonction impaire, définie sur un intervalle ouvert I contenant 0, développable
“+o0o

en série entiere sur I. On note y(z) = . ¢,x?" ™! le développement en série enticre de y

n=0
sur /.

I.4.1 On a y est la somme sur I d'une série entiere, donc y est de classe C? sur I et
+o0

+oo
Ve el y(x)=> 2n+1)c,z*" et y'(z) = >.2n(2n + 1)c,z*" !, donc
n=1

(1—2%) i (2)—2(s+2) z v/ () —2(s+1) y(z) = iQ(n—i—l) [(2n + 3)cni1 — (2n + 25 + 3)c,| 2L

D’apres I'unicité du développement en série entiere de la fonction nulle sur I, on a :

+o00
Veel, Y. 2(n+1)[(2n + 3)cpy1 — (2n + 25 + 3)¢, ] 22" <
n=0

Vn eN, (2n+3)cup1 — (2n + 25+ 3)c, = 0.
Donc

y est solution de (&) sur I <= VneN, 2n+3)cp1 — (2n+25+3)e, =0

25+ 2n+3
<— VneN, cn+1:—2n+3 Cn
25 + 2 1
1.4.2 Ona VneN* ¢,= sstent Cp—_1-
2n+1
Par récurrence on montre que Vn € N*,
(25 +3)(25+5).ceuuenne. (2s+2n+1) n 25+ 2k + 1
Cp = co=cy Il ——
3X 5 X o X (2n + 1) k=1 2k +1

1.4.3 Supposons que (&) admet une solution polynémiale h impaire et non identiquement
nulle sur un intervalle ouvert I contenant 0.

Alors il existe m € N, (¢,)o<n<m € R™ tels que h(x) = > ¢ a®" .
n=0
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Posons Vn > m + 1, ¢, —0

Ona Vrel, h(z)= Zc z?"*1 donc h est développable en série entiere sur I.
=0
Ainsi, h est une fonctlon impaire, définie sur l'intervalle ouvert I contenant 0 , develop-

pable en série entiere sur I, donc d’apres les questions 1.4.1 et 1.4.2, et du fait que h est
non identiquement nulle, on a ¢o # 0 et

n 2s+ 2k +1
Vn € N* = Il ————
e e T 1
Pour tout n > m + 1, on a ¢, = 0 alors k_1(25 + 2k + 1) = 0, donc il existe k € [[1,n]]
1 1 3
telques=—k—§parsuites€{—k—§,k: [[1, ]]} { k:—— kEN}
3
Réciproquement, supposons que s € ¢ —k — 2 k € N, alors il existe m € N
3
tel que s = —m — 3"
n 95+ 2k + 1
Considérons la suite (¢, )nen définie par ¢g € R* et Vn € N*, ¢, = Cok—l%

Puisque 2s 4+ 2m +3 =0 alors Vn >m+1on a ¢, = 0.

m
Soit y(z) = > ¢, x*" ™! pour tout x €]—1,1[, on a y est une fonction polyndémiale impaire,
n=0

+oo
non identiquement nulle et y(z) = > ¢, 2?" ™! pour tout x €] — 1,1].

n=0
D’apres les questions 1.4.1 et 1.4.2 | on a y est solution de (&) sur | —1,1[.

Ainsi (&) admet des solutions polynémiales impaires et non identiquement nulles si et

seulement sisE{ k—§ kEN}

3 oo
I.4.4 On suppose que s ¢ {—n — =, ne€ N} et que y(z) = Y ¢, x*" ! est une solution

2 n=0
de (&) sur I et que ¢ # 0.
2s+2n+3

Alors d’apres la question 1.4.1, on a Vn € N | ¢,;1 = o3 ¢, et donc Vn € N |
n

cn # 0.

e Si z =0, la série Y ¢, z*" ™! converge.

n>0
e Supposons x # 0, on applique la régle de D’Alembert, on a
2s+2n+3 5

lim = —— 1" =
n——-+00 n———+00 2n + 3

Donc le rayon de convergence de la série entiere > c,z?"*! est R = 1.
n>0

CnI2n+1

I.5. Considérons la série entiere Y c,z?" ™ on ¢y = let Vn € N*, ¢, =

n>0 k
eSisc {—n—

esisg{-

, nE N} alors son rayon de convergence est R = +400.

DO Lo DN W

, nE N} alors d’apres la question 1.4.4, son rayon de convergence
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est R =1.
Dans tous les cas R > 1.

+oo
Considérons la fonction y définie sur | — 1, 1[ par y(z) = . c,z?" ! .

n=0
D’apres les questions 1.4.1 et 1.4.2) on a y est solution de (&) sur | — 1, 1[ qui vérifie

y(0) =0et y'(0) =co = 1.
D’autre part fs est une solution de (&) sur | — 1, 1] qui vérifie f,(0) =0 et f1(0) =
Donc d’apres I'unicité assurée par le théoreme de Cauchy-Lipschitz, on a

Ve € |—1,1] fs(x ch 2n+l

o 2n| 2n+1
— x+2{2n+ I 1(25—1—2]{—1—1)11' .

1.6. D’apres la question 1.3., pour ug(x) = (1 — 2?)*T f,(x) pour tout = €] — 1,1]
on a trouvé que u(z) = fz(l — t?)%dt pour tout x €] — 1, 1[.
Donc Vz €] —1,1[, [(1—t*)%dt = (1 —22)*T f,().

3 dt ff(er%)(x)
Soit p € N, pour s = P ona fo t2)p+% = (1—x2)p+%'

D’apres la question 1.5 on a pour tout = €] — 1, 1],

2n + 1 'k 1

fpes —:15+Z[ 2! n2(k—(p+1))}x2”+l

n

Posons Q,(z) = = + zp: [< )lkﬁ

On a @, est une fonctlon polynomlale impaire de degré 2p + 1 et
dt
Vo €] —1,1], fo _ @@

_ tz)p+% (1— xz)p+§'

En particulier, pour tout x € — 1, 1],

f$ dt . Qo(l’> . X ot fo dt . Ql(a:) o T — %If}

2k —(p+ 1))} 21 pour tout = € R.

C1-): (1-—a2)2 (1-2?)

(1—t): (1—22)2 (1—a2)2

N[

Partie I1

On considere la fonction [ de la variable réelle x définie par :

s = [ (1= eyar

I1.1. la fonction h, : t — (1 — t?)* est continue sur [0, 1].
On a (1 —1%)% ~ 2%(1—t)® et la fonction ¢t — (1 — )% est intégrable sur [0, 1] si et
1"

seulement si x > —1.
Donc h, est intégrable sur [0, 1] si et seulement si z > —1.
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Ainsi le domaine de définition de 5 est Dg =] — 1, +00].

I1.2. Considérons la fonction h(z,t) = (1 —t*)® pour tout (z,t) €] — 1, +oo[ x [0, 1].
e On a h est continue sur | — 1, +o0[ x [0, 1].

e Soit a €] — 1, +o0.

V(z,t) € [a,+oo] x [0,1]  |h(z,t)] < (1 —*)* (car1—1t? €]0,1] ),

et la fonction ¢ — (1 — %) est continue, positive et intégrable sur [0, 1].

Donc d’apres un théoreme du cours (3 est continue sur | — 1, +o0|.

On admettra que 3 est de classe C! sur | — 1, +oo[ et Vo €] — 1, +o0
= [}(1— )" In(1 - *)dt

I1.3. Soit x €] — 1,400[, on a Vt €]0,1[, In(1 — ) < 0 et (1 —t%)* >0
donc (1 —#*)” In(1 — %) < 0.

Comme (3’ est continue sur | — 1, +00], alors Va €] — 1, 400[ §'(z) <0

Ainsi (3 est strictement décroisssante sur | — 1, +00].

I1.4.

I1.4.1. Soit = €] — 1, +00[, on a Bz +1) = [} (1 — t2)**1dt.

Une intégration par partles donne :

mx+nzﬁu—ﬁy“]+2x+ ﬁﬁQ F%ﬁ—2x+1kt2 %) dt

= 2(x + 1) [y (1 = 1)(1 — £2)dt +2(x + 1) [/ (1 — 2)*dt
= 2z +1)8z+1)+2(z+ 1)3(x)

Done Az +1) — zi + iﬁ(m).

I1.4.2. On a B3(0 fodt—l

2 3
D’apres la question I1.4.1 on a Vz €] — 1,400 [(x) = QZE 1 25(9& +1)
x
Comme (3 est continue en 0 alors hm ﬁ(x +1)=p3(0) =
2x + 3

et donc lim [(z)= lim

1) = .
Mim a%+¢ﬂx+2Mx+ ) = +00

2
I1.4.3. D’apres la question I11.4.1, on a Vn € N* f((n) = nj— B(n —1).

2 1
Par 1é ¢ Vn e N* f(n) (2"l
ar récurrence on montre que Vn n)=——-—>-—.
q (2n+1)!
On a la formule de Stirling n! ~ /27mn (2> ,donc
e
on 9 1 2n+1
(27n!)? ~ (27)? (27n) (ﬁ) et (2n+ 1) ~ /27(2n + 1) < nt ) .
e e
Pui ( 2n )% 1 lors B(n) 2nm 1 [«
uisque — —, alors 3(n) ~ ~ =4 ]—.
T\ an+1 e @n+ ) 2rnt 1) 2V %

Par suite lirg B(n) =
B est décroissante sur | — 1, +o0[, donc Vz € [2,+o0[on a B(E(x)+1) < f(z) < B(E(x))

(ou E(z) désigne la partie entiere de z ).
Comme linj B(E(x)4+1)=0 et lim [(E(z)) =0alors lim [(z) =

——+00 r———~+00



.ol ™
I1.44. Ona ( ) fo - t2) = [arcsint], = 5

( on peut aussi utiliser le changement de variable ¢t = cosu ) .

Ona Vn e N* 5(—%—1—71) :2n2;15<—%+(n—1)).

On montre par récurrence que

men s (—gan) = B 0 ()~ oy &

Partie 111
Soient v > 1, v ¢ N et ¢, la fonction 27 périodique définie sur R par :

VeeR ¢, (x) =|cosz|’

+o00
On note ag(y) + Y [an(y) cosnx + b, () sin nz| la série de Fourier de ¢,.

n=1

II1.1.

IT1.1.1 On a ¢, est continue, 27 périodique sur R et de classe C' par morceaux sur R,
alors d’apres le théoreme de Dirichlet ¢, est égale en tout point de R a la somme de sa
série de Fourier.

II1.1.2 On a ¢, est paire sur ]R donc pour tout n € N* b,(vy) = 0.
Soit p € N, on a agy1(y) = —f @ () cos(2p + 1)x dx

[f @y () cos(2p + V)azdx + [ () cos(2p + 1)a:dx]
On fait le changement de Varlable U=+, ona

[° o, (x) cos(2p + 1)z dz = — fy e (u cos(2p + 1u du
donc agp1(7y) = 0.

ITII.2. Pour tout p € N, on considere I'intégrale I, = fol cosY z. cos 2px dx.
II1.2.1VpeN, [, — [,;, = fo cos” x.(cos 2px — cos(2p + 2)x) dx
= 2f0 cos? z.sinx. sin(2p + 1)z du.

II1.2.2 Une intégration par parties donne :
oz cos” z.sinx.sin(2p + 1)) do =

1 T 2p+1
: sin(2p + 1)z.cos" x| + P

op+ 1 o
Donc I, — I,11 =2 fi fo cos” x.cos . cos(2p + 1)z dz.

fog cos? ™ x. cos(2p + 1)z dx.

II1.2.3 Ona VpeN, [,+ 1, = fog cos” x.(cos 2px + cos(2p + 2)x) dx

=2 f0§ cos” z. cos x. cos(2p + 1)x) dz.

2 1
En utilisant le résultat de la question I11.2.2, ona Vp e N, [, — 1,1, = p—tl (Ly+ Ip1) -
v




I111.2.4 On fait le changement de variable { = sinu , on a

s

Bx) = /01(1 — )" dt = /2(C082 w)®. cosu.du = /2 (cosu)**du

0 0
jus ’ N , ")/ — 1
Donc Iy = [? cos” w.du = 3 (7/) ony = > 0.
II1.2.5 En utilisant le résultat de la question II11.2.3, ona Vp € N* [, = 0= »
7+2(p+1)

Donc par récurrence, on montre que, Vp € N*, I, =

Y
Iy = ! I = A . !
Ona Iy= (), donc VpeN*, I, o »(1)-8(Y)
p—ly — 2k  p-ly — 2k
u A = = )
olt Ay(7) k=1v 4+ 2k  k=07y + 2k

2 T 2 z ™
III.3 Ona ag(y) == [, |cosz|"dx = = [f02 lcosz|” dx + [; |cosz|” dx] .
™ s 2

On fait le changement de variable u =7 —z, on a [ |cosz|” dx = fog |cos u|” du.
2
4 .z 4 4
D = — 2 7d = — I = — / .
onc ap(y) - Jo? lcos z|" dz — 1o 775 ()

2 . 27 x B}
OnaVp € N*, ag,(y) = = [, |cosz|" cos 2px dz = — [foQ (cosz)7 cos 2pzx dx + [7 |cosz|” cos 2pa dx] :
™ ™ 2
On fait le changement de variable u = 7 — z, on a
[= |cos 7| cos 2px dx = [ |cos(m — u)|” cos 2p(m — u) du = [? (cosu)? cos 2pu du.
2

4 .z 4 4
f02 (cosz)Vcos2pr do = — I, = — il Ap(7).8() .

D _ = .
onc  agy(7y) - - P




