X-ENS 2021 : épreuve C

Question préliminaire

1. On prouve le résultat par récurrence sur n. L’hypothese au rang n est

Vg € C¥(LR), |Z(9)l > n = (Yie[Ln—1], |Z2(g"]>n i)

- Le résultat au rang 2 est conséquence du théoreme de Rolle.

- Supposons le résultat vrai aux rangs 2,...,n. Soit g de classe C'*° s’annulant au moins
n + 1 fois. Par théoréeme de Rolle, ¢’ s’annule au moins n fois. Le résultat au rang n pour
g’ permet alors de finir de prouver le résultat au rang n + 1.

1 Intersections atypiques et fractions rationnelles

Fractions rationnelles et rationalité

2. (a) dim(K[X], x K[X],) =p+q+2 > dim(K?) et donc

’go n’est pas injective‘

(b) La question précédente sonne un élément (U, V) # (0,0) dans le noyau de ¢ et on a donc
Vi e [1,d], U(x;) = F(z;)V (x;). Ainsi

(U, V) #(0,0), Vie [1,d], Q(x;)U(x;) = P(x;)V(x;) avec U € K[X], et V € K[X],

PV et QU sont de degré < p+
polynpomes sont égaux et F' =

aux en au moins d = p + g + 1 points distincts. Ces

q et ég
g = % Ainsi

FeK(X)

(c) F(K \P(F))N K est infini et on peut donc trouver zi,...,zx4 dans K tels que les f(z;)
soient distincts. Ce qui entraine que les x; le sont. On se retrouve dans la situation de la
question précédente et

FeK(X)

Intersections avec le cercle unité

3. (a) Soit z € U. On a donc z = 1.

Si F(2) € U alors F(2)F(z) = 1 c’est a dire F(2)F(z) = 1 ou encore F(2)G(z) = 1.

La réciproque est identique.

[F(z) €U <= F(2)G(z) = 1]

b) Si F est spéciale, il y a une infinité de z € U tels que F(2)G(z) = 1. Ecrivons F = £ et
Q

G= %. PP, — Q7 admet alors une infinité de racine et est donc le polynéme nul. Ainsi
FG=1.

Si FG =1 alors tout élément z de U\ P(F) vérifie F((z) € U et il y en a une infinité. F
est donc spéciale.

’F est spéciale si et seulement si F'G =1 ‘

4. Soit « € C. On a |¢? —a| = [e7* —@| = |1 — @e®|. Ainsi, tout élément de U\ {a} a son image
par B, dans U. Il y une infinité de tels éléments et



’ B, est spéciale ‘

On a immédiatement

B()(X) =1et Bei(-)(X) = —¢tf

5. Comme F' est spéciale, on a F(X)G(X) = 1.

a) Si F(a) = 0 alors a € P(G) (sinon on n’a pas FG = 1) et donc + € P(F) ou encore
(0%
% € P(F). La réciproque est identique.

Fla)=0 < LepF)

(b) On suppose que F' € C[X] et on a donc P(F) = (). La question précédente montre que 0
est la seule racine possible pour F'. Tout polynéme dans C étant scindé, il existe ¢ € C tel
que F = X4
Mais comme F' est spéciale, on a F'G = 1 et donc ¢¢ = 1 ce qui signifie que c € U.

Un polynéme spécial est du type cX? avec ¢ € U

¢) On prouve le résultat demandé par récurrence sur le nombre de racines de la fraction.
p p
- Supposons la fraction sans racine. On a donc F = % Comme F' est spéciale, il vient
immédiatement que Q 'est et s’écrit donc X avec ¢ € U. Ainsi F = X ?B_; est du

type voulu.
- Supposons le résultat vrai quand F' admet moins de n racines. Supposons alors que
F = £ avec p admettant n + 1 racines. On note z I'une d’entre elles. F(z) = 0 entraine

que 1/Z est racine de @ et il existe des polynémes P, Q1 tels que

X—ZPl(X) _ Pl(X)
F(X)= = —ZB,(X
W3 Tiem T Y
F et B, étant spéciales, —5511((;(()) lest aussi et P admet n racines. On peut donc

appliquer 'hypothése de récurrence et conclure.

Jde€Z, Ine N, Joy,...,an € C, F(X) =X]] Ba,(X)
=1

Racines de 'unité

6. Il existe n € N* tel que F'((y;) € Up. Les éléments de U, sont ceux qui s’écrivent exp(%ﬁ’r)
les a tous en prenant k entiers consécutifs. On peut donc prendre & tel que [1 — 5| <k < [F].

On a alors % €]—1/2,1/2]. On a donc l'existence de q; €] —1/2,1/2] tel que F'(¢,,) = exp(2imq;).

Supposons que deux rationnels § et  conviennent. On a alors 27¢ = 274[27] et donc § — § € Z.
Comme cette quantité est aussi dans | — 1, 1], elle est nulle et les rationnels sont égaux.

Vj>1, g € QN = 3,31, F((n,;) = exp(2img;)

7. (gj) étant a valeurs dans le compact [—1/2,1/2], pour montrer qu’elle est de limite nulle il suffit
de montrer que 0 est sa seule valeur d’adhérence.
Supposons donc avoir une extractrice ¢ telle que g, ;) — £. Comme n,;) — 0, on a C%(j) — 1.
En passant a la limite dans la relation vérifiée par la suite (g, (;)), on obtient F(1) = et et
donc 1 = €2, De plus £ € [~1/2,1/2] et donc £ = 0.



9.

10.

lim ¢; =0

j—+o0

(a) Comme P(1) =0, il existe Q@ € C[X] tel que P = (X — 1)Q. On a alors
21

nP(Gr) = nlexp(=) = DQ(G) = 2imQ(1)

Or, PP =Q + (X —1)Q’ et donc Q(1) = P'(1). Finalement

lim nP(¢,) = 2irP'(1)

n—-+00
(b) On a
, o PlGy) —Q(Gy)  2im(P - Q)'(1)
Or, F' = & = F& et donc F'(1) = G} — ). Ainsi

lim 1 (F(C,) — 1) = 2irF'(1)

Jj—+o0o

Or, ng(F(Cn]) 1) = nj(e2i7rq3‘ — 1) ~ 2img; (j — +00) et donc

lim njq; = F'(1)

j—+oo

La suite (cnjq;)j>1 est convergente et a valeurs entieres. Elle est donc stationnaire a partir d’un
certain rang :
Jjo =1, dm e Z, Vj = jo, cnjq; =m

On a alors
Vi > jo, Fle™ ) =e*™% = (emj>

247
On a donc une infinité de z € U tels que F(z¢) = 2™ (les z = e ). Ecrivons F =
PAQ=1.0n aalors 2™Q(2°) = P(z°) pour une infinité de z.
Sim >0, on a Q(2°) qui divise P(2¢). Or P(X¢) et Q(X¢) sont premiers entre eux (utiliser une
identité de Bézout pour P et Q) et donc Q(X€) est un polyndéme constant et () aussi. F' est donc
un polynéme. Or, F est spéciale (une infinité d’éléments de U est envoyé sur U) et 5(b) indique
que F est un monoéme. Comme F(1) = 1, il existe d tel que F(X) = X¢.
Si m < 0 alors on a cette fois, de fagon similaire, P qui est constant. F = é est spéciale et ()
I’est donc aussi et comme ci dessus est un mondme unitaire.
Dans les deux cas

avec

Qlv

3de Z, F(X)=Xx1

Les zj = (,; ne sont pas poles de F'. Avec les notations de la question 2 (d =p+q+1 ot P est
de degré < p et @ de degré < ¢), on pose

p = ppem(ny, ..., ng)

Tous les z; sont alors des puissances de ¢, et donc dans Q((,) et de méme les F'(z;) sont tous
dans Q(¢p). la question 2(b) s’applique et indique que

F e Q(¢p)(X)




11.

(a)

[ désigne le ppcm de N et de v. Notons ¢ le pged de N et v en sorte que [6 = Nv. Par
théoreme de Bézout, il existe des entiers «, 5 tels que alN 4+ fv = = % et ainsi

1 a p
1-v N

B 2T
C CN > 1 /’U

Par ailleurs, u A v = 1 et il existe des entiers o, 3’ tels que o/u + v = 1 et donc o=

ad’? 4 af'. On en déduit que

) ) P ’ : ’ /
e2z7ra/v _ 6217ra6 eeraa ufv _ 62@7raa q _ Caa

En combinant nos deux relations, on montre donc que

EIGJ? be Z7 Cl = CaC]bV

On a ¢ € Q(¢n) et avec (a), on en déduit que ; € Q((n) et donc que Q(¢;) € Q({n). En

passant aux Q-dimensions, le théoreme admis donne

p(l) < p(N)

Utilisons alors les décompositions en produit de facteurs premiers. Comme [ est multiple

de N, elles s’écrivent
T S
i li
N = Hp? et | = sz‘
i=1 i=1

avec s > r et l; > n; pour i € [1,r]. Avec l'expression de ¢ rappelée par I’énoncé, on a
donc

S T
Li— i
I[P -1 <[P pi— 1)
=1 i=1

et on en déduit d'une part que si i € [1,7], on a n; = [; et d’autre part que si i € [r + 1, s],
on a pérl(Pi —1)=1. Ainsis=rous=r+1avec p,+1 =2et l,41 =1 ouencorel =N

ou !l = 2N. Dans les deux cas,
l|2N

Enfin, [ est un multiple de v donc lg est entier donc

12. Pour tout j, on a e*™% = F(,,) avec F & coefficients dans Q((p). On en déduit que e*™% va

s’écrire comme somme produit et quotient de termes qui sont tous multiples de (p,; et donc

e2ima; ¢ Q(¢pn,)

La question 11 (avec N = pn; et ¢;) indique alors que 2pn;g; € Z. Comme 2p ne dépend pas de
7

’Elc, Vj, enjqj € Z‘

On est alors dans le cadre de la question 9 et

3d € Z, F(x) = X4




13.

Supposons F' convenable.

Si 1 ¢ P(F) alors en travaillant avec %, ce qui est possible car F/(1) € A et est non nul, on se
ramene au cas F'(1) = 1.

Comme F' n’a qu'un nombre fini de poles, on peut construire une suite (n;) convenable pour
appliquer les questions 6 a 12.

Dans ce cas, il existe zg € A (c’est F(1)) et d € Z tel que F(X) = 2 X

Sinon, on peut trouver zy € A tel que zp ¢ P(F') et en travaillant avec F} (X) = F(20X) = ggigg,

on a 1 ¢ P(Fy) car 1 n’est pas racine de Q(zpX). On est alors ramenés au cas précédent et F;
puis F' ont méme forme.

La réciproque est immédiate.

Les fractions telle que F(A\ P(F)) C A sont celles du type 20X avec zg € Aet d € Z

2 Intersections atypiques : le cas transcendant

14.

15.

On sait qu’une série entiere et toutes ses séries dérivées ont méme rayon de convergence et que
sur 'intervalle ouvert de convergence, les dérivées succesives de f s’obtiennent en dérivant terme

.1 () oy s s Lo N s
a terme. En particulier a, = fT!(O) et la nullité des dérivées en 0 équivaut a la nullité de f.

’f € C*°(R,R) et est plate en 0 ssi tous les a,, sont nuls

A ce niveau du probléme, il ne me semble pas que l'on attende une preuve de ces résultats de
cours.

(a) P, étant non nul, on peut considérer son degré d et son coefficient dominant c. Pour = > 0,

on a
n

f(fL‘) _ Z Pl(w) e(ai—an)m

zd

$deanw .
i=1

Comme «o; < oy, pour ¢ < n—1, les n — 1 premiers termes de la somme sont de limite nulle

en +0o0 par croissances comparées.

Le terme pour i = n vaut P’;—(f) et est de limite ¢ en +oc.
f(=)

:Edeanz

f(z)

?
—lanz Dest pas nulle. A

On a donc — ¢ # 0 quand © — +o00 et la fonction x —

fortiori

’ f n’est pas la fonction nulle

(b) f est DSE de rayon infini comme produit et somme de telles fonctions. Comme f # 0, la
question 14 indique que f n’est pas plate en 0.
Pour g € R, g : x — f(xg+x) peut aussi s’écrire comme une somme de fonctions polynéme
fois exponentielle et, quitte a regrouper des termes (avec les mémes exponentielles) s’écrit

g(x) = ZQi(x)eo‘ix avec @Q; € R[X]
=0

g (comme f) n’étant pas la fonction nulle, les Q); ne sont pas tous nuls. Quitte a supprimer
les termes nuls, g est du méme type que f. g et donc non plate en 0 ce qui revient a dire
que f est non plate en x.



16.

17.

18.

19.

’ f n’est plate en aucun point‘

Soient Py, ..., P; des polynémes non tous nuls. On a alors, en posant g(z) = f(z) exp(az),
d . d .
3" Bxa(a) = 3 Pi(a)P(a) explias)
=0 i=0

Quitte a supprimer des termes (les i tels que P; = 0), cette fonction est du type étudié en
question 15 (avec a; =i si @ > 0 et a; = (d — i) si @ < 0) et n'est donc plate en aucun réel.
La fonction g est donc transcendante sur R. Elle ’est a fortiori sur tout intervalle non trivial.

’x — P(x)e™” est transcendante sur tout intervalle non trivial‘

Soit g € V. 1l existe des scalaires a; ; tels que

T
L

d

Ve el, g(x) = Z aijx M f(x)y T =) Pi(x)f(z) avec Pj(z) = Zai7j+1l'i_1

1<i,j<d—1 i=1

<
Il
o

Les a;; n’étant pas tous nuls, les P; ne sont pas tous nuls et par définition de la transcendance

(de f)

’g € V' \ {0} n’est plate en aucun point de I‘

C, étant une d-courbe, elle est associée & une famille (a;;)1<; j<a. Soit (zo,y0) € Cr NT¢. On a
alors xg € I et yo = f(z¢) (appartenance au graphe) et (appartenance a C,)

d d
DI
=1 :

Ainsi, g : = — Zgzl Z?Zl ai jz7 1 f(z)?71 s’annule en zg. ¢ € V et s’annule en moins 72 fois
(puisque |C, NTs est de cardinal au moins r?).
Si, par I’absurde, g était identiquement nulle alors on aurait

d [/ d
Vo eI, Z (Z aivjmil> fx)y—t=o0
j=1 \i=1
—_————

=Q;(z)

et comme les @; sont non tous nuls (puisque les a; ; ne le sont pas), ceci contredit la transcendance
de f (la somme étant nulle est plate en tout point).

Il existe g € V' \ {0} telle que |Z(g)| > 2

Soit g une telle fonction. Posons I, = [min I + @, min I + w[ pour k € [0, — 1]. Les I},
forment une partition de I et |Z(g)| = S7—0 |Z(gl1,)|- Cette somme étant plus grande que 72,
I'un des termes est plus grand que r (en contraposant par exemple). Il existe donc k tel que g

s’annule au moins 7 fois sur I;. En considérant K = I, on a montré que

il existe un segment K de longueur @ tel que |[Z(g) N K| >

Pour tout entier » > 1, la question 18 donne une fonction g, et un segment K,. g, € V se
décompose sur la base (g1,...,9n) et on note b, le n-uplet de ses coordonnées. En posant a, =
”b i b,., on obtient un élément de S,, et G, Gy, ont les méme zéros.

6



20.

21.

I(a,) € (S, vr, |Z (Ga,) N Kr| > 7 et limyy oo £(K;) =0

Sy est fermé comme image réciproque de {1} par 'application continue a — > | |a;|. Clest
aussi une partie bornée (c’est la sphere unité pour la norme 1...). Comme R" est de dimension
finie

’Sn est un compact de ]R”‘

La suite ((a),, min K,) étant a valeur dans le compact S, x I (un produit de compacts est un
compact), on peut en extraite une sous suite (a, (), min Ky )),>1 qui converge vers (a,r) €
Sy x 1.

Il existe une extractrice @ telle que Qp(ry) = @ € Sy, et min K@(T) -z el

Soit p € N. Comme (1) — +o0, il existe un rang rq tel que Vr > 1o, o(r) > p+ 1.
Pour r > g, Gﬁw - s’annule au moins p + 1 fois sur K. Sa dérivée p-ieme s’annule donc au
moins une fois en un certain b, € K, :

n

Vr >rg, 0= Z(gw(r))ig?) (br)
i=1
Comme b, € K,y C [min K (), min K.y + %], b, — x. Le passage a la limite dans 1’égalité
précédente donne

0= a9 (z) = GP(x)
=1

Toutes les dérivées de G4 s’annulent en x et ’GQ est plate en x ‘ On obtient un élément de V'

qui est une fonction plate en x € I et ceci contredit la question 17.

Le théoreme 2 est prouvé‘

Une inégalité

22.

(a) On utilise les notations de I’énoncé.
La nullité des f(x;) pour i < n — 1 donne celle des g(x;). Le choix de 8 donne g(z,) = 0.
La question 1 indique alors que ¢~ s’annule sur I en un certain y. Or, la dérivée (n—1)-
ieme d’un polynéme unitaire de degré n — 1 vaut (n — 1)! et ainsi, "~V (y) = 0 s’écrit

aussi
(n—1)
flan) = L2
(b) Posons

n—1 n—1
x—x,
= i) Li Li(z) = .
) = 3 S h(a) wee Lo =[] 5=

G

Comme L;(z;) = d;j pour 1 <i,5 <n—1, h(z;) = f(z;) pour 1 <i <n—1. On peut ainsi
appliquer la question précédente avec f — h et obtenir y tel que

(f =) V()
(n—1)!

f(@n) — h(zn) = B

Comme h € R,_3[X], A1) =0 et ainsi



23.

24.

n—1 n—1 Ly — (n—1)
Pl =3 ) [ ot = LW

im1 i=1 Ty — Ty (n — 1)!
i
On peut appliquer la question précédente avec chaque f; pour obtenir ¥, ..., ¥y,. En notant
n—1 o o
n— 4y
Ve = —
gljll T — Ty
ek

lopération C,, « C, — ZZ;% v, Cy laisse le déterminant invariant et transforme la derniere

T ) )

Par linéairité du déterminant vis-a-vis de sa derniére colonne, on obtient donc

colonne en

f@) o fileam) £V )
detA(.fL‘h...,xn):i. : . .

Fa(@) oo falzasn) £V ()

On procede par récurrence sur n. I = [a, b] est fixé. Le résultat au rang n dit que pour tout choix
de n fonction de classe C*°, il existe une constante ¢ (qui peut dépendre des fonctions) telle que
pour tout choix de x; distincts dans I, on a I'inégalité voulue.

- Pour n = 2, on se donne fi, fo de classe C*° sur I. On a

det(A(z1,72)) = fi(z1)fa(w2) — fi(w2) fo(z1)
= (fi(z1) = fi(22)) fa(22) + fi(z2)(fa(22) — fa(21))

Une fonction de classe C! sur un segment est lispchitzienne sur ce dernier de rapport la
norme infinie de la dérivée et ainsi

| det(A(x1,22))] < elar — xa| avec ¢ = || fillcllf2lloo + I1f1lloc ]l f2lloo

et ceci prouve le résultat au rang 1.

- Supposons le résultat acquis aux rang 2,...,n—1 avec n—1 > 2. On se donne des fonctions
fi,.-., fn de classe C"°°. On applique la question 23 pour obtenir des y;. Un développement
par rapport a la derniere colonne donne

n

det A (xla s )xn) = Z(_l)n'f‘lfz(n_l) (yZ)Al

i=1

ou A; est un déterminant de taille n—1 auquel on peut appliquer I’hypothése de récurrence.
On obtient une majoration du type
- B
|detA(w1,...,xn)\:Zcim H |z; — ]
i=1

T 1<i<j<n—1

B s’incorpore au produit et on regoupe les autres constantes (au sens indépendantes des x;)
pour obtenir le résultat au rang n.

Le théoreme 3 est prouvé‘




Intersections atypiques : le cas transcendant

25.

26.

27.

Supposons qu’il existe une d-courbe contenant Pi, ..., P,. Il lui est associé une famille (a; ;)1<i j<d
de scalaires non tous nuls. En notant P, = (x, yx), on a donc

Vk € [1,n], ZZaka yk '=0

i=1 j=1

et on a donc une combinaison linéaire & coefficients non tous nuls des lignes de B(P,...,P,)
qui est nulle. Le rang de la matrice, qui est entre autres le rang de la famille des lignes, est donc
< d>.

Réciproquement, si le rang de B(Py, ..., P,) est < d?, les d? lignes de la matrice forment une
famille liée et il en existe une combinaison linéaire nulle avec des coefficients non tous nuls. Ces
coefficients donnent alors une d-courbe contenant tous les P;.

Il existe une d-courbe contenant les P; ssi rang (B (P, ..., P,)) < d?

Si on pose fiigj+1(z) = ' f(x)’ alors, quand les Py, = (x, yx) sont dans I'y (et donc y, = f(zx)),
on a
B(Py, ..., Pp) = (fi(zj)i<ij<d
et on peut appliquer le théoreme 3 quand les xj sont distincts :
|det(Py,...,.Pe) <o [ o — =l

1<i<j<d?

ol ¢y est une constante (indépendante du choix des z; mais dépendant de f et de d). Dans le

2002
produit, il y a W termes tous plus petit que le maximum des |x; — ;.
Par ailleurs, on peut, quitte a augment la constante, supposer ¢z > 1 et on a alors ¢ = cg <d >
1 qui vérifie bien
a?(a?-1)
det B(Pi,...,Pp)| <|c- max |z; —=x;
et B (P, P < (e oy — )
a) Comme les nxy et nf(xx) sont tous entiers, la ligne numéro i + dj + 1 de B(Py,..., Pp
( ) k k ) g L) 1, sy 4d

vérifie
Litgjv1 € WZ

On peut ainsi, par multilinéarité du déterminant factoriser la ligne et obenir un déterminant
a coefficients entiers. Ainsi

1 1
det(B(Py,...,Pp)) e ] L= gl avee K = > (i+))

0<i,j<d—1 0<i,j<d—1
On constate que
d—1 d—1
K=d) i+dy j=d*d-1)
i=0 j=0

et on conclut que

@(@=1) . et B(Py,...,Pp) € Z




(b) Supposons que P, ..., Pp n’appartiennent pas a une méme d-courbe. Le rang de B( Py, . .

est alors plus grand que d?. Comme la matrice est carrée de taille d, son rang est en fait

égal & d? et son déterminant est non nul et avec la question précédente

1

\detB(P1,-~-7Pd2)|2m

Avec la question 26

a2 (d2—1)
1 2
e < (o0, s )

et en élevant a la puissance m (opération croissante)

_ 2
max |v; —a;| > ¢ tnT T
1<i<j<d?

28. Notons m = |T'(f|/)NLZ% et Py = (21, f(21)), ..., Pm = (T, f(zm)) les éléments de I'ensemble.
- Sim < d? alors B(P, ..., Py) est de rang < m < d? et la question 25 indique qu’il existe

une d-courbe contenant tous les P;.

- Sinon, comme la longueur de J est strictement inférieure & ¢!

_72 . .
n~ 4+ alors d? points parmi

les P; ne vérifient jamais I'inégalité de 27(b) et appartiennent donc & une méme d-courbe.
D’apres la question 25, toute matrice extraite de taille d*> de B(Pi,..., P,) est de rang
< d?. On en déduit que la matrice est de rang < d? (le rang est le maximum des rangs des

matrices extraites) et donc (toujours question 25), les P; sont sur une d-courbe.

2
Si 4(J) < ¢ 'n” @, il existe une d-courbe contenant les points de T'(f) N 222

29. Le théoreme 2 nous donne une constante c;.

. ) P . : oI
Si on découpe le segment I en p segments équirépartis, chacun de ceux-ci a une longueur =-+

Pour p > cl(I )nﬁ, chaque segment vérifiera ’hypothese de la question 28.
On choisit donc . )
p=[cl(InaT ] +1 < cl(I)nat +2

et on note Ji, ..., Jp les petits segments obtenus. On a alors
L o
Vi, [T(f13) N =72 <
puisque tous les points de l'intersection sont une méme d-courbe. On en déduit que

1
IT(fls)N HZ2| < pci =cinf (Cf(f)n%_a + 2n_5> < enf(cl(I) +2)

’ Le théoreme 4 est prouvé‘
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