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1 Partiel

Les calculs ne seront pas détaillés.

1.(a) On a

>0 et >1

Yinit Yinit

L)0(/) (O) = QYinit In

et g est de classe C'' donc pour un certain € > 0, on a

Vt € [0,e],95(t) >0 et

®o(t)
Par stricte croissance, il vient
vt S ]076] 7900(t) > Yinits

ce qui conclut.
(b) Apres calculs, on a

Vt € Ry, z((t) = —azo(t)
donc il existe C' € R tel que
Vt € Ry, zo(t) = Ce .

Apreés calculs, on obtient

—at

vt € Ry, po(t) = 0 (L2it)

(¢) La stricte croissance de ¢g découle directement d’une dérivation. Par
ailleurs, on a

wolt) 56

et donc
vt € }Oa +oo[ayim't < @O(t) < 9.



2. Aprés calculs, on obtient

Vt € Ry, z,(t) = —az,(t) + ;%

et donc, il existe C' € R tel que

1
VteRy,z,(t) = i Ce .

Avec la condition initiale, on en déduit
1 - _—at 1 —at
Vit e Ry, Ine,(t) = ~ In (ymite + o (1—e ))

3. (a) Par I’équivalent simple
Y
1- 1 ~ —uln=
exp(uln(y/6)) ~ —plog,
on obtient directement la convergence simple de F), vers Fy sur ]0, +00|
quand g tend vers 0.
(b) Apres calculs (des DL a l'ordre 1), on a l’équivalent simple

In (yi;zl;te_at +07(1 - e_at)) ~o M (e_at In Yinit + (1 — e~ ") In 9>7

n—0

et I'on conclut par continuité de la fonction exponentielle.

2 Partie II : théoréme d’Arzela-Ascoli

1. Soit & > 0. SoitxeKetr:% Soit f € Bety € Bz, r)N K.

Alors on a
[f(z) = f)ll < kllz —yll <e,

ce qui conclut.

2. Sens direct. Soit A une partie relativement compacte. Fixons A’ une
partie compacte telle que A C A’. Alors toute suite (f,,) € AN est une
suite du compact A’ et donc posséde une sous-suite convergente dans
A’, donc une sous-suite qui converge uniformément vers une fonction
de A’ ¢ C(K,R?) (C(K,R?) est muni de la norme de la convergence
uniforme).

Sens réciproque. Supposons que toute suite d’éléments de A posséde
une sous-suite qui converge uniformément vers une fonction de C'(K, R?).
Notons A l'adhérence de A dans C(K,R?) muni de la norme de
la convergence uniforme. Soit (f,,) une suite d’é¢léments de A. Pour
chaque entier n € N, on peut fixer g, € A tel que

Par hypothése, on peut fixer g € C(K,R%) et ¢ une extraction tels
que
Jo(n) — 9-



Par opérations, on a aussi
ftp(n) —g-

Enfin, par caractérisation séquentielle, on a g € A et donc la suite
(fn) posséde une valeur d’adhérence dans A.

Cela montre la compacité de A. Le compact A contient A donc A est
relativement compacte.

3. Soit A une partie relativement compacte de C'(K,R?). Supposons que A
ne soit pas équicontinue et fixons € > 0 ainsi que x € K tel que

1
Vn e N,3f, € A, Ty, € B(m,2—n) NEK, || fu(z) = fulyn)| > €.

Par la question précédente, fixons g € C(K,R?) et ¢ une extraction tels
que
[ fony — glloc — 0.

Par encadrement et continuité de g en x, on a
Yon) — = donc  g(yemy) = g(x).

Par majoration et opérations, on en déduit que

fga(n) (yga(n)) — g(aj)
On a aussi

fgo(n) (x) — g(x) donc Hfgo(n) (m) - ftp(n)(ygo(n))n -0,
ce qui est contradictoire avec la propriété
vn €N, ”fap(n)(x) - fap(n)(ytp(n))ll > €.
4. Supposons que A soit relativement compacte.

D’aprés la question précédente, A est équicontinue.
Soit « € K. L’application

) C(K, R%) — R4

e f)

est linéaire et

vf € CKE,RY), [le(H)ll = 1F @)l < [1fl,

donc ¢ est continue.

Comme A est relativement compacte, son adhérence A est un fermé inclus
dans un compact, donc un compact.

Ainsi, p(A) est un compact (de R?), donc une partie bornée. L’inclusion
A(z) C (4)

permet de conclure.



5. (a)

La suite (f,,(20)) est bornée dans R? qui est de dimension finie donc
il existe une extraction g telle que (fy,n)(z0)) converge.

Suppsons les extractions ¢y, ..., ¢, construites telles que les suites
(fipo-pp(n) (Tp))n sOlent convergentes.

La suite (fyy.p,(n)(Zp41))n est bornée dans R? donc il existe une
extraction ¢, telle que (fy ..o, (n)(Tpr1))n soit convergente.

Pour tout p € N, on note £, € R? la limite de la suite (fp,..., (n) (Zp))n-

Soit p € N. Les inégalités suivantes

Opt1- Pnr1(n+l) = Opr1 - On(@np1(n+1)) > @pr1 - @n(nt1) > @piqg -

montrent que n — @py1 - -, (n) est strictement croissante sur [p +
1, 4o0].

De la convergence de (fy...p,(n)(Zp))n on déduit par suite extraite
que

f‘PO"'@p‘PPJrl""Pn(n) (l'p) - €p7
ce qui conclut.
Comme Q est dénombrable, on dispose d’une suite (z,) telle que

QNK ={z,,p e N}.

D’aprés la question précédente, on dispose d’une suite (£,), € (R%)N
telle que
VP EN, fy,m)(@p) —— o

n—-+o0o

Par vérification immeédiate, n +— 1, (n) est strictement croissante et
donc la suite définie par g, = fy, (n) convient.

Attention : I’énoncé est erroné.

On rajoute une hypothése manquante. On suppose que
QNK =K,

ce qui est par exemple vérifié lorsque K est un segment.

Soit € K. Soit (n,p,q) € N® et ¢ > 0. On a

95 (%) = gp(@)]| < llgn(@) = gn(zo) [l + lgn(xq) — Lol + 1€g — gp(z4) |
+ lgp(2q) — gp()|l.

On peut alors choisir N € N tel que pour n > N et p > N, on ait
lgn () = gp(@)[| < llgn(x) — gn(xg) || + 26 + llgp(zq) — gp(2)].
Par équicontinuité de A, on peut fixer » > 0 tel que
Vn > N,Vy € B(z,r) N K, [lgn(y) — gn(@)|| <.

Par densité de QNK dans K, on peut choisir ¢ € N tel que ||z —z4|| < r
et 'on a

lgn(2) — gp(@)|| < 4e.

on(n)



Maintenant, fixons A et p deux valeurs d’adhérences que 1’on suppose
distinctes de la suite (g, (z)) ainsi que ¢ et ¢ des extractions associées.

A —
On prend € = % et 'on a

1A=l

Yn > N, Hgtp(n)(‘r) - gw(n)(x)H < 2
On fait tendre n vers +o0o et 'on obtient

A < AL

ce qui constitue une absurdité.

La suite (g,(x)) est bornée, posséde une unique valeur d’adhérence
et R? est de dimension finie, donc (g, (x)) est une suite convergente,
ce qui conclut.

Soit « € K et € > 0. Par équicontinuité, on peut fixer r > 0 tel que

Yy € B(z,r) N K,Vn € N, ||gn(z) — gn(y)|| < e.
Par passage a la limite quand n tend vers 400, on en déduit
vy € B(JZ,T) N K7 ||g($) - g(y)H < g,

ce qui conclut.
Raisonnons par ’absurde et fixons £ > 0 ainsi que ¢ une extraction
tels que

Vn € N, ||g<p(n) — g||oo > €.

On peut alors fixer une suite (z,,) € K" telle que
Vn €N, [lgom)(xn) — g(zn)| > &
Par compacité, on peut fixer £ € K et 1 une extraction tel que
Top(n) = L
On a alors
V1 € N, 9oy ) @y ) = 9@yl > €

La suite (xw(n)) converge vers £ donc, par équicontinuité, pour n assez
grand, on a

96w (n) (Tp(n)) = Gop(n) (O] <

Par convergence simple de la suite (g,) sur K, on a aussi, pour n
assez grand :

Wl m

€
96w (€) = 9(OI < 5-

Enfin, par continuité de g en ¢, toujours pour n assez grand, on a

lg(®) = g(eu )l < 5

Par somme et inégalité triangulaire, on en déduit une absurdité.

On vient de montrer que toute suite (f,,) d’éléments de A posséde
une sous-suite qui converge uniformément vers une certaine fonction
de C(K,R?). Par la question 2, on en déduit que A est relativement
compacte.



Partie III : théoréme de Cauchy-Peano

1. On peut trouver r > 0 tel que B, C ). En effet,
— si @ =R? r =1 convient;
— sinon, la distance entre yin;¢ et le fermé non vide R4 \ Q est atteinte,
et r = %d(yinit,Rd \ Q) convient.
D’apreés le théoréme des bornes atteintes, la fonction continue || F'|| admet
un maximum M sur le compact B,.

Posons alors T' = 3777
On montre alors par récurrence finie que, pour tout k € [0, N, il existe
une liste (yo,y1,---,yx) € BF! telle que yo = yinis et

T
: Yi+1 =Y; + v F(y;)
Vi €0,k —1],< 7 J TN, J
iel H{|yj—yo||§JT]34-

L’initialisation étant claire, fixons k € [0, N—1] et une telle liste (yo, y1,- - -, Yk )s

et vérifions qu’en prolongeant la liste par yx4+1 = yr+ % F(yy), on obtient

encore une liste qui convient. Les deux points a vérifier sont :

— D'inégalité [|yr+1 — yol| < (k+1)Z3L, conséquence de I'inégalité trian-
gulaire :

T™

T
k1 = woll < 7 IE @O+ llge = woll < (k +1)—,
——

<TM/N

— l'appartenance de yi41 & B,, conséquence immédiate de l'inégalité
précédente et de la remarque (k + 1)% <TM <.

2. Une fonction [0,7] — RY, affine sur chacun des sous-intervalles donnés

par I’énoncé est uniquement déterminée par ses valeurs aux « points de

coupure » ni (n € [0,N]), ce qui montre Iexistence et 'unicité d’une

telle fonction .

Sa continuité est immédiate en tout point différent d’un point de coupure
intérieur (en un voisinage duquel elle est affine), et guére plus compliquée
en un point de coupure intérieur, car ses limites & gauche et a droite
coincident.

Remarquons que la convexité de B, entraine que ¢y est méme & valeurs
dans B,.

3. D’apres le théoréme 1 (d’Ascoli-Arzela) et la question I1-2; il suffit de
montrer que l'ensemble ® = {py | N € N*} est équicontinu et que, pour
tout x € [0,T], 'ensemble ®(x) est borné.

Ce deuxiéme point est déja clair car on a remarqué a la fin de la question
précédente que Vz € [0,T],®(x) C B,.

Pour le premier, on peut commencer par remarquer (par une petite dis-
jonction de cas) que si a < b < ¢ sont trois réels et que f : [a,¢] — RY
est k-lipschitzienne sur [a,b] et k-lipschitzienne sur [b, ], alors elle est
k-lipschitzienne sur [a, c|.

En appliquant récursivement cette remarque, on obtient que, pour tout



N € N, la fonction ¢y est ky-lipschitzienne, ot

Hyn+1 - yn”
ey = Wntl — Inll F(yy
N 7zeﬁ?vx—lﬂ T/N ne[[r(r)l,z}\fx—l]] ” (y )H

Or, on voit que, pour tout N € N*, ky est majoré par la norme uniforme
de F sur le compact B, si bien que tous les éléments de ® sont des
fonctions || F|| OBOT—lipschitziennes.

La question II-1 entraine alors que ® est équicontinu, ce qui conclut.

. Soit N € N*. On définit la fonction ¢y sur [0, 7] = [, c[o ny—17 nL,(n+1)% U
{T} en lui donnant la valeur y,, = N (n%) sur chaque sous-intervalle

I, = [n%,(n+1)% [ (pour n < N) et la valeur yn en T. Il s’agit claire-

ment d’une fonction en escalier.

La fonction (& valeurs dans R?) t — F(¢n(t)) est alors elle-méme
constante sur les intervalles I,,, ce qui entraine que la fonction @y : ¢ —
Yinit + fot F(wN(s)) ds est affine sur chaque segment I,, = I,, U {sup I, }.

Par ailleurs, on montre facilement par récurrence finie (ou télescopage)
que Vn € [0, N], on (n%) = yn, en utilisant la relation de Chasles et le

caloul [\5% F(un(s)) ds = f; F(ya)ds = & F(ya).

L’unicité montrée a la question 2 (notons que 1’on n’y a pas utilisé 1’hy-
pothése de continuité) montre alors oy = @n, ce qui conclut.

. Notons une imprécision de ’énoncé : la suite de fonctions (¥ n)yen n'est
pas entiérement caractérisée par la propriété de 1’énoncé, car on peut
changer a loisir la valeur de 1y en un nombre fini de points (différents des
points de coupure) sans que cela ait d’impact sur 1’égalité de la question
précédente. Si Uon s’amuse a ¢a (en posant par exemple ¢y (zy) = N
pour une valeur x, € [0,T] telle que ¢ TQ) , il est clair que la suite de
fonctions (¥ n)nen+ n’a plus de raison d’avoir de sous-suite convergeant,
méme simplement.

On travaillera donc dans la suite avec la suite de fonctions (¢¥n)Nen+ que
I'on a nous méme définie.

Il suffit de montrer que [[¥ny — ¢n|l.. —— 0 pour que la question 3
N—4oco

entraine ¥ (m) LN @, pour toute extractrice y : N — N* telle que

m——+oo
CuU
st(m) m—+00 ¥

Rappelons que toutes les fonctions ¢y sont k-lipschitziennes, avec k =
N

||F||DB;T Notons oy la subdivision (n%)nzo.

Soit N € N* et € [0, T]. On peut trouver un point p de la subdivision o x
tel que z > p et [z — p| < %. On en déduit, car ¥y (z) = ¥n(p) = on(p),
que

lon (@) = Y (@) = llen (2) —en ()| <k |z —p| < k%

ce qui montre |y — ¥n||, < kL, et conclut.



6. D’aprés le théoréme de Heine, la fonction F' est uniformément continue

. CU
sur le compact B,.. La convergence uniforme ), (,,, —+> © ne mettant
m——+00

en jeu que des fonctions a valeurs dans B,, on en déduit sans difficulté

. CU
la convergence uniforme F o 1), () ———— F o .
m——+oo

Le théoréme d’intégration d’une limite uniforme sur un segment est

énoncé dans le programme officiel pour une suite de fonctions continues,

mais on vérifie sans peine que sa démonstration reste valable pour des

fonctions (la limite et les éléments de la suite) continues par morceaux.

On en déduit que la suite de fonctions (t — foz Fo ¢x(m))m oy converge
. , x .

uniformément vers (t — fo Fo cp) meN” En ajoutant la constante yip;t, on

obtient méme que (gox(m)) converge uniformément vers la fonction

meN
t

@t~ Yinip + / F(p(s)) ds.
0

Par unicité de la limite uniforme, cette fonction doit donc étre ¢ elle-
méme.

D’aprés le théoréme fondamental, la fonction ¢ = @ est de classe C'!, et
elle vérifie p(0) = yinit €t @' = F o ¢, ce qui conclut.

Tout ce raisonnement ayant été mené avec une fonction F continue arbi-
traire, on a démontré le théoréme 2 (de Cauchy-Peano).

R — R
t — ]I]RJr (t)
C! sur R*, puis sur R (a la main, ou par le théoréme de la limite de la
dérivée), de dérivée ¢ — 31, (t)#2 = 3f2/3 = 3|f|*/%.

7. La fonction f : { /3 est manifestement positive, de classe

Cette fonction f est donc solution du probléme de Cauchy de 1’énoncé.
Par dérivation des fonctions composées, pour tout 7 € R, la fonction f :
t — f(t — 7) est encore solution de I’équation (autonome) ¢y’ = 3 |y|2/3.
Or, pour tout 7 > 0, la fonction f, vérifie par ailleurs encore la condition

initiale f-(0) = 0.

Ainsi, ce probléme de Cauchy posséde une infinité de solutions globales,
a savoir (au moins) les fonctions (fr)-cr, . Notons que ces fonctions sont
bien distinctes parce que, par exemple, V7 € R, f-1{1} = {7 + 1}.

Partie IV. Inclusions différentielles

1. Soit X : [0,7] — R% et Y : [0,7,[ — R? deux solutions maximales.
Quitte a échanger leurs roles, on suppose que T' < T'..
En raffinant, on prend une subdivision 0 = tp < t; < --- <ty =T
adaptée aux deux solutions, c’est-a-dire vérifiant les propriétés (i) a (v)
de I’énoncé.
Par opérations, la fonction p : ¢ — || X (¢) — Y ()|* = (X(t) — Y ()| X (t) — Y (t))
est continue sur [0, 7| et dérivable sur chaque composante ouverte de la
subdivision : pour tout ¢ < N et tout ¢t € J¢;,t,41[, on a par dérivation



des fonctions composées et en utilisant I’hypothése
p(t) =2(X"(t) = Y'(t)|X(t) = Y(t))
<20k | X(t) = Y ()| = 2Ck p(t).

La fonction o : ¢t — p(t) exp(—2Ck t) est donc continue sur [0, T, dé-
rivable sur chaque composante ouverte de la subdivision ouverte, et de
dérivée négative sur chacune de ces composantes. On en déduit qu’il s’agit
d’une fonction (positive) décroissante (elle est sur chaque composante
fermée de la subdivision et sur [ty—1,7T], ce qui entraine la décroissance
globale).

Comme par ailleurs o est positive et que o(0) = 0, on en déduit que la
fonction o est nulle, ce qui montre que X =Y sur [0, 7]. Par maximalité
de X, on en déduit T' =14, dou X =Y.

2. (a) Soit K C R? un compact. Nous allons montrer que Cx = 1 convient.

Soit © = (21,22),y = (y1,y2) € K. Soit v, € F(z),v, € F(y). On
note £ et 1), respectivement, les abscisses de v, et vy, les ordonnées
valant 2 dans tous les cas. Notons que [¢], |n| < 1.

On a alors (v, — vyl —y) = (£ —n)(z1 — y1). Nous allons montrer
que ce produit scalaire est toujours < 0, ce qui entrainera ’inégalité.

— Si z1 = y; =0, le produit scalaire est nul.

— La méme chose est vraie si x; et y; sont non nuls et de méme
signe car £ = n dans ce cas.

— Si z;1 et y; sont non nuls et de signe opposé, la définition montre
que £ —n = —2sgn(x; — y1) est du signe opposé & x1 — y1, donc le
produit scalaire est < 0.

— Enfin, si (quitte a les échanger, ce qui ne change pas la valeur du
produit scalaire) z1 # 0 et y3 = 0, on a £ = —sgn(x1) et || < 1,
donc ¢ — n est, au sens large, du signe opposé a x;. Dans ce cas,
le produit scalaire vaut z1(§ —n) < 0.

(b) On vérifie sans difficulté que ¢ — (0, 2t) est une solution globale du
probléme.

Etant globale, elle est maximale. La question précédente garantissant
l'unicité d’une telle solution, il s’agit de la seule solution maximale
du probléme.

(1—-t2t) sit<1

(0,2¢) sit>1

tion globale (et donc maximale) du probléme, les mémes arguments
que précédemment montrant qu’il s’agit de la seule.

3. Notons une erreur d’énoncé, les vecteurs v~ et v™ ne vérifiant pas la
convention v; > vfr pourtant promise avant la question 2. Cette erreur
n’est pas mathématiquement génante (la convention ne servant proba-
blement qu’a écrire les segments « dans le bon sens » dans la définition
de F(x)) mais elle peut légitimement agacer le lecteur ayant da digérer
des notations un peu bourratives...

(c¢) On vérifie sans difficulté que ¢ — est une solu-

(0,1) sit<rT

(a) et (¢) Pour tout 7 € [0, +00], on note X, : ¢t — . .
(t—m,t) sit>7



On vérifie sans difficulté que toutes les fonctions X sont des solutions
globales (donc maximales) du probléme.

En particulier, il n’y a pas unicité de la solution maximale, donc la
question 1. entraine que F ne vérifie pas la condition (3).

Reste & montrer que toute solution maximale est de cette forme : soit
Y : [0, 7] — R? une solution maximale du probléme (pour un certain
T €]0,+oc]).

Notons T : t ~— (f(t),g(t)), et considérons une subdivision (¢;)X¥,
comme dans 1’énoncé.

La fonction g est continue, dérivable sur chaque composante ouverte
de la subdivision, et sa dérivée y vaut constamment 1 car 'ordonnée
de tout vecteur de tout F(z) vaut 1. On en déduit que g : t — ¢ (par
exemple en montrant, par récurrence sur i, que g coincide avec t — t
sur [0, ¢;[ puis sur [0, ¢;] par continuité...).

Le méme type de raisonnement montre que f est croissante, car sa
dérivée sur chaque composante ouverte de la subdivision est > 0.

Considérons ’ensemble Z = {t € [0, T[| f(t) = 0}, non vide car conte-
nant 0. Par croissance et continuité de f, Z est un intervalle et un
fermé relatif de [0, T7.

On en déduit que Z = [0,T] ou qu’il existe 7 < T tel que Z = [0, 7].

— Dans le premier cas, Y est une restriction de X, : ¢t — (0,¢),
donc, par maximalité, Y = X ..
— Dans le deuxiéme cas, ona Vt < 7, f(t) =0et Vt > 7,t & {t;} =
f'(t) =1, donc Vt > 7, f(t) =t — 7. La fonction Y coincide donc
avec X, donc, par maximalité, Y = X .
(b) L’unique solution maximale est X : t — (¢t + 1,¢).

En effet, comme & la question précédente, on pourra écrire toute so-
lution maximale sous la forme ¢ — (f(¢),t), ou f est croissante, donc
> 1, donc doit vérifier f'(t) = 1 (sur toute composante ouverte de la
subdivision, et donc partout)...
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