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Partie I

Pour tout nombre réel s, on considère l’équation différentielle linéaire homogène du second
ordre (Es) suivante :

(Es) (1− x2) y′′(x)− 2(s + 2) x y′(x)− 2(s + 1) y(x) = 0

On note fs la solution de (Es) sur ] − 1, 1[ qui vérifie les conditions initiales fs(0) = 0 et
f ′s(0) = 1.

I.1. Soit gs la fonction définie sur ]− 1, 1[ par gs(x) = fs(x) + fs(−x).

I.1.1.On a fs est de classe C2 sur ]− 1, 1[, donc gs est de classe C2 sur ]− 1, 1[.
On a ∀x ∈]− 1, 1[, g′s(x) = f ′s(x)− f ′s(−x) et g′′s (x) = f ′′s (x) + f ′′s (−x), et puisque fs est
solution de (Es) sur ]− 1, 1[ alors
(1−x2) g′′s (x)−2(s+2) x g′s(x)−2(s+1) gs(x) = [(1− x2) f ′′s (x)− 2(s + 2) x f ′s(x)− 2(s + 1) fs(x)]

+ [(1− (−x)2) f ′′s (−x)− 2(s + 2) (−x) f ′s(−x)− 2(s + 1) fs(−x)] = 0.
Ainsi gs est solution de (Es) sur ]− 1, 1[.

I.1.2. On a gs(0) = 2fs(0) = 0 et g′s(0) = f ′s(0)− f ′s(0) = 0.
gs est solution de (Es) sur ]−1, 1[ qui vérifie les conditions initiales gs(0) = 0 et g′s(0) = 0.
Or la fonction nulle est aussi solution de (Es) sur ]− 1, 1[ qui vérifie les mêmes conditions
initiales. Donc d’après le théorème de Cauchy-Lipschitz , on a gs = 0.
Ainsi, ∀x ∈]− 1, 1[ fs(−x) = −fs(x) et donc fs est impaire.

I.2. Soient α ∈ R et hα la fonction définie sur ]− 1, 1[ par hα(x) = (1− x2)α.
On a hα est de classe C2 sur ]− 1, 1[, ∀x ∈]− 1, 1[ h′α(x) = −2α x (1− x2)α−1 et
h′′α(x) = −2α (1− x2)α−1 + 4α (α− 1) x2 (1− x2)α−1 donc
(1− x2) h′′α(x)− 2(s + 2) x h′α(x)− 2(s + 1) hα(x) =

[−2(α + s + 1) + (4α2 + (6 + 4s)α + 2(s + 1))x2] (1−x2)α−1.

hα est solution de (Es) sur ]− 1, 1[⇐⇒ ∀x ∈]− 1, 1[,
−2(α + s + 1) + (4α2 + (6 + 4s)α + 2(s + 1))x2 = 0

⇐⇒ −2(α+s+1) = 0 et 4α2 +(6+4s)α+2(s+1) = 0
⇐⇒ α = −(s + 1).

I.3. Soit us la fonction définie sur ]− 1, 1[ par us(x) = (1− x2)s+1fs(x).

I.3.1. On a us est de classe C2 sur ]− 1, 1[, et
∀x ∈]− 1, 1[ u′s(x) = −2(s + 1) x (1− x2)s fs(x) + (1− x2)s+1 f ′s(x) et
u′′s(x) = 2(s+1)(1−x2)s−1((1+2s) x2−1)fs(x)−4(s+1) x (1−x2)sf ′s(x)+(1−x2)s+1f ′′s (x).
Donc ∀x ∈]− 1, 1[, (1− x2) u′′s(x) + 2s x u′s(x) = 0.
Ainsi u′s est solution sur ]− 1, 1[ de l’équation différentielle :

(E ′s) (1− x2) y′(x) + 2s x y(x) = 0
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I.3.2.

y est solution de (E ′s) sur ]− 1, 1[ ⇐⇒ ∀x ∈]− 1, 1[ y′(x) +
2s x

1− x2
y(x) = 0

⇐⇒ ∃λ ∈ R , ∀x ∈]− 1, 1[ y(x) = λ(1− x2)s.

Ainsi les solutions de (E ′s) sur ]− 1, 1[ sont les fonctions yλ définies sur ]− 1, 1[ par

yλ(x) = λ(1− x2)s , λ ∈ R.

I.3.3. On a u′s(0) = f ′s(0) = 1 et us(0) = fs(0) = 0.
u′s est solution sur ]− 1, 1[ de l’équation différentielle (E ′s) donc d’après la question I.3.2,
il existe λ ∈ R tel que ∀x ∈]− 1, 1[ u′s(x) = λ(1− x2)s.
De u′s(0) = 1, on a λ = 1 et alors ∀x ∈]− 1, 1[ u′s(x) = (1− x2)s.
Puisque us(0) = 0 alors us(x) =

∫ x

0
(1− t2)sdt pour tout x ∈]− 1, 1[.

I.4. Soit y une fonction impaire, définie sur un intervalle ouvert I contenant 0, développable

en série entière sur I. On note y(x) =
+∞∑
n=0

cnx2n+1 le développement en série entière de y

sur I.

I.4.1 On a y est la somme sur I d’une série entière, donc y est de classe C2 sur I et

∀x ∈ I, y′(x) =
+∞∑
n=0

(2n + 1)cnx
2n et y′′(x) =

+∞∑
n=1

2n(2n + 1)cnx
2n−1, donc

(1−x2) y′′(x)−2(s+2) x y′(x)−2(s+1) y(x) =
+∞∑
n=0

2(n+1) [(2n + 3)cn+1 − (2n + 2s + 3)cn] x2n+1.

D’après l’unicité du développement en série entière de la fonction nulle sur I, on a :

∀x ∈ I,
+∞∑
n=0

2(n + 1) [(2n + 3)cn+1 − (2n + 2s + 3)cn] x2n+1 ⇐⇒
∀n ∈ N, (2n + 3)cn+1 − (2n + 2s + 3)cn = 0.

Donc

y est solution de (Es) sur I ⇐⇒ ∀n ∈ N, (2n + 3)cn+1 − (2n + 2s + 3)cn = 0

⇐⇒ ∀n ∈ N, cn+1 =
2s + 2n + 3

2n + 3
cn

I.4.2 On a ∀n ∈ N∗, cn =
2s + 2n + 1

2n + 1
cn−1.

Par récurrence on montre que ∀n ∈ N∗,

cn =
(2s + 3)(2s + 5)..........(2s + 2n + 1)

3× 5× ........× (2n + 1)
c0 = c0

n

Π
k=1

2s + 2k + 1

2k + 1

I.4.3 Supposons que (Es) admet une solution polynômiale h impaire et non identiquement
nulle sur un intervalle ouvert I contenant 0.

Alors il existe m ∈ N, (cn)0≤n≤m ∈ Rm+1 tels que h(x) =
m∑

n=0

cnx
2n+1.
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Posons ∀n ≥ m + 1, cn = 0.

On a ∀x ∈ I, h(x) =
+∞∑
n=0

cnx2n+1, donc h est développable en série entière sur I.

Ainsi, h est une fonction impaire, définie sur l’intervalle ouvert I contenant 0 , develop-
pable en série entière sur I, donc d’après les questions I.4.1 et I.4.2, et du fait que h est
non identiquement nulle, on a c0 6= 0 et

∀n ∈ N∗, cn = c0

n

Π
k=1

2s + 2k + 1

2k + 1
.

Pour tout n ≥ m + 1, on a cn = 0 alors
n

Π
k=1

(2s + 2k + 1) = 0, donc il existe k ∈ [[1, n]]

tel que s = −k − 1

2
par suite s ∈

{
−k − 1

2
, k ∈ [[1, n]]

}
⊂

{
−k − 3

2
, k ∈ N

}
.

Réciproquement, supposons que s ∈
{
−k − 3

2
, k ∈ N

}
, alors il existe m ∈ N

tel que s = −m− 3

2
.

Considérons la suite (cn)n∈N définie par c0 ∈ R∗ et ∀n ∈ N∗, cn = c0

n

Π
k=1

2s + 2k + 1

2k + 1
.

Puisque 2s + 2m + 3 = 0 alors ∀n ≥ m + 1 on a cn = 0.

Soit y(x) =
m∑

n=0

cnx
2n+1 pour tout x ∈]−1, 1[, on a y est une fonction polynômiale impaire,

non identiquement nulle et y(x) =
+∞∑
n=0

cnx2n+1 pour tout x ∈]− 1, 1[.

D’après les questions I.4.1 et I.4.2 , on a y est solution de (Es) sur ]− 1, 1[.
Ainsi (Es) admet des solutions polynômiales impaires et non identiquement nulles si et

seulement si s ∈
{
−k − 3

2
, k ∈ N

}
.

I.4.4 On suppose que s /∈
{
−n− 3

2
, n ∈ N

}
et que y(x) =

+∞∑
n=0

cnx2n+1 est une solution

de (Es) sur I et que c0 6= 0.

Alors d’après la question I.4.1, on a ∀n ∈ N , cn+1 =
2s + 2n + 3

2n + 3
cn et donc ∀n ∈ N ,

cn 6= 0.
• Si x = 0, la série

∑
n≥0

cnx2n+1 converge.

• Supposons x 6= 0, on applique la régle de D’Alembert, on a

lim
n 7−→+∞

∣∣∣∣
cn+1x

2n+3

cnx2n+1

∣∣∣∣ = lim
n 7−→+∞

2s + 2n + 3

2n + 3
x2 = x2.

Donc le rayon de convergence de la série entière
∑
n≥0

cnx2n+1 est R = 1.

I.5. Considérons la série entière
∑
n≥0

cnx
2n+1 où c0 = 1 et ∀n ∈ N∗, cn =

n

Π
k=1

2s + 2k + 1

2k + 1
.

• Si s ∈
{
−n− 3

2
, n ∈ N

}
alors son rayon de convergence est R = +∞.

• Si s /∈
{
−n− 3

2
, n ∈ N

}
alors d’après la question I.4.4, son rayon de convergence
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est R = 1.
Dans tous les cas R ≥ 1.

Considérons la fonction y définie sur ]− 1, 1[ par y(x) =
+∞∑
n=0

cnx
2n+1 .

D’après les questions I.4.1 et I.4.2, on a y est solution de (Es) sur ] − 1, 1[ qui vérifie
y(0) = 0 et y′(0) = c0 = 1.
D’autre part fs est une solution de (Es) sur ]− 1, 1[ qui vérifie fs(0) = 0 et f ′s(0) = 1.
Donc d’après l’unicité assurée par le théorème de Cauchy-Lipschitz, on a

∀x ∈ ]− 1, 1[ fs(x) =
+∞∑
n=0

cnx
2n+1

= x +
+∞∑
n=1

[
2nn!

(2n + 1)!

n

Π
k=1

(2s + 2k + 1)

]
x2n+1.

I.6. D’après la question I.3., pour us(x) = (1− x2)s+1fs(x) pour tout x ∈]− 1, 1[
on a trouvé que us(x) =

∫ x

0
(1− t2)sdt pour tout x ∈]− 1, 1[.

Donc ∀x ∈]− 1, 1[ ,
∫ x

0
(1− t2)sdt = (1− x2)s+1fs(x).

Soit p ∈ N, pour s = −p− 3

2
, on a

∫ x

0

dt

(1− t2)p+ 3
2

=
f−(p+ 3

2)
(x)

(1− x2)p+ 1
2

.

D’après la question I.5 on a pour tout x ∈]− 1, 1[,

f−(p+ 3
2)

(x) = x +

p∑
n=1

[
2nn!

(2n + 1)!

n

Π
k=1

2(k − (p + 1))

]
x2n+1

Posons Qp(x) = x +
p∑

n=1

[
2nn!

(2n + 1)!

n

Π
k=1

2(k − (p + 1))

]
x2n+1 pour tout x ∈ R.

On a Qp est une fonction polynômiale impaire de degré 2p + 1 et

∀x ∈]− 1, 1[,
∫ x

0

dt

(1− t2)p+ 3
2

=
Qp(x)

(1− x2)p+ 1
2

.

En particulier, pour tout x ∈]− 1, 1[,
∫ x

0

dt

(1− t2)
3
2

=
Q0(x)

(1− x2)
1
2

=
x

(1− x2)
1
2

et
∫ x

0

dt

(1− t2)
5
2

=
Q1(x)

(1− x2)
3
2

=
x− 2

3
x3

(1− x2)
3
2

.

Partie II

On considère la fonction β de la variable réelle x définie par :

β(x) =

∫ 1

0

(1− t2)xdt

II.1. la fonction hx : t 7−→ (1− t2)x est continue sur [0, 1[.
On a (1 − t2)x ∼

x 7→1−
2x(1 − t)x et la fonction t 7−→ (1 − t)x est intégrable sur [0, 1[ si et

seulement si x > −1.
Donc hx est intégrable sur [0, 1[ si et seulement si x > −1.
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Ainsi le domaine de définition de β est Dβ =]− 1, +∞[.

II.2. Considérons la fonction h(x, t) = (1− t2)x pour tout (x, t) ∈]− 1, +∞[ × [0, 1[.
• On a h est continue sur ]− 1, +∞[ × [0, 1[.
• Soit a ∈]− 1, +∞[.
∀(x, t) ∈ [a, +∞[ × [0, 1[ |h(x, t)| ≤ (1− t2)a ( car 1− t2 ∈]0, 1] ),
et la fonction t 7−→ (1− t2)a est continue, positive et intégrable sur [0, 1[.
Donc d’après un théorème du cours β est continue sur ]− 1, +∞[.

On admettra que β est de classe C1 sur ]− 1, +∞[ et ∀x ∈]− 1, +∞[

β′(x) =
∫ 1

0
(1− t2)x ln(1− t2)dt

II.3. Soit x ∈]− 1, +∞[, on a ∀t ∈]0, 1[, ln(1− t2) < 0 et (1− t2)x > 0
donc (1− t2)x ln(1− t2) < 0.
Comme β′ est continue sur ]− 1, +∞[, alors ∀x ∈]− 1, +∞[ β′(x) < 0.
Ainsi β est strictement décroisssante sur ]− 1, +∞[.

II.4.
II.4.1. Soit x ∈]− 1, +∞[, on a β(x + 1) =

∫ 1

0
(1− t2)x+1dt.

Une intégration par parties donne :
β(x + 1) = [t(1− t2)x+1]

1
0 + 2(x + 1)

∫ 1

0
t2(1− t2)xdt = 2(x + 1)

∫ 1

0
t2(1− t2)xdt

= 2(x + 1)
∫ 1

0
(t2 − 1)(1− t2)xdt + 2(x + 1)

∫ 1

0
(1− t2)xdt

= −2(x + 1)β(x + 1) + 2(x + 1)β(x)

Donc β(x + 1) =
2x + 2

2x + 3
β(x).

II.4.2. On a β(0) =
∫ 1

0
dt = 1.

D’après la question II.4.1 on a ∀x ∈]− 1, +∞[ β(x) =
2x + 3

2x + 2
β(x + 1).

Comme β est continue en 0 alors lim
x 7−→−1+

β(x + 1) = β(0) = 1

et donc lim
x 7−→−1+

β(x) = lim
x 7−→−1+

2x + 3

2x + 2
β(x + 1) = +∞.

II.4.3. D’après la question II.4.1, on a ∀n ∈ N∗ β(n) =
2n

2n + 1
β(n− 1).

Par récurrence on montre que ∀n ∈ N∗ β(n) =
(2nn!)2

(2n + 1)!
.

On a la formule de Stirling n! ∼ √
2πn

(n

e

)n

,donc

(2nn!)2 ∼ (2n)2 (2πn)
(n

e

)2n

et (2n + 1)! ∼
√

2π(2n + 1)

(
2n + 1

e

)2n+1

.

Puisque

(
2n

2n + 1

)2n

−→ 1

e
, alors β(n) ∼ 2nπ

(2n + 1)
√

2π(2n + 1)
∼ 1

2

√
π

n
.

Par suite lim
n 7−→+∞

β(n) = 0.

β est décroissante sur ]− 1, +∞[, donc ∀x ∈ [2, +∞[ on a β(E(x)+1) ≤ β(x) ≤ β(E(x))
( où E(x) désigne la partie entière de x ).
Comme lim

x 7−→+∞
β(E(x) + 1) = 0 et lim

x7−→+∞
β(E(x)) = 0 alors lim

x7−→+∞
β(x) = 0.

5



II.4.4. On a β

(
−1

2

)
=

∫ 1

0

1

(1− t2)
1
2

dt = [arcsin t]10 =
π

2
.

( on peut aussi utiliser le changement de variable t = cos u ) .

On a ∀n ∈ N∗ β

(
−1

2
+ n

)
=

2n− 1

2n
β

(
−1

2
+ (n− 1)

)
.

On montre par récurrence que

∀n ∈ N∗ β

(
−1

2
+ n

)
=

(2n− 1)× (2n− 3)× .....× 3

(2n)× (2n− 2)× .....× 2
β

(
−1

2

)
=

(2n)!

(2n n!)2

π

2
.

Partie III

Soient γ > 1 , γ /∈ N et ϕγ la fonction 2π périodique définie sur R par :

∀x ∈ R ϕγ(x) = |cos x|γ

On note a0(γ) +
+∞∑
n=1

[an(γ) cos nx + bn(γ) sin nx] la série de Fourier de ϕγ.

III.1.
III.1.1 On a ϕγ est continue, 2π périodique sur R et de classe C1 par morceaux sur R,
alors d’après le théorème de Dirichlet ϕγ est égale en tout point de R à la somme de sa
série de Fourier.

III.1.2 On a ϕγ est paire sur R donc pour tout n ∈ N∗ bn(γ) = 0.

Soit p ∈ N, on a a2p+1(γ) =
1

π

∫ π

−π
ϕγ(x) cos(2p + 1)x dx

=
1

π

[∫ 0

−π
ϕγ(x) cos(2p + 1)xdx +

∫ π

0
ϕγ(x) cos(2p + 1)xdx

]

On fait le changement de variable u = x + π, on a∫ 0

−π
ϕγ(x) cos(2p + 1)x dx = − ∫ π

0
ϕγ(u) cos(2p + 1)u du

donc a2p+1(γ) = 0.

III.2. Pour tout p ∈ N, on considère l’intégrale Ip =
∫ π

2

0
cosγ x. cos 2px dx.

III.2.1 ∀p ∈ N, Ip − Ip+1 =
∫ π

2

0
cosγ x.(cos 2px− cos(2p + 2)x) dx

= 2
∫ π

2

0
cosγ x. sin x. sin(2p + 1)x dx.

III.2.2 Une intégration par parties donne :∫ π
2

0
cosγ x. sin x. sin(2p + 1)x) dx =
[
− 1

γ + 1
sin(2p + 1)x. cosγ+1 x

]π
2

0

+
2p + 1

γ + 1

∫ π
2

0
cosγ+1 x. cos(2p + 1)x dx.

Donc Ip − Ip+1 = 2
2p + 1

γ + 1

∫ π
2

0
cosγ x. cos x. cos(2p + 1)x dx.

III.2.3 On a ∀p ∈ N, Ip + Ip+1 =
∫ π

2

0
cosγ x.(cos 2px + cos(2p + 2)x) dx

= 2
∫ π

2

0
cosγ x. cos x. cos(2p + 1)x) dx.

En utilisant le résultat de la question III.2.2, on a ∀p ∈ N, Ip−Ip+1 =
2p + 1

γ + 1
(Ip + Ip+1) .
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III.2.4 On fait le changement de variable t = sin u , on a

β(x) =

∫ 1

0

(1− t2)x.dt =

∫ π
2

0

(cos2 u)x. cos u.du =

∫ π
2

0

(cos u)2x+1du

Donc I0 =
∫ π

2

0
cosγ u.du = β (γ′) où γ′ =

γ − 1

2
> 0.

III.2.5 En utilisant le résultat de la question III.2.3, on a ∀p ∈ N∗ Ip+1 =
γ − 2p

γ + 2(p + 1)
Ip

.

Donc par récurrence, on montre que, ∀p ∈ N∗, Ip =
γ(γ − 2)......(γ − 2(p− 1))

(γ + 2).........(γ + 2p)
.I0.

On a I0 = β (γ′) , donc ∀p ∈ N∗, Ip =
γ

γ + 2p
.Ap(γ).β (γ′)

où Ap(γ) =
p−1

Π
k=1

γ − 2k

γ + 2k
=

p−1

Π
k=0

γ − 2k

γ + 2k
.

III.3 On a a0(γ) =
2

π

∫ π

0
|cos x|γ dx =

2

π

[∫ π
2

0
|cos x|γ dx +

∫ π
π
2
|cos x|γ dx

]
.

On fait le changement de variable u = π − x, on a
∫ π

π
2
|cos x|γ dx =

∫ π
2

0
|cos u|γ du.

Donc a0(γ) =
4

π

∫ π
2

0
|cos x|γ dx =

4

π
I0 =

4

π
β (γ′) .

On a ∀p ∈ N∗, a2p(γ) =
2

π

∫ π

0
|cos x|γ cos 2px dx =

2

π

[∫ π
2

0
(cos x)γ cos 2px dx +

∫ π
π
2
|cos x|γ cos 2px dx

]
.

On fait le changement de variable u = π − x, on a∫ π
π
2
|cos xγ| cos 2px dx =

∫ π
2

0
|cos(π − u)|γ cos 2p(π − u) du =

∫ π
2

0
(cos u)γ cos 2pu du.

Donc a2p(γ) =
4

π

∫ π
2

0
(cos x)γ cos 2px dx =

4

π
Ip =

4

π

γ

γ + 2p
.Ap(γ).β (γ′) .
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