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Sur l’exponentielle de matrice .

PARTIE I

I.1) Exemple

• a) En développant par rapport à la seconde ligne (colonne) on a det(M) = 2

• b) On calcule les cofacteurs A1,1 = (−1)2 det
(
−1 −3
0 −4

)
= 4 , A1,2 = (−1)3

(
−6 −3
−6 −4

)
= −6,· · ·

Com(A) =

 4 −6 −6
0 −2 0
3 −3 −5


d’où :

A. tCom(A) =

 2 0 0
0 2 0
0 0 2


remarque : à vérifier avec I.2.d)

• c) On a κM (λ) = det

 5− λ 0 3
−6 −1− λ −3
−6 0 −4− λ

 = (−1− λ) det
(

5− λ 3
−6 −4− λ

)
= (−1− λ)

(
λ2 − λ− 2

)
=

(λ+ 1)2 (2− λ)

• d) (I3 +M) (2I3 −M) = · · · = 03 et donc comme κM (M) = (M + I3)2(2I3 −M) = (I3 +M) ((I3 +M)(2I3 −M) = 03

κM (M) = 03

remarque : toujours à vérifier avec I.4.c)

I.2) propriétés de la comatrice :
remarque : prendre A = M et quelques exemples n’est pas inutile pour voir B

• a) C’est le développement de la matrice B par rapport à la colonne j , en remarquant que une fois retirée les colonnes j
de A et B on obtient les mêmes matrices donc les mêmes cofacteurs.

• b) On pose βk = ak,l puis on sépare en deux :{
si l = j alors βk = ak,j et donc B = A et

∑n
k=1 ak,lAk,l = det(B) = det(A)

si l 6= j alors la matrice B a deux colonnes égales (l et j) d’où
∑n

k=1 ak,lAk,l = det(B) = 0

d’où :

∀ (l; j) ∈ N2
n ,

n∑
k=1

ak,lAk,l = det (A) δl,j

• c) On introduit une matrice B′ obtenue en remplaçant la ieme ligne de A par la ligne formée des coefficients βi . On a
alors det(B) =

∑n
k=1 βkAi,k , puis on remplace les βk par alk

• d) Si M = tCom(A) on a pour tout (i, j) mi,j = Aj,i , d’où (AM)i,j =
∑n

k=1 ai,kmk,j =
∑n

k=1 ai,kAj,k = det (A) δi,j

d’après 1.2.c) et (MA)i,j =
∑n

k=1mi,kak,j =
∑n

k=1Ak,iak,j = det(A)δi,j d’après 1.2.b)

On a donc :
A. tCom(A) = tCom(A).A = det(A)In

I.3)
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• a) pour n = 1 : det(G(x)) = G1,1(x) , et G1,1 est un polynôme de degré inférieur ou égal à 1

On suppose que pour toute famille (Hi,j)1≤i≤n−1,1≤j≤n−1 de polynômes de degré inférieur ou égal à 1 det (Hi,j(x)) =
Q1(x) , Q1 étant un polynôme de degré inférieur ou égal à n−1 . On a alors par développement par rapport à la première
colonne

det(G) =
n∑

i=1

(−1)i+1
Gi,1(x) det (Ci,1(x))

où Ci,1(x) est une matrice extraite de G(x) de taille n−1×n−1 . Les coefficients de Ci,1(x) sont des fonctions polynômes
de degré inférieur ou égal à 1 , donc par l’hypothèse de récurrence il existe un polynôme Pi de degré inférieur ou égal à
n− 1 et tel que det (Ci,1(x)) = Pi(x) . On a alors

det(G) =
n∑

i=1

(−1)i+1
Gi,1(x)Pi(x)

Par les théorèmes sur le degré d’une somme et d’un produit de polynôme on a d◦
(∑n

i=1 (−1)i+1
Gi,1Pi

)
≤ n . D’où le

résultat par récurrence.

• b) Une matrice est nulle si et seulement si tous ses coefficients le sont donc , en notant d(k)
i,j les coefficients de Dk on a :

∀ (i, j) ∈ N2
n ,

p∑
k=0

d
(k)
i,j x

k = 0

Une fonction polynôme étant nulle si et seulement si tous ses coefficients le sont on a ∀k,∀ (i, j) ∈ N2
n , d(k)

i,j = 0 Dk = 0

I.4) le polynôme caractéristique est un polynôme annulateur

• a) chaque coefficient de C(x) est un cofacteur de (A− xIn) donc c’est , au signe près , le déterminant d’une matrice
n− 1× n− 1 ayant pour coefficients des fonctions polynômes de degré au plus 1 . Donc d’après I.3.a) chaque coefficient
de C(x) est une fonction polynôme de degré au plus n − 1 . Il existe donc des réels

(
b
(k)
i,j

)
tels que ∀ (i, j) ∈ N2

n

(C(x))i,j =
∑n−1

k=0 b
(k)
i,j x

k. En prenant pour Bk la matrice de coefficients b(k)
i,j on a la relation voulue.

• b) D’après I.2 on a (A− xIn)C(x) = det(A− xIn)In = κA(x)In. Or

(A− xIn)C(x) = (A− xIn) .
n−1∑
k=0

xkBk =
n−1∑
k=0

xkA.Bk −
n−1∑
k=0

xk+1Bk = A.B0 +
n−1∑
k=1

xk (A.Bk −Bk−1)− xnBn−1

on a donc

AB0 +
n−1∑
k=1

xk (A.Bk −Bk−1)− xnBn−1 = κA(x)In =
n∑

k=0

xkαkIn

On utilise alors I.3.b) avec D0 = AB0−α0In,∀k ∈ Nn−1 , Dk = A.Bk −Bk−1−αkIn et Dn = −Bn−1−αnIn pour avoir
le résultat voulu.

• c) Si on multiplie à gauche la ligne A.Bk − Bk−1 = αkIn par Ak on obtient αkA
k = Ak+1.Bk − Ak.Bk−1 et de même

αnA
n = −AnBn−1 . D’où

κA(A) =
n∑

k=0

αkA
k = A.B0 +

n−1∑
k=1

(
Ak+1.Bk −Ak.Bk−1

)
−AnBn−1

= A.B0 +

(
n−1∑
k=1

Ak+1Bk −
n−2∑
k=0

Ak+1.Bk

)
−AnBn−1

= A.B0 + (An.Bn−1 −AB0)−AnBn−1 = 0

On a bien vérifié :
κA (A) = 0

PARTIE 2

II.1
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• a) On peut remarquer que C1 = In puis ∀k ∈ [[2, n]] , Ck = (A− λk−1In) .Ck−1 .De plus

A. (A− λk−1In) = A2 − λk−1A = (A− λk−1In) .A

d’où le résultat par récurrence : on a A.C1 = C1.A puis si A.Ck−1 = Ck−1.A alors A.Ck = Ck.A

• b) (A− λnIn) .Cn =
∏n

k=1 (A− λnIn) = κA(A) = 0 d’après la première partie.

II.2 : une solution de l’équation différentielle

• a) Par définition de Y les fonctions yk sont dérivables sur R et donc Ek est dérivable sur R .

De plus Y ′(s) = H.Y (s) donc y′1(s) = λ1y1(s) et ∀k ∈ [[2, n]] , y′k(s) = yk−1(s) + λkyk(s)

On a alors

E′
A(s) =

n∑
k=1

y′k(s)Ck = λ1y1(s)C1 +
n∑

k=2

(yk−1(s) + λkyk(s))Ck = λ1y1(s)C1 +
n−1∑
k=1

yk(s)Ck+1 +
n∑

k=2

λkyk(s)Ck

=
n−1∑
k=1

yk(s)Ck+1 +
n∑

k=1

λkyk(s)Ck =
n−1∑
k=1

yk(s) (Ck+1 + λkCk) + yn(s)λnCn

Or Ck+1 + λkCk = (A− λkIn) .Ck + λkCk = A.Ck pour k ≤ n− 1 . Ce qui donne :

E′
A(s) =

n−1∑
k=1

yk(s)A.Ck + yn(s)λnCn

reste à vérifier λnCn = ACn soit (A− λnIn)Cn = 0 . C’est le résultat de la question II.1.b)

E′
A(s) = A.EA(s)

De plus EA(0) =
∑n

k=1 yk(0)Ck . Or Y (0) = Y0 et donc y1(0) = 1 et pour k ≥ 2 yk(0) = 0 doncEA(0) = C1 = In

• b) Par commutativité (cf II.1.a ) on peut remarquer que A.Ck = Ck.A et donc par linéarité du produit A.EA(s) = EA(s).A
. Et donc

E′
A(s) = A.EA(s) = EA(s).A et EA(0) = In

• c) φ est le produit de deux fonctions dérivables , donc est dérivable et

φ′(s) = EA(s). (EA(−s))′ + E′
A(s).EA(−s) = EA(s). (−E′

A(−s)) + E′
A(s).EA(−s)

en utilisant le théorème de dérivation d’une fonction composée . De plus E′
A(s) = A.EA(s) donc E′

A(−s) = A.EA(−s)
donc

φ′(s) = −EA(s).A.EA(−s) +A.EA(s).EA(−s)

et comme A.EA(s) = EA(s).A on a φ′(s) = 0 . Tous les coefficients de la matrice φ(s) ont une dérivée nulle sur R
(intervalle) donc tous les coefficients sont constants donc aussi φ et comme φ(0) = EA(0)2 = In

∀s ∈ R, φ(s) = In

Le même calcul avec θ(s) = EA(−s).EA(s) donne : ∀s ∈ R, θ(s) = In .

On a donc : ∀s ∈ R : EA(s).EA(−s) = EA(−s).EA(s) = In , et donc

EA(s) est inversible d’inverse EA(−s)

• d) Le même type de calcul donne :

ψ′(s) = EA(−s).F ′(s)− E′
A(−s).F (s) = EA(−s).A.F (s)−A.EA(−s).F (s) = 0

donc ψ est constante. Or ψ(0) = EA(0).F (0) = In . Donc pour tout s ψ(s) = In et donc EA(−s).F (s) = In . On sait
que EA(−s) est inversible donc

F (s) = EA(−s)−1 = EA(s)

EA est l’unique solution du problème (1)
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• e) Idem avec θ(s) = F (s)EA(−s)
La fonction précédente ne marche pas car on ne peut pas commuter F (s) et A(s)

II.3 : exemple

• Soit M =

 5 0 3
−6 −1 −3
−6 0 −4

 . Avec les calculs de I.1 je prend λ1 = 2, λ2 = −1, λ3 = −1 ( vous pouvez faire un autre

choix sur l’ordre le résultat sera le même avec des calculs intermédiaires différents)

On a donc C1 =

 1 0 0
0 1 0
0 0 1

 , C2 = (M − 2I3) =

 3 0 3
−6 −3 −3
−6 0 −6

 et C3 = (M + I3) (M − 2I3) = 0 d’après I.1.d)

et esM = y1(s)C1 + y2(s)C2 + 0

reste à calculer y1(s) et y2(s) :

• y1(s) vérifie y1(0) = 1 et y′1(s) = 2y1(s) donc y1(s) = e2s

• y2(s) vérifie y2(0) = 0 et y′2(s) = −y2(s) + e2s .Les solutions de l’équation homogène sont y(s) = Kes et la recherche
d’une solution particulière de y′2(s) = −y2(s) + e2s du type s− > ke2s donne k = 1/3 d’où y2(s) = e2s−e−s

3

esM = e2s

 1 0 0
0 1 0
0 0 1

+
e2s − e−s

3

 3 0 3
−6 −3 −3
−6 0 −6

 = e2s

 1 0 0
0 1 0
0 0 1

+
(
e2s − e−s

) 1 0 1
−2 −1 −1
−2 0 −2


= e2s

 2 0 1
−2 0 −1
−2 0 −1

+ e−s

 −1 0 −1
2 1 1
2 0 2


remarque : par prudence vérifier le calcul en comparant

(
esM

)′ et M.esM

II.4 Une solution est Z(s) = esAZ0 en effet :

• Z(0) = e0A.Z0 = EA(0).Z0 = In.Z0 = Z0

• (Z(s))′ =
(
esA
)′
.Z0 + esA.Z ′

0 = A.esA.Z0 + 0 = A.Z(s)

De plus on sait que le problème de Cauchy admet une unique solution vérifiant une condition initiale donnée . d’où
l’unicité de la solution.

PARTIE III
III.1 Par la formule de définition chaque matrice Ck est un polynôme en A et donc par combinaison linéaire esA = EA(s) =∑n

k=1 yk(s)Ck aussi.
On peut remarquer que esA = PA(A) avec d◦ (PA) ≤ n− 1 et que les coefficients dépendent des valeurs propres donc de A.
Je note esA =

∑n−1
k=0 pk,AA

k

III.2 quelques calculs sur les exponentielles de matrices

• a) On a

A.esB = A.

n−1∑
k=0

pk,BB
k =

n−1∑
k=0

A.
(
pk,BB

k
)

=
n−1∑
k=0

pk,BB
k.A = esB .A

car A.B = B.A⇒ ∀k ∈ N , A.Bk = Bk.A

• b)De même
n−1∑
k=0

(
pk,AA

k
)
esB =

n−1∑
k=0

esB
(
pk,AA

k
)

• c) On a par définition de EA+B(s)
µ′(s) = (A+B)µ(s) et µ(0) = In

et on a (en utilisant la commutativité de esA et B){
ν′(s) =

(
esA
)′
.esB + esA

(
esB
)′ = A.esA.esB + esA.B.esB = (A+B) .

(
esA.esB

)
= (A+B).ν(s)

ν(0) = e0A.e0B = In.In = In

Par unicité de la solution de l’équation différentielle
{
X ′(s) = A0X(s)

X(0) = In
avec A0 = A+B(cf II.2.d) ) on a : ∀s :∈ R ,

µ(s) = ν(s) En particulier pour s = 1
(AB = BA) ⇒

(
eA+B = eA.eB

)
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III.3 un contre exemple si A.B 6= B.A

On constate A.B =
(

1 −1
0 0

)
et B.A =

(
1 1
0 0

)
pour A on a Sp(A) = {0, 1} d’où C1 = I2 et C2 = A

y1 vérifie y′1(s) = 0 et y1(0) = 1 donc y1(s) = 1
y2 vérifie y′2(s) = y2(s) + y1(s) = y2(s) + 1 et y2(0) = 0 d’où y2(s) = es − 1
donc : esA = 1.C1 + y2(s)A = (es − 1)A+ I3

pour B on a Sp(B) = {0, 1} d’où (même calcul) esB = (es − 1)B + I3

pour A+B =
(

2 0
0 0

)
on a encore Sp(A+B) = {0, 2} et es(A+B) = (e2s−1)

2 (A+B) + I3

d’où
eA = (e− 1)A+ I3 =

(
e e− 1
0 1

)
, eB = (e− 1)B + I3 =

(
e 1− e
0 1

)
, eA+B =

(
e2 0
0 1

)
, eA.eB =

(
e2 2e− 1− e2

0 1

)
III.4 autres propriétés de esA

• a) On pose φ : s− > es(P−1.A.P) et ψ : − > P−1.esA.P et on vérifie que les deux fonctions vérifient la même équation
différentielle:

φ(0) = e0(P
−1.A.P ) = In et ψ(0) = P−1.In.P = In

φ′(s) =
(
P−1.A.P

)
.φ(S) et ψ′(s) = P−1.

(
A.esA

)
.P = P−1.A.

(
P.ψ(s).P−1

)
.P = P−1.A.P.ψ(s)

remarque : attention à la rédaction P et esA ne commute pas.

les deux fonctions sont solutions de E′(s) = B.E(s) , E(0) = In avec B = P−1.A.P . Par unicité de la solution d’un tel
problème on a pour tout s φ(s) = ψ(s)

∀s ∈ R, es(P−1.A.P) = P−1.esA.P

• b) même principe avec : φ : s− > est(A) et ψ : − > t
(
esA
)

φ(0) = e0
tA = In ψ(0) = tIn = In

φ′(s) = tAφ(s) et ψ′(s) =
(
t
(
esA
))′ = t

((
esA
)′) = t

(
esA.A

)
= tA.ψ(s) ; En utilisant II.2.b) et la linéarité de la

transposition pour dire que si F est dérivable à valeurs dans Mn (C) t (F ′) = (tF )′

les deux fonctions sont solutions de E′(s) = B.E(s) , E(0) = In avec B = tA . Par unicité de la solution d’un tel problème
on a pour tout s φ(s) = ψ(s)

∀s ∈ R, est(A) = tesA

partie IV

IV.1 si Mat(x) = X =

 x1

x2

x3

 on a Mat(u ∧ x) =

 bx3 − cx2

cx1 − ax3

ax2 − bx1

 = A.X avec A =

 0 −c b
c 0 −a
−b a 0


IV.2 par la règle de Sarrus ou en développant

κA (λ) = det(A− λI3) =

∣∣∣∣∣∣
−λ −c b
c −λ −a
−b a −λ

∣∣∣∣∣∣ = · · · = −
(
λ3 +

(
a2 + b2 + c2

)
λ
)

Comme u est un vecteur de norme 1 il reste κA (λ) = −
(
λ3 + λ

)
On déduit du I.4.c: −

(
A3 +A

)
= 0 soit A3 = −A

IV.3 toujours avec l’algorithme du II :
le polynôme caractéristique donne Sp(A) = {0, i,−i} d’où :

• C1 = I3 , C2 = A , C3 = A.(A− iI3) = A2 − iA

• y1 vérifie y′1(s) = 0 et y1(0) = 1 donc y1(s) = 1

• y2 vérifie y′2(s) = iy2(s) + 1 et y2(0) = 0 soit y2(s) = eis−1
i = i(1− eis)

• y3 vérifie y′3(s) = −iy3(s) + i
(
1− eis

)
, y3(0) = 1 .

On cherche une solution particulière en superposant une solution de y′ = −iy + i ( soit y = 1) et une solution de
y′ = −iy − ieis ( soit y = − eis

2 )

y3(s) = 1− 1
2
eis − 1

2
e−is
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D’où

esA = I3 + i
(
1− eis

)
A+

(
1− 1

2
eis − 1

2
e−is

)(
A2 − iA

)
= I3 + i

(
e−is − eis

2

)
A+

(
1− 1

2
eis − 1

2
e−is

)
A2

= I3 + sin(s)A+ (1− cos(s))A2

On peut alors utiliser II.4
X(s) =

(
I3 + sin(s)A+ (1− cos(s))A2

)
X0

Remarque :On peut aussi vérifier que est solution
(
I3 + sin(s)A+ (1− cos(s))A2

)
du problème (1)

IV.4 . En comparant avec la matrice trouvée au IV.1 il suffit de prendre a = 1, b = c = 0 . On prend donc une base
orthonormée telle que le premier vecteur de base soit u( elle existe car u est unitaire)
soit alors B0 = (u, v, w) la base orthonormée que je choisi directe . Soit U, V,W les matrices de u, v, w dans la base initiale
On a AU = 0 (car u ∧ u = 0) AV = W et AW = −V donc

• matB(g(u)) = esA.U = U + sin(s)A.U + (1− cos(s))A.A.U = U donc g(u) = u

• matB(g(v)) = esAV = V + sin(s)W + (1− cos(s))(−V ) = cos(s)V + sin(s)W

• matB(g(w)) = esAW = W + sin(s)(−V ) + (1− cos(s))(−W ) = cos(s)W − sin(s)V

d’où matB0(g) =

 1 0 0
0 cos(s) − sin(s)
0 sin(s) cos(s)

 . On obtient une rotation d’axe dirigé par u et d’angle s .

Si on note P la matrice de passage telle que B = PAP−1 on a d’après III.4 :

esB = esPAP−1
= PesAP−1 = PMatB(g)P−1 = MatB0(g) =

 1 0 0
0 cos(s) − sin(s)
0 sin(s) cos(s)


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