ECOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2019

VENDREDI 19 AVRIL 2019 - 8h00 – 12h00 FILIERE MP - Epreuve n° 3

MATHEMATIQUES B
(X)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

Notations

Si $n \in \mathbb{N}$ est un entier naturel et I un intervalle de \mathbb{R} , on note $\mathscr{C}^n(I)$ l'espace vectoriel des fonctions sur I, à valeurs réelles, de classe \mathscr{C}^n , c'est à dire n fois dérivables sur I et dont la n-ième dérivée est continue sur I.

On munit $\mathscr{C}^0([-1,1])$ de la norme $\|\cdot\|_\infty$ définie par :

$$||f||_{\infty} = \sup_{t \in [-1,1]} |f(t)|.$$

Soit $y \in I$. On dira qu'une fonction $u: I \to \mathbb{R}$ est de classe \mathscr{C}^n au voisinage de y s'il existe un intervalle J ouvert non vide tel que $y \in J$ et $u \in \mathscr{C}^n(I \cap J)$.

Soit $(x,p) \mapsto H(x,p)$ une fonction continue sur $[-1,1] \times \mathbb{R}$ à valeurs réelles. Le but de ce problème est d'étudier certaines fonctions u vérifiant l'équation fonctionnelle

$$\forall x \in [-1, 1], \quad u(x) + H(x, u'(x)) = 0. \tag{1}$$

Partie I

On suppose dans cette partie qu'il existe une fonction $u \in \mathcal{C}^1([-1,1])$ vérifiant

$$\begin{cases} u(x) + |u'(x)| = 0 & \text{pour tout } x \in [-1, 1], \\ u(-1) = u(1) = -1. \end{cases}$$
 (2)

- **1a.** Justifier que l'application $x \mapsto |u'(x)|$ est une fonction de $\mathscr{C}^1([-1,1])$ et en déduire que u est de classe \mathscr{C}^2 au voisinage de tout point $y \in [-1,1]$ tel que $u'(y) \neq 0$. Calculer l'expression de u''(y) en fonction de u'(y) en de tels points.
- **1b.** Montrer que si $y \in [-1, 1]$ est tel que u'(y) = 0, alors u' est dérivable en y et u''(y) = 0.
- **2.** En déduire que u est une fonction de $\mathscr{C}^2([-1,1])$, qu'elle vérifie sur [-1,1] l'équation différentielle

$$u'' = u$$

et conclure qu'une telle fonction u n'existe pas.

3. Montrer que les fonctions u_0 et u_1 définies par $u_0(x) = -e^{-1+|x|}$ et $u_1(x) = -e^{1-|x|}$ sur [-1,1] sont des fonctions de $\mathscr{C}^0([-1,1])$ et vérifient

$$\begin{cases} u(x) + |u'(x)| = 0, & \text{pour tout } x \in [-1, 1] \setminus \{0\}, \\ u(-1) = u(1) = -1. \end{cases}$$

Partie II

Soit $u \in \mathcal{C}^0([-1,1])$.

On définit le sur-différentiel de u en $x \in]-1,1[$ comme l'ensemble des $p \in \mathbb{R}$ pour lesquels il existe une fonction φ de classe \mathscr{C}^1 au voisinage de x, avec $\varphi'(x) = p$ et telle que $u - \varphi$ admet un **maximum local** en x. On note cet ensemble $D^+u(x)$.

On définit le **sous-différentiel** de u en $x \in]-1,1[$ comme l'ensemble des $p \in \mathbb{R}$ pour lesquels il existe une fonction φ de classe \mathscr{C}^1 au voisinage de x, avec $\varphi'(x) = p$ et telle que $u - \varphi$ admet un **minimum local** en x. On note cet ensemble $D^-u(x)$.

4. Soit $x_0 \in]-1,1[$. Montrer que si u est de classe \mathscr{C}^1 au voisinage de x_0 alors

$$D^+u(x_0) = D^-u(x_0) = \{u'(x_0)\}.$$

5. Soit $x_0 \in]-1,1[$. On suppose que $D^+u(x_0)$ et $D^-u(x_0)$ sont non vides.

5a. Prouver qu'il existe φ_1, φ_2 de classe \mathscr{C}^1 au voisinage de x_0 et $\delta > 0$ tels que

$$u(x_0) = \varphi_1(x_0) = \varphi_2(x_0)$$

et pour tout $|x - x_0| < \delta$,

$$\varphi_1(x) \leqslant u(x) \leqslant \varphi_2(x).$$

5b. En déduire que u est dérivable en x_0 . Déterminer $D^+u(x_0)$ et $D^-u(x_0)$.

6a. Soit $x_0 \in]-1,1[$. Soit $0 < r < \min(|1-x_0|,|1+x_0|)$. En considérant la fonction définie par $\varphi_{x_0,r}(x) = \frac{1}{r^2-|x-x_0|^2}$ sur l'intervalle ouvert $I_{x_0}(r) =]x_0 - r, x_0 + r[$, montrer qu'il existe $y \in I_{x_0}(r)$ tel que $D^+u(y) \neq \emptyset$.

6b. Démontrer que l'ensemble $\{y \in]-1,1[, D^+u(y) \neq \emptyset\}$ est dense dans]-1,1[.

7a. Soit $x_0 \in]-1,1[$ tel que $D^+u(x_0) \neq \emptyset$. Soit $p \in D^+u(x_0)$. Montrer que

$$\lim_{\varepsilon \to 0^+} \sup_{y \in [x_0 - \varepsilon, x_0 + \varepsilon] \cap [-1, 1]} \frac{u(y) - u(x_0) - p(y - x_0)}{|y - x_0|} \leqslant 0.$$
(3)

Dans les sous-questions **7b** à **7e**, on considère $x_0 \in]-1,1[$ et $p \in \mathbb{R}$ satisfaisant (3). Le but est de montrer qu'alors réciproquement $p \in D^+u(x_0)$.

7b. On pose, pour r > 0,

$$\varphi(r) = \max \left\{ 0, \sup_{\substack{y \in [x_0 - r, x_0 + r] \cap [-1, 1] \\ y \neq x_0}} \frac{u(y) - u(x_0) - p(y - x_0)}{|y - x_0|} \right\}$$

et $\varphi(0) = 0$. Justifier que, pour tout r > 0, $\varphi(r)$ est un nombre réel bien défini, puis que, pour tout $x \in]-1,1[$,

$$u(x) \le u(x_0) + p(x - x_0) + \varphi(|x - x_0|)|x - x_0|$$

7c. Montrer que la fonction ρ définie sur $[0,+\infty[$ par $\rho(r)=\int_0^r \varphi(s)\,ds$ appartient à $\mathscr{C}^1([0,+\infty[)$ et vérifie

$$\rho(0) = \rho'(0) = 0.$$

7d. Prouver que

$$\forall r \geqslant 0, \quad \rho(2r) \geqslant \varphi(r)r.$$

7e. Conclure que $p \in D^+u(x_0)$ et que, pour tout $x_0 \in]-1,1[$,

$$D^{+}u(x_{0}) = \Big\{ p \in \mathbb{R}, \lim_{\varepsilon \to 0^{+}} \sup_{\substack{y \in [x_{0} - \varepsilon, x_{0} + \varepsilon] \cap [-1, 1] \\ y \neq x_{0}}} \frac{u(y) - u(x_{0}) - p(y - x_{0})}{|y - x_{0}|} \leqslant 0 \Big\}.$$

On peut montrer de même (mais on ne demande pas de le vérifier) que pour tout $x_0 \in]-1,1[$,

$$D^{-}u(x_{0}) = \Big\{ p \in \mathbb{R}, \lim_{\varepsilon \to 0^{+}} \inf_{y \in [x_{0} - \varepsilon, x_{0} + \varepsilon] \cap [-1, 1]} \frac{u(y) - u(x_{0}) - p(y - x_{0})}{|y - x_{0}|} \geqslant 0 \Big\}.$$

- 8. Soit $x_0 \in]-1,1[$. Montrer que le résultat de la question 4 est toujours valable en supposant uniquement u dérivable en x_0 .
- 9. Soit $x_0 \in]-1,1[$ tel que $D^+u(x_0) \neq \emptyset$. Démontrer que $D^+u(x_0)$ est un intervalle fermé.
- 10. On suppose dans cette question que u est concave sur [-1,1]. Soit $x_0 \in]-1,1[$.
- **10a.** Soient $y_1, y_2 \in [-1, 1] \setminus \{x_0\}$ avec $y_1 < y_2$. Prouver que

$$\frac{u(y_1) - u(x_0)}{y_1 - x_0} \geqslant \frac{u(y_2) - u(x_0)}{y_2 - x_0}.$$

10b. Montrer que

$$\lim_{y \to x_0^-} \frac{u(y) - u(x_0)}{y - x_0} =: \ell^- \text{ et } \lim_{y \to x_0^+} \frac{u(y) - u(x_0)}{y - x_0} =: \ell^+$$

sont bien définies et que $D^+u(x_0) = [\ell^+, \ell^-]$.

10c. Démontrer que

$$D^{+}u(x_{0}) = \Big\{ p \in \mathbb{R}, \, \forall x \in [-1, 1], \, u(x) \leqslant u(x_{0}) + p(x - x_{0}) \Big\}.$$

En déduire que u admet un maximum en x_0 si et seulement si $0 \in D^+u(x_0)$.

Partie III

Soit $(x,p) \mapsto H(x,p)$ une fonction continue sur $[-1,1] \times \mathbb{R}$ à valeurs réelles. On suppose qu'il existe une fonction continue croissante $\omega : \mathbb{R}^+ \to \mathbb{R}^+$, vérifiant $\omega(0) = 0$, telle que, pour tous $x,y \in [-1,1]$, et pour tout $p \in \mathbb{R}$,

$$|H(x,p) - H(y,p)| \le \omega(|x-y|(1+|p|)).$$
 (4)

On dit que $u \in \mathcal{C}^0([-1,1])$ est une **sur-solution** de (1) si pour tout $x \in]-1,1[$, pour tout $p \in D^-u(x)$,

$$u(x) + H(x, p) \geqslant 0.$$

On dit que $u \in \mathcal{C}^0([-1,1])$ est une **sous-solution** de (1) si pour tout $x \in]-1,1[$, pour tout $p \in D^+u(x)$,

$$u(x) + H(x, p) \leqslant 0.$$

11a. Montrer que si $u \in \mathcal{C}^1([-1,1])$ vérifie

$$\forall x \in]-1,1[, u(x) + H(x, u'(x)) = 0,$$

alors u est sur-solution et sous-solution de (1).

11b. Montrer que si u est à la fois sur-solution et sous-solution de (1), alors en tout point $x \in]-1,1[$ au voisinage duquel u est de classe \mathscr{C}^1 , on a

$$u(x) + H(x, u'(x)) = 0.$$

On souhaite démontrer que si u est une sous-solution et v une sur-solution de (1) telles que

$$u(y) \leqslant v(y)$$
 pour $y \in \{-1, 1\}$,

alors

$$u \leqslant v$$
 sur $[-1, 1]$.

Dans les questions **12** à **15**, on suppose par l'absurde qu'il existe $y_0 \in [-1, 1]$ pour lequel $u(y_0) > v(y_0)$.

12. Montrer que la fonction u-v atteint son maximum sur [-1,1] en un point $x_0 \in]-1,1[$ et $M:=\max_{x\in [-1,1]}(u(x)-v(x))>0$. Montrer qu'il existe $\eta>0$ tel que pour tout $(x,y)\in [-1,1]^2$ vérifiant

$$|x - y| \le \sqrt{2(\|u\|_{\infty} + \|v\|_{\infty})\eta},$$

on a

$$|u(x) - u(y)| + |v(x) - v(y)| < M/2$$

 et

$$\omega(|x - y| + 2|v(x) - v(y)|) < M/2,$$

où ω est la fonction intervenant en (4).

Pour un paramètre η obtenu grâce à la question précédente, on considère la fonction Φ_{η} : $[-1,1]^2 \to \mathbb{R}$, définie par

$$\Phi_{\eta}(x,y) = u(x) - v(y) - \frac{|x-y|^2}{2\eta}.$$

13. Démontrer que Φ atteint son maximum sur $[-1,1]^2$ en un point $(x_\eta,y_\eta)\in[-1,1]^2$ tel que $\Phi_\eta(x_\eta,y_\eta)\geqslant M$.

14a. Montrer que

$$|x_{\eta} - y_{\eta}| \le \sqrt{2(\|u\|_{\infty} + \|v\|_{\infty})\eta}.$$

14b. En déduire que $|x_{\eta}| \neq 1$ et $|y_{\eta}| \neq 1$.

14c. Conclure que

$$\frac{x_{\eta} - y_{\eta}}{\eta} \in D^+ u(x_{\eta}) \cap D^- v(y_{\eta}).$$

15. Prouver que

$$u(x_n) - v(y_n) \le \omega(|x_n - y_n| + 2|v(x_n) - v(y_n)|)$$

et obtenir une contradiction. Conclure.

Partie IV

16a. Calculer le sur-différentiel et le sous-différentiel de la fonction u_0 de la question **3** pour tout $x \in]-1,1[\setminus \{0\}.$

16b. Montrer que

$$D^+u_0(0) = [-e^{-1}, e^{-1}] \text{ et } D^-u_0(0) = \emptyset.$$

16c. Vérifier que u_0 est sur-solution et sous-solution de (1) pour H(x,p) = |p|.

16d. Qu'en est-il de u_1 ?

16e. En déduire que u_0 est l'unique fonction continue vérifiant $u_0(-1) = u_0(1) = -1$ et qui soit sur-solution et sous-solution de (1) pour H(x,p) = |p|.

Soit $\varepsilon \in]0,1[$. On pose

$$\lambda_{\varepsilon}^{\pm} = \frac{-1 \pm \sqrt{1 + 4\varepsilon}}{2\varepsilon}$$

et on définit la fonction $u_{\varepsilon}: [-1,1] \to \mathbb{R}$ par la formule

$$u_{\varepsilon}(x) = \frac{-\lambda_{\varepsilon}^{-} e^{\lambda_{\varepsilon}^{+}|x|} + \lambda_{\varepsilon}^{+} e^{\lambda_{\varepsilon}^{-}|x|}}{\lambda_{\varepsilon}^{-} e^{\lambda_{\varepsilon}^{+}} - \lambda_{\varepsilon}^{+} e^{\lambda_{\varepsilon}^{-}}}.$$

17. Montrer que u_{ε} est de classe \mathscr{C}^2 sur [-1,1] et vérifie

$$\begin{cases}
 u_{\varepsilon}(x) + |u'_{\varepsilon}(x)| - \varepsilon u''_{\varepsilon}(x) = 0 & \text{pour tout } x \in [-1, 1], \\
 u_{\varepsilon}(-1) = u_{\varepsilon}(1) = -1.
\end{cases}$$
(5)

18a. Montrer que u_{ε} est l'unique solution de classe \mathscr{C}^2 sur [-1,1] à (5).

18b. Soit $(\varepsilon_n)_{n\in\mathbb{N}}$ une suite de]0,1[tendant vers 0. Prouver que $(u_{\varepsilon_n})_{n\in\mathbb{N}}$ converge uniformément sur [-1,1] lorsque $n\to +\infty$ vers une fonction que l'on déterminera.