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1 Partie I

Les calculs ne seront pas détaillés.

1. (a) On a

φ′
0(0) = ayinit ln

θ

yinit
> 0 et

θ

yinit
> 1

et φ0 est de classe C1 donc pour un certain ε > 0, on a

∀t ∈ [0, ε] , φ′
0(t) > 0 et

θ

φ0(t)
> 1.

Par stricte croissance, il vient

∀t ∈ ]0, ε] , φ0(t) > yinit,

ce qui conclut.
(b) Après calculs, on a

∀t ∈ R+, z
′
0(t) = −az0(t)

donc il existe C ∈ R tel que

∀t ∈ R+, z0(t) = Ce−at.

Après calculs, on obtient

∀t ∈ R+, φ0(t) = θ
(yinit

θ

)e−at

.

(c) La stricte croissance de φ0 découle directement d’une dérivation. Par
ailleurs, on a

φ0(t) −−−−→
t→+∞

θ

et donc
∀t ∈ ]0,+∞[ , yinit < φ0(t) < θ.
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2. Après calculs, on obtient

∀t ∈ R+, z
′
µ(t) = −azµ(t) +

a

θµ

et donc, il existe C ∈ R tel que

∀t ∈ R+, zµ(t) =
1

θµ
+ Ce−at.

Avec la condition initiale, on en déduit

∀t ∈ R+, lnφµ(t) = − 1

µ
ln

(
y−µinite

−at +
1

θµ
(1− e−at)

)
.

3. (a) Par l’équivalent simple

1− exp(µ ln(y/θ)) ∼
µ→0

−µ ln y
θ
,

on obtient directement la convergence simple de Fµ vers F0 sur ]0,+∞[
quand µ tend vers 0.

(b) Après calculs (des DL à l’ordre 1), on a l’équivalent simple

ln
(
y−µinite

−at+ θ−µ(1− e−at)
)

∼
µ→0

−µ
(
e−at ln yinit+(1− e−at) ln θ

)
,

et l’on conclut par continuité de la fonction exponentielle.

2 Partie II : théorème d’Arzelà-Ascoli

1. Soit ε > 0. Soit x ∈ K et r =
ε

k
. Soit f ∈ B et y ∈ B(x, r) ∩K.

Alors on a
∥f(x)− f(y)∥ ≤ k∥x− y∥ ≤ ε,

ce qui conclut.
2. Sens direct. Soit A une partie relativement compacte. Fixons A′ une

partie compacte telle que A ⊂ A′. Alors toute suite (fn) ∈ AN est une
suite du compact A′ et donc possède une sous-suite convergente dans
A′, donc une sous-suite qui converge uniformément vers une fonction
de A′ ⊂ C(K,Rd) (C(K,Rd) est muni de la norme de la convergence
uniforme).

Sens réciproque. Supposons que toute suite d’éléments de A possède
une sous-suite qui converge uniformément vers une fonction de C(K,Rd).
Notons A l’adhérence de A dans C(K,Rd) muni de la norme de
la convergence uniforme. Soit (fn) une suite d’éléments de A. Pour
chaque entier n ∈ N, on peut fixer gn ∈ A tel que

∥fn − gn∥∞ ≤ 1

n+ 1
·

Par hypothèse, on peut fixer g ∈ C(K,Rd) et φ une extraction tels
que

gφ(n) → g.
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Par opérations, on a aussi

fφ(n) → g.

Enfin, par caractérisation séquentielle, on a g ∈ A et donc la suite
(fn) possède une valeur d’adhérence dans A.

Cela montre la compacité de A. Le compact A contient A donc A est
relativement compacte.

3. Soit A une partie relativement compacte de C(K,Rd). Supposons que A
ne soit pas équicontinue et fixons ε > 0 ainsi que x ∈ K tel que

∀n ∈ N,∃fn ∈ A,∃yn ∈ B
(
x,

1

2n
)
∩K, ∥fn(x)− fn(yn)∥ > ε.

Par la question précédente, fixons g ∈ C(K,Rd) et φ une extraction tels
que

∥fφ(n) − g∥∞ → 0.

Par encadrement et continuité de g en x, on a

yφ(n) → x donc g(yφ(n)) → g(x).

Par majoration et opérations, on en déduit que

fφ(n)(yφ(n)) → g(x).

On a aussi

fφ(n)(x) → g(x) donc ∥fφ(n)(x)− fφ(n)(yφ(n))∥ → 0,

ce qui est contradictoire avec la propriété

∀n ∈ N, ∥fφ(n)(x)− fφ(n)(yφ(n))∥ > ε.

4. Supposons que A soit relativement compacte.

D’après la question précédente, A est équicontinue.

Soit x ∈ K. L’application

φ :

{
C(K,Rd) → Rd

f 7→ f(x)

est linéaire et

∀f ∈ C(K,Rd), ∥φ(f)∥ = ∥f(x)∥ ≤ ∥f∥∞,

donc φ est continue.

Comme A est relativement compacte, son adhérence A est un fermé inclus
dans un compact, donc un compact.

Ainsi, φ(A) est un compact (de Rd), donc une partie bornée. L’inclusion

A(x) ⊂ φ(A)

permet de conclure.
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5. (a) La suite (fn(x0)) est bornée dans Rd qui est de dimension finie donc
il existe une extraction φ0 telle que (fφ0(n)(x0)) converge.

Suppsons les extractions φ0, . . . , φp construites telles que les suites
(fφ0···φp(n)(xp))n soient convergentes.

La suite (fφ0···φp(n)(xp+1))n est bornée dans Rd donc il existe une
extraction φp+1 telle que (fφ0···φp+1(n)(xp+1))n soit convergente.

(b) Pour tout p ∈ N, on note ℓp ∈ Rd la limite de la suite (fφ0···φp(n)(xp))n.

Soit p ∈ N. Les inégalités suivantes

φp+1 · · ·φn+1(n+1) = φp+1 · · ·φn(φn+1(n+1)) ≥ φp+1 · · ·φn(n+1) > φp+1 · · ·φn(n)

montrent que n 7→ φp+1 · · ·φn(n) est strictement croissante sur Jp+
1,+∞J.

De la convergence de (fφ0···φp(n)(xp))n on déduit par suite extraite
que

fφ0···φpφp+1···φn(n)(xp) → ℓp,

ce qui conclut.
6. (a) Comme Q est dénombrable, on dispose d’une suite (xp) telle que

Q ∩K = {xp, p ∈ N}.

D’après la question précédente, on dispose d’une suite (ℓp)p ∈ (Rd)N
telle que

∀p ∈ N, fψn(n)(xp) −−−−−→n→+∞
ℓp.

Par vérification immédiate, n 7→ ψn(n) est strictement croissante et
donc la suite définie par gn = fψn(n) convient.

(b) Attention : l’énoncé est erroné.

On rajoute une hypothèse manquante. On suppose que

Q ∩K = K,

ce qui est par exemple vérifié lorsque K est un segment.

Soit x ∈ K. Soit (n, p, q) ∈ N3 et ε > 0. On a

∥gn(x)− gp(x)∥ ≤ ∥gn(x)− gn(xq)∥+ ∥gn(xq)− ℓq∥+ ∥ℓq − gp(xq)∥
+ ∥gp(xq)− gp(x)∥.

On peut alors choisir N ∈ N tel que pour n ≥ N et p ≥ N , on ait

∥gn(x)− gp(x)∥ ≤ ∥gn(x)− gn(xq)∥+ 2ε+ ∥gp(xq)− gp(x)∥.

Par équicontinuité de A, on peut fixer r > 0 tel que

∀n ≥ N, ∀y ∈ B(x, r) ∩K, ∥gn(y)− gn(x)∥ ≤ ε.

Par densité de Q∩K dansK, on peut choisir q ∈ N tel que ∥x−xq∥ < r
et l’on a

∥gn(x)− gp(x)∥ ≤ 4ε.
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Maintenant, fixons λ et µ deux valeurs d’adhérences que l’on suppose
distinctes de la suite (gn(x)) ainsi que φ et ψ des extractions associées.

On prend ε =
∥λ− µ∥

8
et l’on a

∀n ≥ N, ∥gφ(n)(x)− gψ(n)(x)∥ ≤ ∥λ− µ∥
2

·

On fait tendre n vers +∞ et l’on obtient

∥λ− µ∥ ≤ ∥λ− µ∥
2

,

ce qui constitue une absurdité.

La suite (gn(x)) est bornée, possède une unique valeur d’adhérence
et Rd est de dimension finie, donc (gn(x)) est une suite convergente,
ce qui conclut.

7. (a) Soit x ∈ K et ε > 0. Par équicontinuité, on peut fixer r > 0 tel que

∀y ∈ B(x, r) ∩K,∀n ∈ N, ∥gn(x)− gn(y)∥ ≤ ε.

Par passage à la limite quand n tend vers +∞, on en déduit

∀y ∈ B(x, r) ∩K, ∥g(x)− g(y)∥ ≤ ε,

ce qui conclut.
(b) Raisonnons par l’absurde et fixons ε > 0 ainsi que φ une extraction

tels que
∀n ∈ N, ∥gφ(n) − g∥∞ > ε.

On peut alors fixer une suite (xn) ∈ KN telle que

∀n ∈ N, ∥gφ(n)(xn)− g(xn)∥ > ε.

Par compacité, on peut fixer ℓ ∈ K et ψ une extraction tel que

xψ(n) → ℓ.

On a alors

∀n ∈ N, ∥gφψ(n)(xψ(n))− g(xψ(n))∥ > ε.

La suite (xψ(n)) converge vers ℓ donc, par équicontinuité, pour n assez
grand, on a

∥gφψ(n)(xψ(n))− gφψ(n)(ℓ)∥ ≤ ε

3
·

Par convergence simple de la suite (gn) sur K, on a aussi, pour n
assez grand :

∥gφψ(n)(ℓ)− g(ℓ)∥ ≤ ε

3
·

Enfin, par continuité de g en ℓ, toujours pour n assez grand, on a

∥g(ℓ)− g(xψ(n))∥ ≤ ε

3
·

Par somme et inégalité triangulaire, on en déduit une absurdité.
(c) On vient de montrer que toute suite (fn) d’éléments de A possède

une sous-suite qui converge uniformément vers une certaine fonction
de C(K,Rd). Par la question 2, on en déduit que A est relativement
compacte.
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Partie III : théorème de Cauchy-Peano

1. On peut trouver r > 0 tel que Br ⊂ Ω. En effet,
— si Ω = Rd, r = 1 convient ;
— sinon, la distance entre yinit et le fermé non vide Rd \ Ω est atteinte,

et r = 1
2d

(
yinit,Rd \ Ω) convient.

D’après le théorème des bornes atteintes, la fonction continue ∥F∥ admet
un maximum M sur le compact Br.

Posons alors T = r
M+1 .

On montre alors par récurrence finie que, pour tout k ∈ J0, NK, il existe
une liste (y0, y1, . . . , yk) ∈ Bk+1

r telle que y0 = yinit et

∀j ∈ J0, k − 1K,
{
yj+1 = yj +

T
N F (yj)

∥yj − y0∥ ≤ j TMN .

L’initialisation étant claire, fixons k ∈ J0, N−1K et une telle liste (y0, y1, . . . , yk),
et vérifions qu’en prolongeant la liste par yk+1 = yk+

T
N F (yk), on obtient

encore une liste qui convient. Les deux points à vérifier sont :
— l’inégalité ∥yk+1 − y0∥ ≤ (k+1)TMN , conséquence de l’inégalité trian-

gulaire :

∥yk+1 − y0∥ ≤ T

N
∥F (yk)∥︸ ︷︷ ︸

≤TM/N

+ ∥yk − y0∥ ≤ (k + 1)
TM

N
,

— l’appartenance de yk+1 à Br, conséquence immédiate de l’inégalité
précédente et de la remarque (k + 1)TMN ≤ TM ≤ r.

2. Une fonction [0, T ] → Rd, affine sur chacun des sous-intervalles donnés
par l’énoncé est uniquement déterminée par ses valeurs aux « points de
coupure » n TN (n ∈ J0, NK), ce qui montre l’existence et l’unicité d’une
telle fonction φN .

Sa continuité est immédiate en tout point différent d’un point de coupure
intérieur (en un voisinage duquel elle est affine), et guère plus compliquée
en un point de coupure intérieur, car ses limites à gauche et à droite
coïncident.

Remarquons que la convexité de Br entraîne que φN est même à valeurs
dans Br.

3. D’après le théorème 1 (d’Ascoli-Arzelà) et la question II-2, il suffit de
montrer que l’ensemble Φ = {φN |N ∈ N∗} est équicontinu et que, pour
tout x ∈ [0, T ], l’ensemble Φ(x) est borné.

Ce deuxième point est déjà clair car on a remarqué à la fin de la question
précédente que ∀x ∈ [0, T ] ,Φ(x) ⊂ Br.

Pour le premier, on peut commencer par remarquer (par une petite dis-
jonction de cas) que si a < b < c sont trois réels et que f : [a, c] → Rd
est k-lipschitzienne sur [a, b] et k-lipschitzienne sur [b, c], alors elle est
k-lipschitzienne sur [a, c].

En appliquant récursivement cette remarque, on obtient que, pour tout
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N ∈ N, la fonction φN est kN -lipschitzienne, où

kN = max
n∈J0,N−1K

∥yn+1 − yn∥
T/N

= max
n∈J0,N−1K

∥F (yn)∥

Or, on voit que, pour tout N ∈ N∗, kN est majoré par la norme uniforme
de F sur le compact Br, si bien que tous les éléments de Φ sont des
fonctions ∥F∥Br

∞ -lipschitziennes.

La question II-1 entraîne alors que Φ est équicontinu, ce qui conclut.
4. SoitN ∈ N∗. On définit la fonction ψN sur [0, T ] =

⊔
n∈J0,N−1K

[
n TN , (n+ 1) TN

[
⊔

{T} en lui donnant la valeur yn = φN
(
n TN

)
sur chaque sous-intervalle

In =
[
n TN , (n+ 1) TN

[
(pour n < N) et la valeur yN en T . Il s’agit claire-

ment d’une fonction en escalier.

La fonction (à valeurs dans Rd) t 7→ F
(
ψN (t)

)
est alors elle-même

constante sur les intervalles In, ce qui entraîne que la fonction φ̃N : t 7→
yinit +

∫ t
0
F
(
ψN (s)

)
ds est affine sur chaque segment In = In ∪ {sup In}.

Par ailleurs, on montre facilement par récurrence finie (ou télescopage)
que ∀n ∈ J0, NK, φ̃N

(
n TN

)
= yn, en utilisant la relation de Chasles et le

calcul
∫ (n+1) T

N

n T
N

F
(
ψN (s)

)
ds =

∫
In
F (yn) ds =

T
N F (yn).

L’unicité montrée à la question 2 (notons que l’on n’y a pas utilisé l’hy-
pothèse de continuité) montre alors φ̃N = φN , ce qui conclut.

5. Notons une imprécision de l’énoncé : la suite de fonctions (ψN )N∈N∗ n’est
pas entièrement caractérisée par la propriété de l’énoncé, car on peut
changer à loisir la valeur de ψN en un nombre fini de points (différents des
points de coupure) sans que cela ait d’impact sur l’égalité de la question
précédente. Si l’on s’amuse à ça (en posant par exemple ψN (x∗) = N
pour une valeur x∗ ∈ [0, T ] telle que x ̸∈ TQ) , il est clair que la suite de
fonctions (ψN )N∈N∗ n’a plus de raison d’avoir de sous-suite convergeant,
même simplement.

On travaillera donc dans la suite avec la suite de fonctions (ψN )N∈N∗ que
l’on a nous même définie.

Il suffit de montrer que ∥ψN − φN∥∞ −−−−−→
N→+∞

0 pour que la question 3

entraîne ψχ(m)
CU−−−−−→

m→+∞
φ, pour toute extractrice χ : N → N∗ telle que

φχ(m)
CU−−−−−→

m→+∞
φ.

Rappelons que toutes les fonctions φN sont k-lipschitziennes, avec k =

∥F∥Br

∞ . Notons σN la subdivision
(
n TN

)N
n=0

.

SoitN ∈ N∗ et x ∈ [0, T ]. On peut trouver un point p de la subdivision σN
tel que x ≥ p et |x− p| ≤ T

N . On en déduit, car ψN (x) = ψN (p) = φN (p),
que

∥φN (x)− ψN (x)∥ = ∥φN (x)− φN (p)∥ ≤ k |x− p| ≤ k
T

N
,

ce qui montre ∥φN − ψN∥∞ ≤ k TN , et conclut.
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6. D’après le théorème de Heine, la fonction F est uniformément continue
sur le compact Br. La convergence uniforme ψχ(m)

CU−−−−−→
m→+∞

φ ne mettant
en jeu que des fonctions à valeurs dans Br, on en déduit sans difficulté
la convergence uniforme F ◦ ψχ(m)

CU−−−−−→
m→+∞

F ◦ φ.

Le théorème d’intégration d’une limite uniforme sur un segment est
énoncé dans le programme officiel pour une suite de fonctions continues,
mais on vérifie sans peine que sa démonstration reste valable pour des
fonctions (la limite et les éléments de la suite) continues par morceaux.
On en déduit que la suite de fonctions

(
t 7→

∫ x
0
F ◦ ψχ(m)

)
m∈N converge

uniformément vers
(
t 7→

∫ x
0
F ◦ φ

)
m∈N. En ajoutant la constante yinit, on

obtient même que
(
φχ(m)

)
m∈N converge uniformément vers la fonction

φ̃ : t 7→ yinit +

∫ t

0

F
(
φ(s)

)
ds.

Par unicité de la limite uniforme, cette fonction doit donc être φ elle-
même.

D’après le théorème fondamental, la fonction φ = φ̃ est de classe C1, et
elle vérifie φ(0) = yinit et φ′ = F ◦ φ, ce qui conclut.

Tout ce raisonnement ayant été mené avec une fonction F continue arbi-
traire, on a démontré le théorème 2 (de Cauchy-Peano).

7. La fonction f :

{
R → R
t 7→ 1R+

(t) t3
est manifestement positive, de classe

C1 sur R∗, puis sur R (à la main, ou par le théorème de la limite de la
dérivée), de dérivée t 7→ 31R+

(t) t2 = 3f2/3 = 3 |f |2/3.
Cette fonction f est donc solution du problème de Cauchy de l’énoncé.
Par dérivation des fonctions composées, pour tout τ ∈ R, la fonction fτ :

t 7→ f(t − τ) est encore solution de l’équation (autonome) y′ = 3 |y|2/3.
Or, pour tout τ ≥ 0, la fonction fτ vérifie par ailleurs encore la condition
initiale fτ (0) = 0.

Ainsi, ce problème de Cauchy possède une infinité de solutions globales,
à savoir (au moins) les fonctions (fτ )τ∈R+

. Notons que ces fonctions sont
bien distinctes parce que, par exemple, ∀τ ∈ R, f−1

τ {1} = {τ + 1}.

Partie IV. Inclusions différentielles

1. Soit X : [0, T [ → Rd et Y : [0, T+[ → Rd deux solutions maximales.
Quitte à échanger leurs rôles, on suppose que T ≤ T+.

En raffinant, on prend une subdivision 0 = t0 < t1 < · · · < tN = T
adaptée aux deux solutions, c’est-à-dire vérifiant les propriétés (i) à (v)
de l’énoncé.

Par opérations, la fonction ρ : t 7→ ∥X(t)− Y (t)∥2 = ⟨X(t)− Y (t)|X(t)− Y (t)⟩
est continue sur [0, T [ et dérivable sur chaque composante ouverte de la
subdivision : pour tout i < N et tout t ∈ ]ti, ti+1[, on a par dérivation
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des fonctions composées et en utilisant l’hypothèse

ρ′(t) = 2 ⟨X ′(t)− Y ′(t)|X(t)− Y (t)⟩

≤ 2CK ∥X(t)− Y (t)∥2 = 2CK ρ(t).

La fonction σ : t 7→ ρ(t) exp(−2CK t) est donc continue sur [0, T [, dé-
rivable sur chaque composante ouverte de la subdivision ouverte, et de
dérivée négative sur chacune de ces composantes. On en déduit qu’il s’agit
d’une fonction (positive) décroissante (elle l’est sur chaque composante
fermée de la subdivision et sur [tN−1, T [, ce qui entraîne la décroissance
globale).

Comme par ailleurs σ est positive et que σ(0) = 0, on en déduit que la
fonction σ est nulle, ce qui montre que X = Y sur [0, T [. Par maximalité
de X, on en déduit T = T+, d’où X = Y .

2. (a) Soit K ⊂ R2 un compact. Nous allons montrer que CK = 1 convient.

Soit x = (x1, x2), y = (y1, y2) ∈ K. Soit vx ∈ F(x), vy ∈ F(y). On
note ξ et η, respectivement, les abscisses de vx et vy, les ordonnées
valant 2 dans tous les cas. Notons que |ξ| , |η| ≤ 1.

On a alors ⟨vx − vy|x− y⟩ = (ξ − η)(x1 − y1). Nous allons montrer
que ce produit scalaire est toujours ≤ 0, ce qui entraînera l’inégalité.

— Si x1 = y1 = 0, le produit scalaire est nul.
— La même chose est vraie si x1 et y1 sont non nuls et de même

signe car ξ = η dans ce cas.
— Si x1 et y1 sont non nuls et de signe opposé, la définition montre

que ξ− η = −2sgn(x1 − y1) est du signe opposé à x1 − y1, donc le
produit scalaire est < 0.

— Enfin, si (quitte à les échanger, ce qui ne change pas la valeur du
produit scalaire) x1 ̸= 0 et y1 = 0, on a ξ = −sgn(x1) et |η| ≤ 1,
donc ξ − η est, au sens large, du signe opposé à x1. Dans ce cas,
le produit scalaire vaut x1(ξ − η) ≤ 0.

(b) On vérifie sans difficulté que t 7→ (0, 2t) est une solution globale du
problème.

Étant globale, elle est maximale. La question précédente garantissant
l’unicité d’une telle solution, il s’agit de la seule solution maximale
du problème.

(c) On vérifie sans difficulté que t 7→

{
(1− t, 2t) si t ≤ 1

(0, 2t) si t ≥ 1
est une solu-

tion globale (et donc maximale) du problème, les mêmes arguments
que précédemment montrant qu’il s’agit de la seule.

3. Notons une erreur d’énoncé, les vecteurs v− et v+ ne vérifiant pas la
convention v−1 ≥ v+1 pourtant promise avant la question 2. Cette erreur
n’est pas mathématiquement gênante (la convention ne servant proba-
blement qu’à écrire les segments « dans le bon sens » dans la définition
de F(x)) mais elle peut légitimement agacer le lecteur ayant dû digérer
des notations un peu bourratives...

(a) et (c) Pour tout τ ∈ [0,+∞], on note Xτ : t 7→

{
(0, t) si t ≤ τ

(t− τ, t) si t ≥ τ
.
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On vérifie sans difficulté que toutes les fonctions Xτ sont des solutions
globales (donc maximales) du problème.

En particulier, il n’y a pas unicité de la solution maximale, donc la
question 1. entraîne que F ne vérifie pas la condition (3).

Reste à montrer que toute solution maximale est de cette forme : soit
Y : [0, T [ → R2 une solution maximale du problème (pour un certain
T ∈ ]0,+∞]).

Notons T : t 7→ (f(t), g(t)), et considérons une subdivision (ti)
N
i=0

comme dans l’énoncé.

La fonction g est continue, dérivable sur chaque composante ouverte
de la subdivision, et sa dérivée y vaut constamment 1 car l’ordonnée
de tout vecteur de tout F(x) vaut 1. On en déduit que g : t 7→ t (par
exemple en montrant, par récurrence sur i, que g coïncide avec t 7→ t
sur [0, ti[ puis sur [0, ti] par continuité...).

Le même type de raisonnement montre que f est croissante, car sa
dérivée sur chaque composante ouverte de la subdivision est ≥ 0.

Considérons l’ensemble Z = {t ∈ [0, T [ | f(t) = 0}, non vide car conte-
nant 0. Par croissance et continuité de f , Z est un intervalle et un
fermé relatif de [0, T [.

On en déduit que Z = [0, T [ ou qu’il existe τ < T tel que Z = [0, τ ].

— Dans le premier cas, Y est une restriction de X∞ : t 7→ (0, t),
donc, par maximalité, Y = X∞.

— Dans le deuxième cas, on a ∀t ≤ τ, f(t) = 0 et ∀t > τ, t ̸∈ {ti} =⇒
f ′(t) = 1, donc ∀t ≥ τ, f(t) = t− τ . La fonction Y coïncide donc
avec Xτ , donc, par maximalité, Y = Xτ .

(b) L’unique solution maximale est X : t 7→ (t+ 1, t).

En effet, comme à la question précédente, on pourra écrire toute so-
lution maximale sous la forme t 7→ (f(t), t), où f est croissante, donc
≥ 1, donc doit vérifier f ′(t) = 1 (sur toute composante ouverte de la
subdivision, et donc partout)...
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