
X-ENS 2021 : épreuve C

Question préliminaire

1. On prouve le résultat par récurrence sur n. L’hypothèse au rang n est

∀g ∈ C∞(I,R), |Z(g)| ≥ n =⇒ (∀i ∈ [[1, n− 1]], |Z(g(i)| ≥ n− i))

- Le résultat au rang 2 est conséquence du théorème de Rolle.

- Supposons le résultat vrai aux rangs 2, . . . , n. Soit g de classe C∞ s’annulant au moins
n + 1 fois. Par théorème de Rolle, g′ s’annule au moins n fois. Le résultat au rang n pour
g′ permet alors de finir de prouver le résultat au rang n+ 1.

1 Intersections atypiques et fractions rationnelles

Fractions rationnelles et rationalité

2. (a) dim(K[X]p ×K[X]q) = p+ q + 2 > dim(Kd) et donc

ϕ n’est pas injective

(b) La question précédente sonne un élément (U, V ) 6= (0, 0) dans le noyau de ϕ et on a donc
∀i ∈ [[1, d]], U(xi) = F (xi)V (xi). Ainsi

∃(U, V ) 6= (0, 0), ∀i ∈ [[1, d]], Q(xi)U(xi) = P (xi)V (xi) avec U ∈ K[X]p et V ∈ K[X]q

PV et QU sont de degré ≤ p+ q et égaux en au moins d = p+ q + 1 points distincts. Ces
polynpomes sont égaux et F = P

Q = U
V . Ainsi

F ∈ K(X)

(c) F (K \ P(F )) ∩ K est infini et on peut donc trouver x1, . . . , xd dans K tels que les f(xi)
soient distincts. Ce qui entrâıne que les xi le sont. On se retrouve dans la situation de la
question précédente et

F ∈ K(X)

Intersections avec le cercle unité

3. (a) Soit z ∈ U . On a donc z = 1
z .

Si F (z) ∈ U alors F (z)F (z) = 1 c’est à dire F (z)F (z) = 1 ou encore F (z)G(z) = 1.
La réciproque est identique.

F (z) ∈ U ⇐⇒ F (z)G(z) = 1

(b) Si F est spéciale, il y a une infinité de z ∈ U tels que F (z)G(z) = 1. Ecrivons F = P
Q et

G = P1
Q1

. PP1 −QQ1 admet alors une infinité de racine et est donc le polynôme nul. Ainsi
FG = 1.
Si FG = 1 alors tout élément z de U \ P(F ) vérifie F (z) ∈ U et il y en a une infinité. F
est donc spéciale.

F est spéciale si et seulement si FG = 1

4. Soit α ∈ C. On a |eiθ − α| = |e−iθ − α| = |1− αeiθ|. Ainsi, tout élément de U \ {α} a son image
par Bα dans U. Il y une infinité de tels éléments et
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Bα est spéciale

On a immédiatement

B0(X) = 1 et Beiθ(X) = −eiθ

5. Comme F est spéciale, on a F (X)G(X) = 1.

(a) Si F (α) = 0 alors α ∈ P(G) (sinon on n’a pas FG = 1) et donc 1
α ∈ P(F ) ou encore

1
α ∈ P(F ). La réciproque est identique.

F (α) = 0 ⇐⇒ 1
α ∈ P(F )

(b) On suppose que F ∈ C[X] et on a donc P(F ) = ∅. La question précédente montre que 0
est la seule racine possible pour F . Tout polynôme dans C étant scindé, il existe c ∈ C tel
que F = cXd.
Mais comme F est spéciale, on a FG = 1 et donc cc = 1 ce qui signifie que c ∈ U.

Un polynôme spécial est du type cXd avec c ∈ U

(c) On prouve le résultat demandé par récurrence sur le nombre de racines de la fraction.

- Supposons la fraction sans racine. On a donc F = 1
Q . Comme F est spéciale, il vient

immédiatement que Q l’est et s’écrit donc cXd avec c ∈ U. Ainsi F = X−dB−c est du
type voulu.

- Supposons le résultat vrai quand F admet moins de n racines. Supposons alors que
F = P

Q avec p admettant n+ 1 racines. On note z l’une d’entre elles. F (z) = 0 entrâıne
que 1/z est racine de Q et il existe des polynômes P1, Q1 tels que

F (X) =
X − z
X − 1

z

P1(X)

Q1(X)
= −zBz(X)

P1(X)

Q1(X)

F et Bz étant spéciales, −z P1(X)
Q1(X) l’est aussi et P1 admet n racines. On peut donc

appliquer l’hypothèse de récurrence et conclure.

∃d ∈ Z, ∃n ∈ N, ∃α1, . . . , αn ∈ C, F (X) = Xd
n∏
i=1

Bαi(X)

Racines de l’unité

6. Il existe n ∈ N∗ tel que F (ζnj ) ∈ Un. Les éléments de Un sont ceux qui s’écrivent exp(2ikπn ) et on
les a tous en prenant k entiers consécutifs. On peut donc prendre k tel que b1− n

2 c ≤ k ≤ bn2 c.
On a alors k

n ∈]−1/2, 1/2]. On a donc l’existence de qj ∈]−1/2, 1/2] tel que F (ζnj ) = exp(2iπqj).

Supposons que deux rationnels a
b et c

d conviennent. On a alors 2π ab = 2π cd [2π] et donc a
b −

c
d ∈ Z.

Comme cette quantité est aussi dans ]− 1, 1[, elle est nulle et les rationnels sont égaux.

∀j ≥ 1, ∃!qi ∈ Q∩]− 1
2 ,

1
2 ], F (ζnj ) = exp(2iπqj)

7. (qj) étant à valeurs dans le compact [−1/2, 1/2], pour montrer qu’elle est de limite nulle il suffit
de montrer que 0 est sa seule valeur d’adhérence.
Supposons donc avoir une extractrice ϕ telle que qϕ(j) → `. Comme nϕ(j) → 0, on a ζnϕ(j) → 1.

En passant à la limite dans la relation vérifiée par la suite (qϕ(j)), on obtient F (1) = e2iπ` et

donc 1 = e2iπ`. De plus ` ∈ [−1/2, 1/2] et donc ` = 0.
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lim
j→+∞

qj = 0

8. (a) Comme P (1) = 0, il existe Q ∈ C[X] tel que P = (X − 1)Q. On a alors

nP (ζn) = n(exp(
2iπ

n
)− 1)Q(ζn)→ 2iπQ(1)

Or, P ′ = Q+ (X − 1)Q′ et donc Q(1) = P ′(1). Finalement

lim
n→+∞

nP (ζn) = 2iπP ′(1)

(b) On a

nj(F (ζnj )− 1) = nj
P (ζnj )−Q(ζnj )

Q(ζnj )
→ 2iπ(P −Q)′(1)

Q(1)

Or, F ′ = P ′

Q − F
Q′

Q et donc F ′(1) = P ′(1)
Q(1) −

Q′(1)
Q(1) . Ainsi

lim
j→+∞

nj(F (ζnj )− 1) = 2iπF ′(1)

Or, nj(F (ζnj )− 1) = nj(e
2iπqj − 1) ∼ 2iπqj (j → +∞) et donc

lim
j→+∞

njqj = F ′(1)

9. La suite (cnjqj)j≥1 est convergente et à valeurs entières. Elle est donc stationnaire à partir d’un
certain rang :

∃j0 ≥ 1, ∃m ∈ Z, ∀j ≥ j0, cnjqj = m

On a alors

∀j ≥ j0, F (e
2iπ
nj ) = e2iπqj =

(
e

2iπ
cnj

)m
On a donc une infinité de z ∈ U tels que F (zc) = zm (les z = e

2iπ
cnj ). Ecrivons F = P

Q avec
P ∧Q = 1. On a alors zmQ(zc) = P (zc) pour une infinité de z.
Si m ≥ 0, on a Q(zc) qui divise P (zc). Or P (Xc) et Q(Xc) sont premiers entre eux (utiliser une
identité de Bézout pour P et Q) et donc Q(Xc) est un polynôme constant et Q aussi. F est donc
un polynôme. Or, F est spéciale (une infinité d’éléments de U est envoyé sur U) et 5(b) indique
que F est un monôme. Comme F (1) = 1, il existe d tel que F (X) = Xd.
Si m < 0 alors on a cette fois, de façon similaire, P qui est constant. F = 1

Q est spéciale et Q
l’est donc aussi et comme ci dessus est un monôme unitaire.
Dans les deux cas

∃d ∈ Z, F (X) = Xd

10. Les xj = ζnj ne sont pas pôles de F . Avec les notations de la question 2 (d = p+ q+ 1 où P est
de degré ≤ p et Q de degré ≤ q), on pose

p = ppcm(n1, . . . , nd)

Tous les xj sont alors des puissances de ζp et donc dans Q(ζp) et de même les F (xj) sont tous
dans Q(ζp). la question 2(b) s’applique et indique que

F ∈ Q(ζp)(X)
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11. (a) l désigne le ppcm de N et de v. Notons δ le pgcd de N et v en sorte que lδ = Nv. Par
théorème de Bézout, il existe des entiers α, β tels que αN + βv = δ = Nv

l et ainsi

1

l
=
α

v
+
β

N

et on en déduit que
ζl = ζβNe

2iπα/v

Par ailleurs, u ∧ v = 1 et il existe des entiers α′, β′ tels que α′u + β′v = 1 et donc α
v =

αα′ uv + αβ′. On en déduit que

e2iπα/v = e2iπαβ
′
e2iπαα

′u/v = e2iπαα
′q = ζαα

′

En combinant nos deux relations, on montre donc que

∃a, b ∈ Z, ζl = ζaζbN

(b) On a ζ ∈ Q(ζN ) et avec (a), on en déduit que ζl ∈ Q(ζN ) et donc que Q(ζl) ⊂ Q(ζN ). En
passant aux Q-dimensions, le théorème admis donne

ϕ(l) ≤ ϕ(N)

Utilisons alors les décompositions en produit de facteurs premiers. Comme l est multiple
de N , elles s’écrivent

N =

r∏
i=1

pnii et l =

s∏
i=1

plii

avec s ≥ r et li ≥ ni pour i ∈ [[1, r]]. Avec l’expression de ϕ rappelée par l’énoncé, on a
donc

s∏
i=1

pli−1i (pi − 1) ≤
r∏
i=1

pni−1i (pi − 1)

et on en déduit d’une part que si i ∈ [[1, r]], on a ni = li et d’autre part que si i ∈ [[r + 1, s]],
on a pli−1i (pi − 1) = 1. Ainsi s = r ou s = r + 1 avec pr+1 = 2 et lr+1 = 1 ou encore l = N
ou l = 2N . Dans les deux cas,

l | 2N

Enfin, l est un multiple de v donc lq est entier donc

2Nq ∈ Z

12. Pour tout j, on a e2iπqj = F (ζnj ) avec F à coefficients dans Q(ζp). On en déduit que e2iπqj va
s’écrire comme somme produit et quotient de termes qui sont tous multiples de ζpnj et donc

e2iπqj ∈ Q(ζpnj )

La question 11 (avec N = pnj et qj) indique alors que 2pnjqj ∈ Z. Comme 2p ne dépend pas de
j,

∃c, ∀j, cnjqj ∈ Z

On est alors dans le cadre de la question 9 et

∃d ∈ Z, F (x) = Xd
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13. Supposons F convenable.

Si 1 /∈ P(F ) alors en travaillant avec F
F (1) , ce qui est possible car F (1) ∈ Λ et est non nul, on se

ramène au cas F (1) = 1.
Comme F n’a qu’un nombre fini de pôles, on peut construire une suite (nj) convenable pour
appliquer les questions 6 à 12.
Dans ce cas, il existe z0 ∈ Λ (c’est F (1)) et d ∈ Z tel que F (X) = z0X

d.

Sinon, on peut trouver z0 ∈ Λ tel que z0 /∈ P(F ) et en travaillant avec F1(X) = F (z0X) = P (z0X)
Q(z0X) ,

on a 1 /∈ P(F1) car 1 n’est pas racine de Q(z0X). On est alors ramenés au cas précédent et F1

puis F ont même forme.

La réciproque est immédiate.

Les fractions telle que F (Λ \ P(F )) ⊂ Λ sont celles du type z0X
d avec z0 ∈ Λ et d ∈ Z

2 Intersections atypiques : le cas transcendant

14. On sait qu’une série entière et toutes ses séries dérivées ont même rayon de convergence et que
sur l’intervalle ouvert de convergence, les dérivées succesives de f s’obtiennent en dérivant terme

à terme. En particulier an = f (n)(0)
n! et la nullité des dérivées en 0 équivaut à la nullité de f .

f ∈ C∞(R,R) et est plate en 0 ssi tous les an sont nuls

A ce niveau du problème, il ne me semble pas que l’on attende une preuve de ces résultats de
cours.

15.

(a) Pn étant non nul, on peut considérer son degré d et son coefficient dominant c. Pour x > 0,
on a

f(x)

xdeαnx
=

n∑
i=1

Pi(x)

xd
e(αi−αn)x

Comme αi < αn pour i ≤ n− 1, les n− 1 premiers termes de la somme sont de limite nulle
en +∞ par croissances comparées.
Le terme pour i = n vaut Pn(x)

xd
et est de limite c en +∞.

On a donc f(x)
xdeαnx

→ c 6= 0 quand x → +∞ et la fonction x 7→ f(x)
xdeαnx

n’est pas nulle. A
fortiori

f n’est pas la fonction nulle

(b) f est DSE de rayon infini comme produit et somme de telles fonctions. Comme f 6= 0, la
question 14 indique que f n’est pas plate en 0.
Pour x0 ∈ R, g : x 7→ f(x0+x) peut aussi s’écrire comme une somme de fonctions polynôme
fois exponentielle et, quitte à regrouper des termes (avec les mêmes exponentielles) s’écrit

g(x) =

n∑
i=0

Qi(x)eαix avec Qi ∈ R[X]

g (comme f) n’étant pas la fonction nulle, les Qi ne sont pas tous nuls. Quitte à supprimer
les termes nuls, g est du même type que f . g et donc non plate en 0 ce qui revient à dire
que f est non plate en x0.
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f n’est plate en aucun point

16. Soient P1, . . . , Pd des polynômes non tous nuls. On a alors, en posant g(x) = f(x) exp(αx),

d∑
i=0

Pi(x)g(x)i =
d∑
i=0

Pi(x)P (x)i exp(iαx)

Quitte à supprimer des termes (les i tels que Pi = 0), cette fonction est du type étudié en
question 15 (avec αi = iα si α > 0 et αi = (d− i)α si α < 0) et n’est donc plate en aucun réel.
La fonction g est donc transcendante sur R. Elle l’est a fortiori sur tout intervalle non trivial.

x 7→ P (x)eαx est transcendante sur tout intervalle non trivial

17. Soit g ∈ V . Il existe des scalaires ai,j tels que

∀x ∈ I, g(x) =
∑

1≤i,j≤d−1
ai,jx

i−1f(x)j−1 =

d−1∑
j=0

Pj(x)f(x)j avec Pj(x) =

d∑
i=1

ai,j+1x
i−1

Les ai,j n’étant pas tous nuls, les Pj ne sont pas tous nuls et par définition de la transcendance
(de f)

g ∈ V \ {0} n’est plate en aucun point de I

18. Cr étant une d-courbe, elle est associée à une famille (ai,j)1≤i,j≤d. Soit (x0, y0) ∈ Cr ∩ Γf . On a
alors x0 ∈ I et y0 = f(x0) (appartenance au graphe) et (appartenance à Cr)

d∑
i=1

d∑
j=1

ai,jx
i−1
0 f(x0)

j−1 = 0

Ainsi, g : x 7→
∑d

i=1

∑d
j=1 ai,jx

i−1f(x)j−1 s’annule en x0. g ∈ V et s’annule en moins r2 fois

(puisque |Cr ∩ Γf est de cardinal au moins r2).
Si, par l’absurde, g était identiquement nulle alors on aurait

∀x ∈ I,
d∑
j=1

(
d∑
i=1

ai,jx
i−1

)
︸ ︷︷ ︸

=Qi(x)

f(x)j−1 = 0

et comme les Qi sont non tous nuls (puisque les ai,j ne le sont pas), ceci contredit la transcendance
de f (la somme étant nulle est plate en tout point).

Il existe g ∈ V \ {0} telle que |Z(g)| ≥ r2

Soit g une telle fonction. Posons Ik = [min I + k`(I)
r ,min I + (k+1)`(I)

r [ pour k ∈ [[0, r − 1]]. Les Ik
forment une partition de I et |Z(g)| =

∑r−1
k=0 |Z(g|Ik)|. Cette somme étant plus grande que r2,

l’un des termes est plus grand que r (en contraposant par exemple). Il existe donc k tel que g
s’annule au moins r fois sur Ik. En considérant K = Ik, on a montré que

il existe un segment K de longueur `(I)
r tel que |Z(g) ∩K| ≥ r

19. Pour tout entier r ≥ 1, la question 18 donne une fonction gr et un segment Kr. gr ∈ V se
décompose sur la base (g1, . . . , gn) et on note br le n-uplet de ses coordonnées. En posant ar =

1
‖br‖1

br, on obtient un élément de Sn et Ga, Gb ont les même zéros.
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∃(ar) ∈ (Sn)N
∗
, ∀r,

∣∣Z (Gar) ∩Kr

∣∣ ≥ r et limr→+∞ `(Kr) = 0

20. Sn est fermé comme image réciproque de {1} par l’application continue a 7→
∑n

i=1 |ai|. C’est
aussi une partie bornée (c’est la sphère unité pour la norme 1. . .). Comme Rn est de dimension
finie

Sn est un compact de Rn

La suite ((a)r,minKr) étant à valeur dans le compact Sn × I (un produit de compacts est un
compact), on peut en extraite une sous suite (aϕ(r),minKϕ(r))r≥1 qui converge vers (a, x) ∈
Sn × I.

Il existe une extractrice ϕ telle que aϕ(r) → a ∈ Sn et minKϕ(r) → x ∈ I

21. Soit p ∈ N. Comme ϕ(r)→ +∞, il existe un rang r0 tel que ∀r ≥ r0, ϕ(r) ≥ p+ 1.
Pour r ≥ r0, Gaϕ(r) s’annule au moins p + 1 fois sur Kϕ(r). Sa dérivée p-ième s’annule donc au
moins une fois en un certain br ∈ Kϕ(r) :

∀r ≥ r0, 0 =
n∑
i=1

(aϕ(r))ig
(p)
i (br)

Comme br ∈ Kϕ(r) ⊂ [minKϕ(r),minKϕ(r) + `(I)
ϕ(r) ], br → x. Le passage à la limite dans l’égalité

précédente donne

0 =
n∑
i=1

aig
(p)
i (x) = G(p)

a (x)

Toutes les dérivées de Ga s’annulent en x et Ga est plate en x . On obtient un élément de V

qui est une fonction plate en x ∈ I et ceci contredit la question 17.

Le théorème 2 est prouvé

Une inégalité

22. (a) On utilise les notations de l’énoncé.
La nullité des f(xi) pour i ≤ n− 1 donne celle des g(xi). Le choix de β donne g(xn) = 0.
La question 1 indique alors que g(n−1) s’annule sur I en un certain y. Or, la dérivée (n−1)-
ième d’un polynôme unitaire de degré n − 1 vaut (n − 1)! et ainsi, g(n−1)(y) = 0 s’écrit
aussi

f(xn) = f (n−1)(y)
(n−1)! β

(b) Posons

h(x) =
n−1∑
i=1

f(xi)Li(x) avec Li(x) =
n−1∏
j=1
j 6=i

x− xj
xi − xj

Comme Li(xj) = δi,j pour 1 ≤ i, j ≤ n− 1, h(xi) = f(xi) pour 1 ≤ i ≤ n− 1. On peut ainsi
appliquer la question précédente avec f − h et obtenir y tel que

f(xn)− h(xn) =
(f − h)(n−1)(y)

(n− 1)!
β

Comme h ∈ Rn−2[X], h(n−1) = 0 et ainsi
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f (xn)−
n−1∑
i=1

f (xi)
n−1∏
j=1
j 6=i

xn − xj
xi − xj

=
f (n−1)(y)

(n− 1)!
β

23. On peut appliquer la question précédente avec chaque fi pour obtenir y1, . . . , yn. En notant

γk =

n−1∏
j=1
j 6=k

xn − xj
xk − xj

l’opération Cn ← Cn −
∑n−1

k=1 γkCk laisse le déterminant invariant et transforme la dernière
colonne en

β

(n− 1)!
(f

(n−1)
1 (y1), . . . , f

(n)
n (yn))

Par linéairité du déterminant vis-à-vis de sa dernière colonne, on obtient donc

detA (x1, . . . , xn) =
β

(n− 1)!
· det

 f1 (x1) . . . f1 (xn−1) f
(n−1)
1 (y1)

...
...

...

fn (x1) . . . fn (xn−1) f
(n−1)
n (yn)


24. On procède par récurrence sur n. I = [a, b] est fixé. Le résultat au rang n dit que pour tout choix

de n fonction de classe C∞, il existe une constante c (qui peut dépendre des fonctions) telle que
pour tout choix de xi distincts dans I, on a l’inégalité voulue.

- Pour n = 2, on se donne f1, f2 de classe C∞ sur I. On a

det(A(x1, x2)) = f1(x1)f2(x2)− f1(x2)f2(x1)
= (f1(x1)− f1(x2))f2(x2) + f1(x2)(f2(x2)− f2(x1))

Une fonction de classe C1 sur un segment est lispchitzienne sur ce dernier de rapport la
norme infinie de la dérivée et ainsi

| det(A(x1, x2))| ≤ c|x1 − x2| avec c = ‖f ′1‖∞‖f2‖∞ + ‖f1‖∞‖f ′2‖∞

et ceci prouve le résultat au rang 1.

- Supposons le résultat acquis aux rang 2, . . . , n−1 avec n−1 ≥ 2. On se donne des fonctions
f1, . . . , fn de classe C∞. On applique la question 23 pour obtenir des yi. Un développement
par rapport à la dernière colonne donne

detA (x1, . . . , xn) =

n∑
i=1

(−1)n+if
(n−1)
i (yi)∆i

où ∆i est un déterminant de taille n−1 auquel on peut appliquer l’hypothèse de récurrence.
On obtient une majoration du type

| detA (x1, . . . , xn) | =
n∑
i=1

ci
β

(n− 1)!

∏
1≤i<j≤n−1

|xj − xi|

β s’incorpore au produit et on regoupe les autres constantes (au sens indépendantes des xi)
pour obtenir le résultat au rang n.

Le théorème 3 est prouvé
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Intersections atypiques : le cas transcendant

25. Supposons qu’il existe une d-courbe contenant P1, . . . , Pn. Il lui est associé une famille (ai,j)1≤i,j≤d
de scalaires non tous nuls. En notant Pk = (xk, yk), on a donc

∀k ∈ [[1, n]],
d∑
i=1

d∑
j=1

ai,jx
i−1
k yj−1k = 0

et on a donc une combinaison linéaire à coefficients non tous nuls des lignes de B(P1, . . . , Pn)
qui est nulle. Le rang de la matrice, qui est entre autres le rang de la famille des lignes, est donc
< d2.
Réciproquement, si le rang de B(P1, . . . , Pn) est < d2, les d2 lignes de la matrice forment une
famille liée et il en existe une combinaison linéaire nulle avec des coefficients non tous nuls. Ces
coefficients donnent alors une d-courbe contenant tous les Pi.

Il existe une d-courbe contenant les Pi ssi rang (B (P1, . . . , Pn)) < d2

26. Si on pose fi+dj+1(x) = xif(x)j alors, quand les Pk = (xk, yk) sont dans Γf (et donc yk = f(xk)),
on a

B(P1, . . . , Pd2) = (fi(xj))1≤i,j≤d2

et on peut appliquer le théorème 3 quand les xk sont distincts :

| det(P1, . . . , Pd2)| ≤ c2
∏

1≤i<j≤d2
|xi − xj |

où c2 est une constante (indépendante du choix des xi mais dépendant de f et de d). Dans le

produit, il y a d2(d2−1)
2 termes tous plus petit que le maximum des |xi − xj |.

Par ailleurs, on peut, quitte à augment la constante, supposer c2 > 1 et on a alors c = c
2

d2(d2−1)

2 >
1 qui vérifie bien

|detB (P1, . . . , Pd2)| ≤
(
c · max

1≤i<j≤d2
|xi − xj |

) d2(d2−1)
2

27. (a) Comme les nxk et nf(xk) sont tous entiers, la ligne numéro i + dj + 1 de B(P1, . . . , Pd2)
vérifie

Li+dj+1 ∈
1

ni+j
Z

On peut ainsi, par multilinéarité du déterminant factoriser la ligne et obenir un déterminant
à coefficients entiers. Ainsi

det(B(P1, . . . , Pd2)) ∈
∏

0≤i,j≤d−1

1

ni+j
Z =

1

nK
Z avec K =

∑
0≤i,j≤d−1

(i+ j)

On constate que

K = d

d−1∑
i=0

i+ d

d−1∑
j=0

j = d2(d− 1)

et on conclut que

nd
2(d−1) · detB (P1, . . . , Pd2) ∈ Z

9



(b) Supposons que P1, . . . , Pd2 n’appartiennent pas à une même d-courbe. Le rang deB(P1, . . . , Pd2)
est alors plus grand que d2. Comme la matrice est carrée de taille d2, son rang est en fait
égal à d2 et son déterminant est non nul et avec la question précédente

| detB (P1, . . . , Pd2) | ≥ 1

nd2(d−1)

Avec la question 26

1

nd2(d−1)
≤
(
c · max

1≤i<j≤d2
|xi − xj |

) d2(d2−1)
2

et en élevant à la puissance 2
d2(d2−1) (opération croissante)

max
1≤i<j≤d2

|xi − xj | ≥ c−1n−
2
d+1

28. Notons m = |Γ(f |J)∩ 1
nZ

2| et P1 = (x1, f(x1)), . . . , Pm = (xm, f(xm)) les éléments de l’ensemble.

- Si m < d2 alors B(P1, . . . , Pm) est de rang ≤ m < d2 et la question 25 indique qu’il existe
une d-courbe contenant tous les Pi.

- Sinon, comme la longueur de J est strictement inférieure à c−1n−
2
d+1 alors d2 points parmi

les Pi ne vérifient jamais l’inégalité de 27(b) et appartiennent donc à une même d-courbe.
D’après la question 25, toute matrice extraite de taille d2 de B(P1, . . . , Pm) est de rang
< d2. On en déduit que la matrice est de rang < d2 (le rang est le maximum des rangs des
matrices extraites) et donc (toujours question 25), les Pi sont sur une d-courbe.

Si `(J) < c−1n−
2
d+1 , il existe une d-courbe contenant les points de Γ(f) ∩ 1

nZ
2

29. Le théorème 2 nous donne une constante c1.
Si on découpe le segment I en p segments équirépartis, chacun de ceux-ci a une longueur `(I)

p .

Pour p > c`(I)n
2
d+1 , chaque segment vérifiera l’hypothèse de la question 28.

On choisit donc
p = bc`(I)n

2
d+1 c+ 1 ≤ c`(I)n

2
d+1 + 2

et on note J1, . . . , Jp les petits segments obtenus. On a alors

∀k, |Γ(f |Jk) ∩ 1

n
Z2| ≤ c1

puisque tous les points de l’intersection sont une même d-courbe. On en déduit que

|Γ(f |J) ∩ 1

n
Z2| ≤ pc1 = c1n

ε
(
c`(I)n

2
d+1
−ε + 2n−ε

)
≤ c1nε(c`(I) + 2)

Le théorème 4 est prouvé
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