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Filiere PC Math 1 2005

Sur I'exponentielle de matrice .

PARTIE I

1.1) Exemple

e a) En développant par rapport & la seconde ligne (colonne) on a det(M) =2

e b) On calcule les cofacteurs A; 1 = (—=1)% det ( -1 =3 ) =4,A = (—1)3 ( -6 =3 ) = —6, -

0 —4 -6 —4
4 —6 —6
Com(A)=10 -2 0
3 -3 -5
d’ou :

2 00
A.tCom(A)=[ 0 2 0
0 0 2

remarque : 4 vérifier avec 1.2.d)

5—A 0 3 5\ 3
ec)OnaosyA) =det| -6 —-1-X -3 = (—1—)\)det( 6 —4—> ) = (-1-N)(N=-r-2) =
—6 0 —4 - A

A+1)2(2-))
e d) (I3 + M) (2I3 — M) =--- =03 et donc comme sp; (M) = (M + I3)*(2I3 — M) = (I3 + M) (I3 + M) (213 — M) = 03

remarque : toujours d vérifier avec I.4.c)

1.2) propriétés de la comatrice :
remarque : prendre A = M et quelques exemples n’est pas inutile pour voir B

e a) C’est le développement de la matrice B par rapport & la colonne j , en remarquant que une fois retirée les colonnes j
de A et B on obtient les mémes matrices donc les mémes cofacteurs.

e b) On pose ), = ai,; puis on sépare en deux :

sil=jalors 8, =ay; et donc B=Aet >, _, ay A, = det(B) = det(A)
si | # j alors la matrice B a deux colonnes égales (I et j) dott Y j_, ax Ak = det(B) =0
d’ou : N
v(;j)eN;, Zak,lAk,l = det (A) d,,5
k=1
e ¢) On introduit une matrice B’ obtenue en remplagant la ™ ligne de A par la ligne formée des coefficients 8; . On a
alors det(B) = Y_1_, A« , puis on remplace les (), par a
e d) Si M = "Com(A) on a pour tout (i,5) mi; = Aj; , dout (AM), ; = >33 ajxmy; = >y aixAjr = det (A)
d’apres 1.2.c) et (MA), ; = >0 mixay; = >y Agiar,; = det(A)d; ; d’apres 1.2.b)

On a donc :

[A."Com(A) = "Com(A).A = det(A) 1,

L.3)



e a) pour n =1: det(G(z)) = G11(2) , et G1,1 est un polynéme de degré inférieur ou égal a 1

On suppose que pour toute famille (H;;); ;. ; 1<j<n_1 de polynoémes de degré inférieur ou égal & 1 det (H; ;(z)) =
Q1(x) , Q1 étant un polynoéme de degré inférieur ou égal A n—1 . On a alors par développement par rapport a la premiére

colonne
n

det(G) = > (1) Gia(x) det (Cy 1 (x))
i=1
ou C; 1(x) est une matrice extraite de G(z) de taille n—1xn—1. Les coefficients de C; 1 () sont des fonctions polynémes

de degré inférieur ou égal a 1 , donc par 'hypothese de récurrence il existe un polynéome P; de degré inférieur ou égal a
n — 1 et tel que det (C;1(z)) = P;(z) . On a alors

n

det(G) =Y (=1)" Giq () Pi(x)

i=1

Par les théoremes sur le degré d’'une somme et d’un produit de polynéme on a d° (Z?:I (=)t GMPL-) <mn. Doule

résultat par récurrence.
. . . . k .
e b) Une matrice est nulle si et seulement si tous ses coefficients le sont donc , en notant dl( j) les coeflicients de Dy, on a :

P
V(ij) eN2, Y dMak =0
k=0
) =0 DE=0)

Une fonction polynéome étant nulle si et seulement si tous ses coefficients le sont on a Vk,V (i, j) € N2

n

1.4) le polynéme caractéristique est un polyndéme annulateur

e a) chaque coefficient de C(z) est un cofacteur de (A — z1I,,) donc c’est , au signe prés , le déterminant d’une matrice
n—1xn — 1 ayant pour coefficients des fonctions polynoémes de degré au plus 1 . Donc d’apres 1.3.a) chaque coefficient

de C(x) est une fonction polyndéme de degré au plus n — 1 . 1l existe donc des réels (bf’“j) tels que V(i,5) € N2
(k)

(C(z));; = Zz;é bgkj)xk En prenant pour By, la matrice de coefficients b; ;' on a la relation voulue.

e b) D’apres .2 on a (A — 1) C(x) = det(A — x1,,) 1, = sa(z)1,. Or

n—1 n—1 n—1 n—1
(A—al,)C(x) = (A—al,).> a*By=> a"AB,—Y 2"'B,=ABy+ Y 2"(ABy— By_1) —2"Bn_y
k=0 k=0 k=0 k=1
on a donc )
ABy + Z zF (ABk — kal) —2"B,_1 = %A(l‘)fn = Zxkakln
k=1 k=0

On utilise alors 1.3.b) avec Dy = ABy — aol,,Vk € N1, Dy, = A.By, — By—1 — oy I, et D,, = —B;,,_1 — a,, I, pour avoir
le résultat voulu.

e c) Si on multiplie & gauche la ligne A.By — By_1 = axl, par A* on obtient ayA¥ = A**1. B, — A¥.B),_; et de méme
ap A" = —A"B,_1 . Dou

n n—1
sa(A) = Y oA* =ABy+> (A By — A" By 1) — A"B, 4
k=0 k=1

n—1 n—2

= ABy+ (Z AR =) A’f“.Bk) — A"B,,
k=1 k=0

= ABy+ (A"By 1 — ABy) — A"B,_1 =0

On a bien vérifié :

pea(4) =0
PARTIE 2

II.1



e a) On peut remarquer que Cy = I, puis Vk € [[2,n]] , Ck = (A — Ap—11,,) .Cr—1 .De plus
A(A =N 1L) =A% =M\ 1A= (A= 11,) A
d’ou le résultat par récurrence : on a A.C7 = C1.A puis si A.Cy_1 = Cp_1.A alors A.Cy, = C.A
e b) (A—MN1,).Cp, =T1h_; (A= A1) = 324(A) = 0 d’aprés la premiére partie.
I1.2 : une solution de 1’équation différentielle

e a) Par définition de Y les fonctions yi sont dérivables sur R et donc Ej est dérivable sur R .
De plus Y'(s) = H.Y (s) donc y1(s) = Myi(s) et Vk € [[2,n]] , yi.(5) = yr—1(5) + Aeyr(s)

On a alors
n n n—1 n
Ey(s) = D ui(s)Ck = Mo (s)Cr + Y (yk-1(5) + Meyi(s)) Cr = Myi ()01 + > ya(5)Crrr + D Mewi(s)Ch
k=1 k=2 k=1 k=2
n—1 n n—1
= Yr(8)Cry1 + Z Akyr(8)Cr = Z Ur(8) (Cra1 + MCk) + yn(8) A Chn
k=1 k=1 k=1

Or Cii1 + MCr = (A= A\ L,) .Cr + M\C, = A.Cy, pour k <n —1. Ce qui donne :

n—1

E)(s) = Z Y (8)A.Cr + yn(8) A Ch

k=1

reste & vérifier \,,C,, = AC,, soit (A — A\, I,) C, =0 . C’est le résultat de la question II.1.b)

[E7(5) = A.EA(3)

De plus E4(0) = >}, yx(0)Cx . Or Y(0) = Yj et donc y1(0) =1 et pour k > 2 y;,(0) =0 dondEa(0) = C1 = 1))

e b) Par commutativité (cf II.1.a ) on peut remarquer que A.Cj, = Cj.A et donc par linéarité du produit A.E4(s) = Ea(s).A
. Et donc

[E(5) = A.E(s) = E,(s).4 ot E4(0) = 1T,

e ¢) ¢ est le produit de deux fonctions dérivables , donc est dérivable et
¢'(s) = Ea(s). (Ea(=s))" + Ey(s)-Ea(—s) = Ea(s). (~E4(=s)) + Ej(5).-Ea(—s)

en utilisant le théoréme de dérivation d’une fonction composée . De plus E'y(s) = A.Ea(s) donc E'y(—s) = A.E4(—s)
donc
¢’ (s) = —Ea(s).A.Ea(—5) + A.E4(s).Ea(—3)

et comme A.E4(s) = Ea(s).A on a ¢'(s) = 0 . Tous les coefficients de la matrice ¢(s) ont une dérivée nulle sur R
(intervalle) donc tous les coefficients sont constants donc aussi ¢ et comme ¢(0) = E4(0)? = I,,

Vs eR,¢(s) =1,

Le méme calcul avec 0(s) = E4(—s).E4(s) donne : Vs € R, 0(s) =1,
Onadonc: Vs € R: Ea(s).Ea(—$) = Ea(—s).Ea(s) = I, , et donc

[E'4(s) est inversible d'inverse F4(—s)|

e d) Le méme type de calcul donne :
V' (s) = Ea(—8).F'(s) — Ey(=5).F(s) = Ea(—5).A.F(s) — A.Es(—5).F(s) =0

donc 1 est constante. Or ¢(0) = E4(0).F(0) = I,, . Donc pour tout s ¢(s) = I,, et donc E4(—s).F(s) = I, . On sait
que E4(—s) est inversible donc
F(s) = Ex(—s)"' = Ea(s)

[E 4 est 'unique solution du probléme (1)




I11.3 :

e) Idem avec 0(s) = F(s)Ea(—s)

La fonction précédente ne marche pas car on ne peut pas commuter F(s) et A(s)

exemple
5 0 3
Soit M = -6 -1 -3 . Avec les calculs de 1.1 je prend Ay = 2, Ay = —1, A3 = —1 ( wous pouvez faire un autre
-6 0 -4
choiz sur lordre le résultat sera le méme avec des calculs intermédiaires différents)
1 00 3 0 3
OnadoncCy=| 0 1 0 |,Co=(M-2I3)=| —6 -3 —3 | etCs=(M+1Is5)(M—2I5) =0 d’apres 1.1.d)
0 01 -6 0 —6
et M =y (s)C1 + y2(s) Oy

+0
reste & calculer y;(s) et ya(s) :
y1(s) vérifie 31 (0) = 1 et y1(s) = 2y1(s) donc y;(s) = e2*

ya(s) vérifie y2(0) = 0 et yh(s —y2(s) + € .Les solutions de 1’équation homogene sont y(s) = Ke® et la recherche
e

d’une solution particuliere de y4(s) = —ya(s) + €2 du type s— > ke donne k = 1/3 d’olt ya(s) = &5
100\ o ,uf3 0 3 10 0 10 1
M= e 010 b | -6 =3 3 ) =e"[ 0 10 |+(-e)| -2 -1 -1
0 0 1 -6 0 —6 0 0 1 -2 0 =2
2 0 1 -1 0 -1
= e -2 0 -1 |+ 2 1 1
2 0 -1 2 0 2

remarque : par prudence vérifier le calcul en comparant (eSM)I et M.esM
I1.4 Une solution est Z(s) = e*AZ; en effet :

L] Z(O) = €OA.Z0 = EA(O)Z() = InZO = Z()

o (Z(s)) = (e51) . Zo + e Z) = Ae*N Zy + 0 = AZ(s)

De plus on sait que le probleme de Cauchy admet une unique solution vérifiant une condition initiale donnée . d’ou

I'unicité de la solution.
PARTIE III

II1.1 Par la formule de définition chaque matrice C}, est un polynome en A et donc par combinaison linéaire e*4 = E4(s) =

S or_ 1 yk(s)Cy aussi.
On peut remarquer que e*4 = P4(A) avec d° (P4) < n — 1 et que les coefficients dépendent des valeurs propres donc de A.

Je note 54 = Zz;é pr,aA*
IT1.2 quelques calculs sur les exponentielles de matrices

a) On a
n—1 n—1 n—1
Ae*B = A, ZPk,BBk = Z A. (pk,BBk) = Zpk,BBk-A =eBA
k=0 k=0 k=0

car AB=B.A=VkeN, AB* =Bk A

e b)De méme

3
|
—
S
|
—

(pk7AAk) 5B — Z 5B (pk,A Ak)

0 k=0

>
Il

¢) On a par définition de Ea4p5(s)
1 (s) = (A+ B) p(s) et p(0) = I

et on a (en utilisant la commutativité de e** et B)

V'(s) = (BSA)/ 5B fesA (eSB)/ = AeteB + A B.e’P = (A+ B). (e%4.e*B) = (A+ B).v(s)
v(0) =e’4.e%B =1,.1, = I,

X'(s) = ApX (s)

X(0) = I, avec Ag = A+ B(cf11.2.d) ) ona: Vs:eR,

Par unicité de la solution de I’équation différentielle {

w(s) = v(s) En particulier pour s =1

(AB = BA) = (8 = e.eP)|




I11.3 un contre exemple si A.B # B.A
1 -1 1
On constate A.B = ( 0 0 ) et B.A= ( 0 )
pour A on a Sp(A ={0,1} dou Cy =Tz et Cy =
yp vérifie y1(s) =0 et y1(0) = 1 donc y;(s) = 1

)=
1(s) =
y2 vérifie l/z(S) Y2(s) +y1(s) = ya(s) + 1 et y2(0) = 0 d’ott ya(s) = e® — 1
=1.
(B) =

[en i

donc : es4 Ci+y2(s)A=(e* — 1A+ Ig
pour B on a Sp( {0,1} d’ott (méme calcul) e*” = (e — 1) B+ I3

pour A+ B = ( g 8 on a encore Sp(A + B) = {0,2} et esATB) = g (A+ B)+ 13

e e—1 B_ (, (e 1—e ALB e2 0 a5 [ € 2e—1—¢3
d’ou A+ I3 <O 1 ),e = (e 1)B—|—I3—<O 1 ),e =l o 1 )¢ =) 1

II1.4 autres propriétés de ¢4

e a) On pose ¢ : s— > 3 (PT1AP) o 1 — > P~ 1es4 P et on vérifie que les deux fonctions vérifient la méme équation
différentielle:

$(0) = 0P AP) — [ ot h(0) = P~L.1,.P =1,
¢'(s) = (P71.A.P) .¢(5) et ¢'(s) = P71 (A.es?) .P = P71 A (Pa(s).P7!) .P = P~L.A.Pay(s)
remarque : attention & la rédaction P et e** ne commute pas.

les deux fonctions sont solutions de E'(s) = B.E(s) , E(0) = I,, avec B = P~'.A.P . Par unicité de la solution d’un tel
probléme on a pour tout s ¢(s) = ¥(s)

Vs e R,es(PTAP) — p-1s4.p

e b) méme principe avec : ¢ : s— > e () et Pi—>1 (eSA)

¢(O) = BOtA =1, 7;[}(0) = tIn =1,

¢'(s) = TAd(s) et ¢'(s) = (* (eSA))/ =1 ((eSA)/> = !(e*?.A) = "A(s) ; En utilisant I1.2.b) et la linéarité de la

transposition pour dire que si F est dérivable & valeurs dans M,, (C) * (F') = (*F)’
les deux fonctions sont solutions de E'(s) = B.E(s) , E(0) = I,, avec B = *A . Par unicité de la solution d'un tel probléme
on a pour tout s ¢(s) = ¢(s)

Vs e R, e’ ) = tesA]

partie IV

T bxs — cro 0 —c¢ b
IV.lsi Mat(z) =X =| zo | ona Mat(uAz)=| cx1—azxs | =AX avec A = c 0 —a
T3 axs — br b a O

IV.2 par la régle de Sarrus ou en développant

-A —c b
wa(N) =det(A—A)=| ¢ -\ —a|=-=—N+(+0>+)))
b a =X
3
Comme u est un vecteur de norme 1 il reste ’%A (M) =- (>‘ + )‘)‘

On déduit du Ld.c: — (A% + A) = 0 soit A> = —A
IV.3 toujours avec ’algorithme du II :
le polynéme caractéristique donne Sp(A) = {0,i, —i} d’ott :

o 01213,OQZA,ngA.(A—iI?,):AQ—iA

yp vérifie y1(s) =0 et y1(0) = 1 donc yy1(s) =1

is

yo vérifie y4(s) = iya(s) + 1 et y2(0) = 0 soit ya(s) = &2 =i(1 — €*)

ys vérifie y4(s) = —iys(s) +i (1 — ™) ,y3(0)=1.
On cherche une solution particuliere en superposant une solution de y' = —iy + i ( soit y = 1) et une solution de

is

e2)

/

y' = —iy —ie’ (soit y = —

1., 1
y3(s)=1— 56% - 5e

—1s



D’ou

P — [3+z(1—e )A—|—<1 ;i5—16i5>(A2—iA)

Iy +i (e_, ) <1 S - —) A%
)A

I5 + sin(s)A + (1 — cos(s

On peut alors utiliser I1.4

[X(s) = (I3 + sin(s) A + (1 — cos(s)) A?) X

Remarque :On peut aussi vérifier que est solution (I3 + sin(s)A + (1 — cos(s))A?) du probléme (1)

IV.4 . En comparant avec la matrice trouvée au IV.1 il suffit de prendre a = 1,b = ¢ = 0 . On prend donc une base
orthonormée telle que le premier vecteur de base soit u( elle existe car u est unitaire)

soit alors By = (u, v, w) la base orthonormée que je choisi directe . Soit U, V, W les matrices de u, v, w dans la base initiale
Ona AU =0 (car u Au=0) AV =W et AW = —V donc

e matp(g(u)) = e*A.U = U +sin(s)A.U + (1 — cos(s))A.A.U = U donc g(u) =
e matp(g(v)) = e*AV =V +sin(s)W + (1 — cos(s))(=V) = cos(s)V + sin(s)W

e matp(g(w)) = e*AW = W +sin(s)(=V) + (1 — cos(s))(—=W) = cos(s)W — sin(s)V

1 0 0
d’ott matp,(g) = | 0 cos(s) —sin(s) . [On obtient une rotation d’axe dirigé par u et d’angle 9 .

0 sin(s)  cos(s)
Si on note P la matrice de passage telle que B = PAP~! on a d’apres I11.4 :

1 0 0
B = PAPT! — pesAp-l = PMatg(g)P~' = Matp,(g) = [ 0 cos(s) —sin(s)
0 sin(s)  cos(s)



