Corrigé

1. Existence et unicité d'une meilleure approximation

- 1.1. C est l'intersection de la boule fermée de centre f, rayon 1+m et du sous-espace $\mathbb{R}_n[X]$ qui est lui aussi fermé car de dimension finie. Ainsi C est fermé et borné dans un espace de dimension finie ; il est compact. Si l'on avait $C=\varnothing$ alors on aurait $\|f-g\|_I>1+m$ pour tout $g\in\mathbb{R}_n[X]$, en contradiction avec la définition de m.
- 1.2. L'application $g \mapsto \|f g\|_I$ est continue sur C donc elle admet un minimum atteint en $p \in C$. Pour $g \in \mathbb{R}_n[X]$, on a $\|f g\|_I \geqslant \|f p\|_I$ si $g \in C$ et $\|f g\|_I \geqslant 1 + m \geqslant \|f p\|_I$ si $g \notin C$. Ainsi, $\|f p\|_I$ est le minimum de $\|f g\|_I$ sur $\mathbb{R}_n[X]$, soit : $\|f p\|_I = m$. Le cas m = 0 est immédiat.
- 1.3. On remarque déjà que $k \ge 1$ car la fonction continue |f p| admet un maximum sur le compact [a, b]. L'existence de q est une conséquence du théorème d'interpolation de Lagrange.
- 1.4. Par continuité de f-q en x_i , il existe $\delta_i > 0$ tel que $|f(x)-q(x)| < \epsilon$ pour tout $x \in]x_i \delta_i, x_i + \delta_i[\cap I.$ $\delta = \min(\delta_1, \ldots, \delta_k)$ convient alors.
- $\textbf{1.5. Pour } x \in U_{\delta} \text{ on a } |f(x) p_t(x)| = |(1-t)(f(x) p(x)) + t(f(x) q(x))| \leqslant (1-t)m + t\epsilon. \text{ Pour } x \in I \setminus U_{\delta} \\ \text{ on a } |f(x) p_t(x)| = |(f(x) p(x)) + t(p(x) q(x))| \leqslant \sup_{I \setminus U_{\delta}} |f p| + t\ell.$
- 1.6. Il s'agit de choisir ε et t de sorte que les deux majorants obtenus à la question précédente soient strictement inférieurs à m.

On impose $0 < \varepsilon < m$. Ainsi, pour tout $t \in]0,1[$, on a $(1-t)m + t\varepsilon < m$.

 $I \setminus U_{\delta}$ est compact car fermé dans I compact. S'il est non vide, alors |f-p| admet un maximum m' sur ce compact et m' < m car la valeur m ne peut être atteinte par construction de U_{δ} . Alors, pour t suffisament proche de 0^+ on a $t\ell + m' < m$. Lorsque $I \setminus U_{\delta} = \emptyset$, le deuxième majorant n'a pas lieu d'être considéré.

En conclusion, l'existence de q, et donc le fait que $k \le n+1$ ont permis de trouver un polynôme $p_t \in \mathbb{R}_n[X]$ strictement plus proche de f que ne l'est p, en contradiction avec la définition de p. Par négation d'une conclusion absurde, il vient $k \ge n+2$ (éventuellement $k=\infty$).

1.7. $p_3 = (p_1 + p_2)/2 \in \mathbb{R}_n[X]$ et $\|f - p_3\|_I \le \frac{1}{2}(\|f - p_1\|_I + \|f - p_2\|_I) = m$. Ainsi $\|f - p_3\|_I = m$ et il existe au moins n + 2 points x_1, \ldots, x_{n+2} distincts pour lesquels $|f(x_i) - p_3(x_i)| = m$. On a aussi $|f(x_i) - p_3(x_i)| \le \frac{1}{2}(|f(x_i) - p_1(x_i)| + |f(x_i) - p_2(x_i)|) \le m$, d'où $|f(x_i) - p_1(x_i)| = |f(x_i) - p_2(x_i)| = m$ et de plus $f(x_i) - p_1(x_i)$ et $f(x_i) - p_2(x_i)$ ont même signe (sans quoi $f(x_i) - p_3(x_i) = 0$). Il vient $f(x_i) - p_1(x_i) = f(x_i) - p_2(x_i)$ puis $p_1(x_i) = p_2(x_i)$. Par conséquent $p_1 - p_2 \in \mathbb{R}_n[X]$ a au moins n + 2 racines distinctes ; c'est le polynôme nul.

2. Capacité d'un compact

- 2.1. Remarquons déjà que l'hypothèse «K est infini» implique que $\| \|_K$ est une norme sur $\mathbb{R}[X]$. En écrivant $p = X^n + r$ avec $\deg(r) < n$, on voit qu'il s'agit de trouver un polynôme $r \in \mathbb{R}_{n-1}[X]$ de meilleure approximation pour la fonction définie par $f(x) = -x^n$. Un tel polynôme existe et est unique d'après la première partie où l'on n'a pas fait usage de l'hypothèse supplémentaire «I est un intervalle», et où l'on a bien m > 0 car $f \notin \mathbb{R}_{n-1}[X]$.
- **2.2.** Cas $\ell \in \mathbb{R}$: soit $\varepsilon > 0$ et $m \geqslant 1$ tel que $\ell_m \leqslant \ell + \varepsilon$. Pour $n \geqslant 1$, on écrit la division euclidienne de n par m: n = qm + r et n choisit une valeur arbitraire pour ℓ_0 de façon à simplifier le raisonnement qui suit. Partant de l'inégalité $(x+m)\ell_{x+m} \leqslant x\ell_x + m\ell_m$, on obtient de proche en proche : $(r+qm)\ell_{r+qm} \leqslant r\ell_r + qm\ell_m$, soit $n\ell_n \leqslant r\ell_r + (n-r)\ell_m \leqslant M + n(\ell+\varepsilon)$ où $M = \max(x(\ell_x \ell_m), 0 \leqslant x < m)$ (quantité indépendante de n). Ainsi, pour tout entier $n \geqslant 1$, on a $\ell \leqslant \ell_n \leqslant \frac{M}{n} + \ell + \varepsilon$ et ce majorant est inférieur ou égal à $\ell + 2\varepsilon$ si n est suffisament grand. Il est ainsi prouvé que $\ell_n \to \ell$ quand $n \to +\infty$. Le cas $\ell = -\infty$ se traite par adaptation immédiate.
- 2.3. Posons $\ell_n = \ln(t_n)/n$ (quantité bien définie car $t_n > 0$ en tant que minimum). Le polynôme $p = T_m^K T_n^K$ est unitaire de degré m+n, donc $t_{m+n} \leqslant \|p\|_K \leqslant \|T_m^K\|_K \|T_m^K\|_K \leqslant t_m t_n$, d'où $(m+n)\ell_{m+n} \leqslant m\ell_m + n\ell_n$. Avec la question précédente, la suite (ℓ_n) converge ou diverge vers $-\infty$, donc la suite $(t_n^{1/n}) = (\exp(\ell_n))$ converge vers une limite finie, positive ou nulle.

- 2.4. Le nombre w_n est bien défini car K est borné non vide. Pour $x_1, \ldots, x_{n+1} \in K$ et $p \in \{1, \ldots, n+1\}$ on a $\prod_{1 \le i < j \le n+1, \ i,j \ne p} |x_i x_j| \le w_n$. En multipliant ces inégalités pour $p = 1, \ldots, p = n+1$ il vient $\prod_{1 \le i < j \le n+1} |x_i x_j|^{n-1} \le w_n^{n+1}$ (l'exposant n-1 vient du fait qu'un même couple (i,j) apparaît dans tous les produits où $p \ne i$ et $p \ne j$ et seulement dans ceux-là). En prenant la borne supérieure sur x_1, \ldots, x_{n+1} , on obtient $w_{n+1}^{n-1} \le w_n^{n+1}$, ce qui donne la décroissance de la suite de terme général $w_n^{2/(n(n-1))}$. Étant minorée par 0, elle converge.
- 2.5. La borne supérieure définissant w_n est atteinte par compacité de K. Le polynôme p donné dans l'énoncé est un polynôme unitaire de degré n donc $\|p\|_K \geqslant t_n$. En prenant pour x_{n+1} un point de K où |p| atteint son maximum, on obtient $w_{n+1} \geqslant \prod_{1 \leqslant i < j \leqslant n+1} |x_i x_j| \geqslant w_n t_n$.
- 2.6. Le déterminant proposé est inchangé si l'on ajoute à p un polynôme r quelconque de degré au plus n-1 car la colonne ${}^t(r(x_1) \cdots r(x_{n+1}))$ est combinaison linéaire des premières colonnes. Il suffit donc de choisir x_1, \ldots, x_{n+1} de sorte que l'égalité soit valide dans le cas particulier $p(X) = X^n$. Or dans ce cas, on reconnaît le déterminant de Vandermonde, égal à $\prod_{1 \le i < j \le n+1} (x_j x_i)$. On obtient l'égalité en valeur absolue en choisissant $x_1, \ldots, x_{n+1} \in K$ tels que $\prod_{1 \le i < j \le n+1} |x_i x_j| = w_{n+1}$, ce qui est possible par compacité de K.

En développant le déterminant selon la dernière colonne, on obtient une combinaison linéaire des valeurs $p(x_1), \ldots, p(x_{n+1})$ dont les coefficients sont au signe près des déterminants de Vandermonde associés à un arrangement de n termes parmi x_1, \ldots, x_{n+1} . Chacun de ces déterminants est majoré en valeur absolue par w_n , tandis que $|p(x_i)| \leq ||p||_K$. En conséquence, $w_{n+1} \leq (n+1)w_n||p||_K$. En choisissant alors $p = T_n^K$, on a $||p||_K = t_n$, d'où $w_{n+1} \leq (n+1)w_nt_n$.

- 2.7. C'est le lemme de Césaro, valide aussi bien si la limite u est finie ou infinie.
- **2.8.** D'après les questions **2.5** et **2.6**, on a par itération : $x_n = t_1 \dots t_{n-1} \le w_n \le n! x_n$.

Avec la formule de Stirling, $\ln(n!) \sim n \ln(n)$, donc $(n!)^{2/(n(n-1))} \to 1$ quand n tend vers l'infini. Ainsi les suites de termes généraux $w_n^{2/(n(n-1))}$ et $x_n^{2/(n(n-1))}$ ont même limite, $d_2(K)$.

Dans le cas $d_1(K) \neq 0$, on a $\frac{1}{n} \ln(t_n) = \ln(d_1(K)) + o(1)$, soit $\ln(t_n) - n \ln(d_1(K)) = o(n)$. Comme la série de terme général n est à termes réels positifs et diverge, par sommation de cette relation de comparaison il vient $\ln(t_1) + \ldots + \ln(t_{n-1}) - (1 + \ldots + (n-1)) \ln(d_1(K)) = o(1 + \ldots + (n-1))$. Soit $\ln(x_n) = \frac{n(n-1)}{2} \ln(d_1(K)) + o(\frac{n(n-1)}{2})$ et ainsi $x_n^{n/(n(n-1))} \to d_1(K)$ quand $n \to +\infty$ puis $d_2(K) = d_1(K)$.

Dans le cas $d_2(K)=0$, on a de même $1=o(\frac{1}{n}\ln(t_n))$, soit $n=o(-\ln(t_n))$. Puisque $t_n^{1/n}\to 0$, on a $-\ln(t_n)\geqslant 0$ pour n assez grand et on peut encore appliquer le principe de sommation des relations de comparaison. La série de terme général $-\ln(t_n)$ est nécessairement divergente (sans quoi la série de terme général n serait convergente), d'où $\frac{n(n-1)}{2}=o(-\ln(x_n))$ puis $1=o(-\ln(x_n^{2/(n(n-1))}))$ et enfin $x_n^{2/(n(n-1))}\to 0$ quand $n\to +\infty$. Dans ce cas encore, $d_2(K)=d_1(K)$.

Autre solution, proposée par Denis Choimet.

On déduit des questions 2.5 et 2.6 l'encadrement $t_n^{1/n} \leqslant (w_{n+1}/w_n)^{1/n} \leqslant (n+1)^{1/n} t_n^{1/n}$, ce qui montre que $(w_{n+1}/w_n)^{1/n} \underset{n \to \infty}{\longrightarrow} d_1(K)$, et donc $\frac{\ln(w_{n+1}) - \ln(w_n)}{n} \underset{n \to \infty}{\longrightarrow} \ln(d_1(K))$ avec par convention $\ln(0) = -\infty$. Appliquons le lemme de Césaro :

$$\sum_{k=1}^{n} \frac{\ln(w_{k+1}) - \ln(w_k)}{nk} \underset{n \to \infty}{\longrightarrow} \ln(d_1(K)).$$

Par ailleurs,

$$\begin{split} \sum_{k=1}^{n} \frac{\ln(w_{k+1}) - \ln(w_k)}{nk} &= \sum_{k=1}^{n} \frac{\ln(w_{k+1})}{nk} - \sum_{k=1}^{n} \frac{\ln(w_k)}{nk} \\ &= \sum_{k=2}^{n+1} \frac{\ln(w_k)}{n(k-1)} - \sum_{k=1}^{n} \frac{\ln(w_k)}{nk} \\ &= \sum_{k=2}^{n} \frac{\ln(w_k)}{n(k-1)} + \frac{\ln(w_{n+1})}{n^2} - \frac{\ln(w_1)}{n}. \end{split}$$

Ayant $\frac{\ln(w_n)}{\ln(n-1)} \xrightarrow[n\to\infty]{} \frac{1}{2} \ln(d_2(K))$, avec une nouvelle application du lemme de Césaro, on obtient

$$\sum_{k=2}^{n} \frac{\ln(w_k)}{nk(k-1)} + \frac{\ln(w_{n+1})}{n^2} - \frac{\ln(w_1)}{n} \underset{n \to \infty}{\longrightarrow} \frac{1}{2} \ln(d_2(K)) + \frac{1}{2} \ln(d_2(K)) - 0 = \ln(d_2(K)).$$

Ainsi, $ln(d_1(K)) = ln(d_2(k))$.

3. Polynômes de Tchebychev

- **3.1.** Question classique. On trouve $deg(T_n) = n$.
- **3.2.** Question classique. les valeurs extrêmes $\pm 2^{1-n}$ sont atteintes aux nœuds de Tchebychev : $\cos(k\frac{\pi}{n})$, $0\leqslant k\leqslant n.$
- **3.3.** Notons $x_k = \cos(k\frac{\pi}{n})$. Puisque $\|f q\|_I < 2^{1-n} = |2^{1-n}T_n(x_k)|$, le polynôme $r = 2^{1-n}T_n (f q)$ prend en x_k une valeur non nulle du signe de $T_n(x_k)$, soit $(-1)^k$. La suite (x_0, \dots, x_n) est strictement décroissante dans I et délimite n intervalles aux bornes desquels r prend des valeurs de signes opposés. Ainsi r admet au moins une racine dans chaque intervalle ouvert délimité par deux xk successifs, soit au moins n racines distinctes dans I.

Mais deg(r) < n puisque les termes de degré n se compensent entre $2^{1-n}T_n$ et f. En conséquence, r = 0et $f - q = 2^{1-n}T_n$, ce qui est contraire à l'hypothèse « $\|f - q\|_1 < 2^{1-n}$ ».

Ainsi,
$$\|f-q\|_I\geqslant 2^{1-n}$$
 et comme $f-2^{1-n}T_n\in\mathbb{R}_{n-1}[X]$ vérifie $\|f-(f-2^{1-n}T_n)\|_I=2^{1-n}$, par unicité, $T_n^I=2^{1-n}T_n$.

3.4. Le changement de variable $\varphi: x \mapsto \frac{a+b}{2} + x \frac{b-a}{2} = t$ envoie bijectivement l'intervalle [-1,1] sur l'intervalle [a,b] et par composition envoie bijectivement l'ensemble des fonctions polynomiales sur [-1,1] sur l'ensemble des fonctions polynomiales sur [a,b]. Plus précisément, pour $p \in \mathbb{R}[X]$ considéré comme une fonction de $x \in [-1,1]$ et $p' = p \circ \phi^{-1}$ considéré comme une fonction de $t \in [a,b]$, on a :

$$\begin{split} \deg(p) &= \deg(p') \ ; \\ \text{coefficient dominant}(p) &= (\frac{b-\alpha}{2})^{\deg(p)} \text{coefficient dominant}(p') \ ; \\ \|p\|_{[-1,1]} &= \|p'\|_{[\alpha,b]}. \end{split}$$

Il en résulte que l'image du polynôme unitaire de degré n de plus petite norme $\| \|_{[-1,1]}$ est le polynôme de degré n de coefficient dominant $(\frac{2}{b-a})^n$ de plus petite norme $\|\cdot\|_{[a,b]}$ parmi ceux de degré n ayant ce coefficient dominant. Par homogénité, il vient $T_n^{[a,b]} = (\frac{b-a}{2})^n (T_n^{[-1,1]})'$, soit

$$T_n^{[\alpha,b]}(t) = 2(\tfrac{b-\alpha}{4})^n \cos(n\arccos(\tfrac{2t-\alpha-b}{b-\alpha})).$$

- On a alors $\|T_n^{[a,b]}\|_{[a,b]}=t_n=2(\frac{b-a}{4})^n$ et $d_1([a,b])=\lim_{n\to\infty}(t_n^{1/n})=\frac{b-a}{4}$. 3.5. Si p est un tel polynôme, de degré n et de coefficient dominant c alors p/c est unitaire de degré n donc $\|p/c\|_{[a,b]} \geqslant t_n = 2(\frac{b-a}{4})^n \geqslant 2$, puis $\|p\|_{[a,b]} = |c| \|p/c\|_{[a,b]} \geqslant 2|c| \geqslant 2$. 3.6. Le sens indirect est évident. Pour le sens direct, si (p_n) est une suite de polynômes à coefficients entiers
- convergeant uniformément vers f sur [a,b] alors la suite $(p_{n+1}-p_n)$ converge uniformément vers la fonction nulle et est constituée de polynômes à coefficients entiers. D'après la question précédente, le polynôme $p_{n+1} - p_n$ est donc constant à partir d'un certain rang que l'on note N. Soit c_n le coefficient constant de p_n : pour $n \geqslant N$, $p_{n+1}-p_n=c_{n+1}-c_n$ et la série télescopique de terme général $p_{n+1} - p_n$ étant uniformément convergente sur [a,b] il en est de même pour la série télescopique de terme général $c_{n+1}-c_n$. Autrement dit, la suite (c_n) admet une limite finie notée $c\in\mathbb{Z}$. Enfin, $f = p_N + \sum_{k=N}^{\infty} (p_{k+1} - p_k) = p_N + c - c_N$ est un polynôme à coefficients entiers.

4. L'approximation par des polynômes à coefficients entiers

- **4.1.** Prendre $p=T_n^{[\alpha,b]}$ avec n suffisament grand pour que $\|p\|_1=2(\frac{b-\alpha}{4})^n<1.$
- **4.2.** On procède par récurrence forte sur $\deg(s)$. Si $\deg(s) < d$, n = 0 et $b_0 = s$ conviennent. Sinon, on écrit la division euclidienne de s par $r: s = b_0 + r \times s_1$ avec $\deg(b_0) < d$ et $\deg(s_1) = \deg(s) d$. Par hypothèse de récurrence, s_1 s'écrit $s_1 = b_1 + rb_2 + \ldots + r^nb_{n+1}$ avec $\deg(b_i) < d$ et l'on obtient $s = b_0 + rb_1 + \ldots + r^{n+1}b_{n+1}$. L'unicité de cette décomposition (non demandée) peut aussi facilement être établie par récurrence forte sur $\deg(s)$.
- **4.3.** Montrons d'abord que tout polynôme $q \in \mathbb{R}[X]$ s'écrit sous la forme suivante :

$$q = z + \sum_{\substack{0 \le i \le d-1 \\ \ell > 0}} b_{i,\ell} X^{i} p(X)^{\ell}$$

où les coefficients $b_{i,\ell}$ appartiennent à [0,1[et z est un polynôme à coefficients entiers. On procède par récurrence forte sur $n = \deg(q)$.

Pour n < d, on place dans z les parties entières des coefficients de q et on place les parties fractionnaires dans $\sum_{0 \le i \le d-1} b_{i,0} X^i$. Les coefficients $b_{i,\ell}$ avec $\ell \ge 1$ sont posés nuls.

Pour $n \ge d$, on écrit

$$q = a_n X^n + \dots$$

où ... désigne la somme des termes de degré inférieur à n. Puis $a_n = [a_n] + \{a_n\}$ (partie entière, partie fractionnaire), soit

$$q = [a_n]X^n + \{a_n\}X^n + \dots = [a_n]X^n + \{a_n\}X^{\ell d+i} + \dots$$

où $n = \ell d + i$ est la division euclidienne de n par d. Ensuite, $X^{\ell d} = p^{\ell} + \dots$ où \dots désigne la somme des termes de degré inférieur à ℓd . Il vient

$$q = [a_n]X^n + \{a_n\}X^ip^\ell + q'$$

avec deg(q') < n. Il ne reste plus qu'à décomposer q' qui relève de l'hypothèse de récurrence. Par construction, le terme X^ip^ℓ étant de degré n ne sera pas modifié par la décomposition de q', ce qui termine la récurrence.

En décomposant de cette manière le polynôme $q=p^k$, on obtient $p^k=z_k+\sum_{\substack{0\leqslant i\leqslant d-1\\\ell\geqslant 0}}b_{i,\ell,k}X^ip(X)^\ell$

avec z_k à coefficients entiers et $b_{i,\ell,k} \in [0,1[$. Comme $\deg(p^k) = kd$ et p^k est unitaire, l'algorithme de décomposition exposé ci-dessus montre que z_k est unitaire de degré kd et $b_{i,\ell,k} = 0$ si $\ell \geqslant k$. Il ne reste plus qu'à reprendre le polynôme $\sum_{\substack{0 \leqslant i \leqslant d-1 \\ 0 \leqslant \ell < \ell_0}} b_{i,\ell,k} X^i p(X)^\ell$, qui a un degré au plus $d(\ell_0-1)+d-1=m-1$,

et à le réécrire comme combinaison linéaire de $1, X, ..., X^{m-1}$. On place les parties fractionnaires des coefficients dans p_k et on incorpore les parties entières au polynôme z_k .

Remarque : l'énoncé original demandait $r_k(X) = \sum_{\substack{0 \leqslant i \leqslant d-1 \\ \ell \geqslant \ell_0}} b_{i,\ell} X^i p(X)^\ell$, pouvant laisser penser que r_k ne dépendait pas de k. Vu le caractère inintelligible de la question – avec ou sans rectification – on peut penser que cette faute typographique n'a gêné aucun candidat.

4.4. $z_{k'} - z_k = p^{k'} - p^k - (r_{k'} - r_k) - (p_{k'} - p_k)$ est un polynôme unitaire de degré k'd, donc non constant.

On a $\|p\|_I < 1$ et $\|\ \|_I$ est sous-multiplicative, donc la suite (p^k) converge vers le polynôme nul pour $\|\ \|_I$. En particulier, il existe $k_0 \in \mathbb{N}$ tel que pour tous k,k' vérifiant $k' > k \geqslant k_0$, on a $\|p^{k'} - p^k\|_I < \frac{1}{3}$.

Par ailleurs, $\|r_{k'} - r_k\|_I \leqslant \sum_{\substack{0 \leqslant i \leqslant d-1 \\ \ell \geqslant \ell_0}} |b_{i,\ell,k'} - b_{i,\ell,k}| \|X\|_I^i \|p\|_I^\ell \leqslant M \|p\|^{\ell_0}$ où M est une constante ne

dépendant que de p. En choisissant soigneusement ℓ_0 , on obtient $||r_{k'} - r_k||_1 < \frac{1}{3}$ pour tous k' > k.

 ℓ_0 étant désormais fixé, m l'est aussi et la suite (p_k) est à valeurs dans un espace de dimension finie $(\mathbb{R}_{m-1}[X])$ et à coefficients dans la base canonique de $\mathbb{R}_{m-1}[X]$ bornés. Elle contient une sous-suite

convergente pour n'importe quelle norme sur $\mathbb{R}_{m-1}[X]$, en particulier pour $\| \|_I$. On peut donc trouver $k' > k \geqslant k_0$ tels que $\|p_{k'} - p_k\|_I < \frac{1}{3}$.

En conclusion, on peut trouver k'>k tels que $q=z_{k'}-z_k$ vérifie toutes les conditions de l'énoncé.

- **4.5.** Je dis que si I est un intervalle quelconque inclus dans [-1,1] alors $J(I) = I \cap \{-1,0,1\}$. En effet, le polynôme $p(X) = X(X^2 1)$ est à coefficients entiers, et par étude de fonction on a $|p(x)| \leqslant \frac{2}{3\sqrt{3}}$ pour tout $x \in [-1,1]$ donc $||p||_I \leqslant \frac{2}{3\sqrt{3}} < 1$. Ainsi $I \cap \{-1,0,1\} \subset J(I)$. L'inclusion réciproque résulte du fait que tout polynôme $p \in \mathbb{Z}[X]$ vérifiant $||p||_I < 1$ doit s'annuler sur $I \cap \mathbb{Z} = I \cap \{-1,0,1\}$.
- 4.6. Si (p_n) est une suite de polynômes à coefficients entiers convergeant uniformément vers f sur I alors on a $||p_{n+1} p_n||_I < 1$ pour tout n suffisament grand et donc pour $x \in J(I)$, la suite $(p_n(x))$ est stationnaire et la valeur de stationnement est f(x). On prend pour p l'un des p_n avec n assez grand.
- **4.7.** On considère $p \in \mathbb{Z}[X]$ unitaire vérifiant $\|p\|_I < 1$: tous les éléments de J(I) sont racines de p et si la réciproque est vraie, alors q = p convient.

Sinon, soit a une racine de p qui n'appartient pas à J(I). Il existe donc un polynôme $r \in \mathbb{Z}[X]$ vérifiant $||r||_I < 1$ et $r(a) \neq 0$. Pour $n > \deg(r)$, le polynôme $p_1 = p^{2n} + r^2$ est à coefficients entiers, unitaire, et l'ensemble des racines de p_1 est inclus dans l'ensemble des racines de p privé de a. En itérant, on élimine une à une toutes les racines de p n'appartenant pas à J(I).

4.8. On choisit dans **4.2** un polynôme $r \in \mathbb{Z}[X]$ tel que $||r||_1 < 1$. Soit $p \in \mathbb{R}[X]$ que l'on décompose sous la forme : $p = b_0 + b_1 r + \ldots + b_n r^n$. On décompose ensuite chaque coefficient de chaque b_i en partie entière et partie fractionnaire. Il vient :

$$p = (c_0 + ... + c_n r^n) + (d_0 + ... + d_n r^n)$$

où les c_i sont des polynômes à coefficients entiers et les d_i sont des polynômes à coefficients dans [0,1[. On pose enfin $\tilde{p}=c_0+\ldots+c_nr^n$. Il vient

$$\|p-\tilde{p}\|_{\mathrm{I}} = \|d_0+\ldots+d_n r^n\|_{\mathrm{I}} \leqslant \sum_{0\leqslant i < d,\ \ell\geqslant 0} \|X^i\|_{\mathrm{I}} \|r\|_{\mathrm{I}}^\ell = M$$

où d = deg(r) et M sont indépendants de p.

4.9. Soient $\epsilon > 0$ et $k \geqslant 1$ tel que $\|q\|_1^k M \leqslant \epsilon/2$. La fonction f/q^k est prolongeable par continuité aux racines de q car f est identiquement nulle sur un voisinage relatif de chacune de ces racines. On peut trouver un polynôme $r \in \mathbb{R}[X]$ tel que $\|f/q^k - r\|_1 \leqslant \epsilon/2$ et avec la question précédente, on peut décomposer $r = \tilde{r} + s$ avec $\tilde{r} \in \mathbb{Z}[X]$ et $\|s\|_1 \leqslant M$. Soit $p = q^k \tilde{r}$. Il vient

$$\|f-p\|_{\mathrm{I}} \leqslant \|q\|_{\mathrm{I}}^{k} \|f/q^{k} - \tilde{r}\|_{\mathrm{I}} \leqslant \|q\|_{\mathrm{I}}^{k} (\epsilon/2 + M) \leqslant \epsilon/2 + \|q\|_{\mathrm{I}}^{k} M \leqslant \epsilon.$$

- **4.10.** Si f est identiquement nulle sur un voisinage relatif de chaque racine de q, la question précédente permet de conclure. Dans le cas général, il suffit de prouver que si f est une fonction continue sur I nulle en chaque racine de q et si $\varepsilon > 0$, on peut trouver $g \in \mathcal{C}^0(I,\mathbb{R})$ nulle sur un voisinage relatif de chaque racine de q telle que $\|f-g\|_I \le \varepsilon$. Pour ce faire, considérons la fonction $\varphi : \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = x + \varepsilon$ si $x < -\varepsilon$, $\varphi(x) = 0$ si $-\varepsilon \le x \le \varepsilon$ et $\varphi(x) = x \varepsilon$ si $x > \varepsilon$: φ est continue et on a $|\varphi(x) x| \le \varepsilon$ pour tout $x \in \mathbb{R}$. Alors la fonction $g = \varphi \circ f$ convient.
- **4.11.** S'il existe un tel p alors f p relève de la question précédente donc f p est limite uniforme d'une suite de polynômes à coefficients entiers et f aussi. La réciproque a été vue en **4.6**.
- **4.12.** Tout polynôme $p \in \mathbb{Z}[X]$ vérifie ces conditions. Réciproquement, si $a, b, c \in \mathbb{Z}$ et si a et c ont même parité, le polynôme p suivant est à coefficients entiers et vérifie p(-1) = a, p(0) = b, p(1) = c:

$$p(X) = a \frac{X(X-1)}{2} + b \frac{(X-1)(X+1)}{-1} + c \frac{X(X+1)}{2} = (\frac{a+c}{2} - b)X^2 + \frac{c-a}{2}X + b.$$

5. Polynômes symétriques

- **5.1.** Dans le cas contraire on aurait $\sum_k i_k = \sum_k j_k$ et $(i_1, \dots, i_k) = (j_1, \dots, j_k)$ pour tout k, ce qui est exclu car $i \neq j$.
- **5.2.** On doit avoir $\sum_k j_k \leqslant \sum_k i_k$ et en particulier $0 \leqslant j_1, \ldots, j_n \leqslant \sum_k i_k$. S'agissant d'entiers, j_1, \ldots, j_n ne peuvent prendre qu'un nombre fini de valeurs.
- 5.3. On remarque d'abord que les notions de degré et de coefficient dominant sont bien définies car la relation «est plus petit» induit un ordre total sur \mathbb{N}^n d'après la question 5.1.

p étant symétrique, pour toute permutation π , p contient un terme de degré $(i_{\pi(1)},\ldots,i_{\pi(n)})$ qui est donc égal ou plus petit que (i_1,\ldots,i_n) . Comme $\sum_k i_{\pi(k)} = \sum_k i_k$, on en déduit $i_1 \geqslant i_{\pi(1)}$ et en particulier $i_1 \geqslant i_2$. De même, en se limitant aux permutations π telles que $\pi(1) = 1$, on voit que $i_2 \geqslant i_3$ et ainsi de suite.

5.4. On remarque que la relation «est plus petit ou égal» est compatible avec l'addition dans \mathbb{N}^n et il en résulte que si $p, q \in \mathbb{Z}[T_1, \ldots, T_n] \setminus \{0\}$ alors $\deg(pq) = \deg(p) + \deg(q)$. En conséquence,

$$\begin{split} \text{deg}(S_1^{d_1} \dots S_n^{d_n}) &= d_1 \deg(S_1) + \dots + d_n \deg(S_n) \\ &= (d_1, 0 \dots, 0) + (d_2, d_2, 0 \dots, 0) + \dots + (d_n, \dots, d_n) \\ &= (i_1, i_2, \dots, i_n). \end{split}$$

De plus, le coefficient dominant de $S_1^{d_1}\dots S_n^{d_n}$ est égal à 1 donc les termes de plus haut degré se compensent dans la différence $p-\text{dom}(p)S_1^{d_1}\dots S_n^{d_n}$. Ceci suffit à conclure.

5.5. La question précédente montre comment éliminer le terme de plus haut degré dans p en lui retranchant un monôme en S_1, \ldots, S_n , ce qui conserve le caractère symétrique du polynôme initial. En itérant, on élimine tous les monômes de degré inférieur à ce plus haut degré (ils sont en nombre fini). Il reste après un nombre fini d'étapes : p-(un polynôme en S_1, \ldots, S_n) = 0.

6. Entiers algébriques

6.1. Si $x \in \mathbb{Z}$ alors le polynôme p(X) = X - x répond à la définition et x est entier algébrique. Si $x \in \mathbb{Q} \setminus \mathbb{Z}$, x = a/b avec $a \wedge b = 1$ et $b \geqslant 2$ et si $p \in \mathbb{Z}[X]$ est un polynôme non nul tel que p(x) = 0 alors en écrivant $p(X) = a0 + a_1X + \ldots + a_nX^n$ où $a_n \in \mathbb{Z} \setminus \{0\}$, on a

$$0 = p(x) = \frac{a_n a^n + a_{n-1} a^{n-1} b + \ldots + a_0 b^n}{b^n},$$

donc $a_n a^n$ est un multiple non nul de b. Ayant $a \wedge b = 1$, il vient $b \mid a_n$ et en particulier $a_n \neq 1$. Donc x n'est pas un entier algébrique.

6.2. Il s'agit du classique lemme de Gauss que l'on expédie en quelques lignes de la manière suivante : soit π un nombre premier. Pour tout polynôme $a \in \mathbb{Z}[X]$, on note $a^{\pi} \in \mathbb{Z}/\pi\mathbb{Z}[X]$ le polynôme obtenu en remplaçant les coefficients de a par leurs classes de congruence modulo π . L'application $a \mapsto a^{\pi}$ est clairement un morphisme d'anneaux et π étant premier, $\mathbb{Z}/\pi\mathbb{Z}$ est un corps donc $\mathbb{Z}/\pi\mathbb{Z}[X]$ est un anneau intègre. Soient alors $a, b \in \mathbb{Z}[X]$. On a

$$\pi \mid c(ab) \Leftrightarrow (ab)^{\pi} = 0 \Leftrightarrow (a^{\pi} = 0 \text{ ou } b^{\pi} = 0) \Leftrightarrow (\pi \mid c(a) \text{ ou } \pi \mid c(b)) \Leftrightarrow \pi \mid c(a)c(b).$$

Ainsi c(ab) et c(a)c(b) ont les mêmes diviseurs premiers. En particulier c(ab) = 1 = c(a)c(b) lorsque c(a) = c(b) = 1 et le cas général s'en déduit par mise en facteur.

6.3. Soit I l'ensemble des polynômes $p \in \mathbb{Q}[X]$ tels que p(x) = 0. C'est un idéal de $\mathbb{Q}[X]$, non nul car x est algébrique, donc engendré par un polynôme $h \in \mathbb{Q}[X] \setminus \{0\}$ unique à un coefficient multiplicatif près. En jouant sur ce coefficient multiplicatif, on peut imposer que h soit à coefficients entiers, premiers entre eux dans leur ensemble, c'est-à-dire :

$$h \in \mathbb{Z}[X], \quad c(h) = 1, \quad \forall \, p \in \mathbb{Q}[X], (p(x) = 0) \Leftrightarrow (h \mid p \text{ dans } \mathbb{Q}[X]).$$

h est alors unique au signe près et on peut imposer au coefficient dominant de h d'être strictement positif, ce qui le rend unique.

h est unitaire : soit $p \in \mathbb{Z}[X]$ unitaire tel que p(x) = 0. Donc h divise p dans $\mathbb{Q}[X]$, et après réduction au même dénominateur des coefficients du quotient, il existe $d \in \mathbb{N}^*$ et $q \in \mathbb{Z}[X] \setminus \{0\}$ tels que qh = dp. Avec le lemme de Gauss, c(q) = c(qh) = c(dp) = d donc tous les coefficients de q sont divisibles par d et le produit des coefficients dominants de q et de h est égal au coefficient dominant de dp, soit d. Ainsi le coefficient dominant de h divise 1 et est positif ; il vaut 1.

h est irréductible dans $\mathbb{Q}[X]$: sinon $h = h_1h_2$ avec $deg(h_1) < deg(h)$ et $deg(h_2) < deg(h)$. Alors h_1 et h_2 sont deux polynômes non nuls non éléments de I donc tels que $h_1(x) \neq 0$ et $h_2(x) \neq 0$ ce qui contredit h(x) = 0.

h est à racines simples dans \mathbb{C} : sinon h et son polynôme dérivé h' ont un pgcd non constant dans $\mathbb{C}[X]$ donc aussi dans $\mathbb{Q}[X]$ (le pgcd est invariant par extension du corps d'après l'algorithme d'Euclide) et ceci contredit le caractère irréductible de h car ce pgcd, divisant h', ne saurait être un multiple de h.

En résumé, $p_x = h$ convient.

Si $k \in \mathbb{Z}[X]$ est un polynôme unitaire irréductible dans $\mathbb{Q}[X]$ tel que k(x) = 0 alors h divise k dans $\mathbb{Q}[X]$ et par irréductibilité de ces deux polynômes, ils sont égaux à un facteur multiplicatif près. Ledit facteur multiplicatif vaut 1 puisque h et k sont unitaires.

En résumé, p_x est unique.

- **6.4.** x_i est un entier algébrique en tant que racine de p_x donc p_{x_i} divise dans $\mathbb{Q}[X]$ tout polynôme nul en x_i . En particulier p_{x_i} divise p_x et r. Mais p_{x_i} et p_x sont unitaires irréductibles, ils sont égaux. Ainsi p_x divise r
- 6.5. Ces coefficients sont des polynômes en y_1, \ldots, y_m symétriques et à coefficients entiers. Ce sont donc des polynômes à coefficients entiers en les fonctions symétriques élémentaires $s_k = \sum_{1 \leqslant i_1 < \ldots < i_k \leqslant m} y_{i_1} \ldots y_{i_k}$ et $(-1)^{m-k} s_k$ est un coefficient de p_u donc est entier.

Le polynôme $p_x(X - y_1) \dots p_x(X - y_m)$ est unitaire à coefficients entiers donc ses racines sont entiers algébriques, et x + y est l'une de ces racines.

6.6. Soient x_1, \ldots, x_n les conjugués de x et y_1, \ldots, y_m ceux de y. Le polynôme à deux variables

$$p(X,T) = \prod_{i=1}^{n} (X - Tx_i)$$

a pour coefficients des polynômes symétriques en x_1, \ldots, x_n à coefficients entiers donc c'est un polynôme en X, T à coefficients entiers. De plus, en tant que polynôme en X à coefficients polynômes en T, c'est un polynôme unitaire. De même, pour X, T_1, \ldots, T_m variables indépendantes,

$$p(X,T_1,\ldots,T_m) = \prod_{j=1}^m (\prod_{i=1}^n (X-T_jx_i)) \in \mathbb{Z}[T_1,\ldots,T_m][X]$$

et c'est un polynôme unitaire en X dont les coefficients sont des polynômes en T_1,\ldots,T_m symétriques et à coefficients entiers. En conséquence ce polynôme appartient à $\mathbb{Z}[S_1,\ldots,S_m][X]$ où S_1,\ldots,S_m sont les polynômes symétriques élémentaires en T_1,\ldots,T_m . De plus, c'est un polynôme unitaire en X dans cet anneau. Lorsqu'on substitue (y_1,\ldots,y_m) à (T_1,\ldots,T_m) , les polynômes S_1,\ldots,S_m prennent des valeurs entières (les coefficients de p_y ou leurs opposés). Ainsi, $p(X,y_1,\ldots,y_m)\in\mathbb{Z}[X]$ et c'est toujours un polynôme unitaire \ldots qui a tous les x_iy_j pour racine, en particulier xy.

- 6.7. $\prod_{i=1}^{n} q(x_i)$ est un polynôme en x_1, \ldots, x_n symétrique et à coefficients entiers. C'est un entier. De plus, c'est le produit de n valeurs de q avec $\|q\|_{I} < 1$ donc sa valeur absolue est strictement inférieure à 1, c'est 0. Ainsi il existe i tel que $q(x_i) = 0$ et comme x_1, \ldots, x_n ont les mêmes polynômes annulateurs dans $\mathbb{Q}[X]$ (question 6.4), on a aussi q(x) = 0. L'inclusion $F(I) \subset J(I)$ résulte alors de la définition de J(I).
- dans $\mathbb{Q}[X]$ (question 6.4), on a aussi q(x)=0. L'inclusion $F(I)\subset J(I)$ résulte alors de la définition de J(I). 6.8. On a vu $|x(x^2-1)|\leqslant \frac{2}{3\sqrt{3}}$ pour tout $x\in [-1,1]$ donc $|x(x^2-1)(x^2-2)|\leqslant \frac{4}{3\sqrt{3}}$ pour tout $x\in [-1,1]$. Par ailleurs, $|(x-1)(x-2)|\leqslant \frac{5}{16}$ pour tout $x\in [1,\frac{9}{4}]$ donc $|(x^2-1)(x^2-2)|\leqslant \frac{5}{16}$ pour tout x tel

que $1\leqslant |x|\leqslant \frac{3}{2}$ et $|x(x^2-1)(x^2-2)|\leqslant \frac{15}{32}<\frac{4}{3\sqrt{3}}<1$ dans les mêmes conditions. Ainsi, le polynôme $p(X)=X(X^2-1)(X^2-2)$ est unitaire à coefficients entiers et vérifie $\|p\|_I<1$.

I est stable par opposé, donc par conjugué s'agissant des racines de p, on en déduit

$$I \cap \{0, \pm 1, \pm \sqrt{2}\} \subset F(I) \subset J(I) \subset I \cap \{0, \pm 1, \pm \sqrt{2}\}.$$

Ces ensembles sont égaux.

7. Le noyau de Fekete

7.1. Il s'agit du théorème de Minkowski, qui résulte des propriétés de la mesure de Lebesgue sur \mathbb{R}^n (hors programme). J'admets la propriété suivante extraite de la théorie de la mesure :

si P et Q sont deux pavés tels que Q contienne N translatés de P deux à deux disjoints, alors $vol(Q) \geqslant N \, vol(P)$.

Supposons les translatés h+P deux à deux disjoints lorsque h décrit \mathbb{Z}^n et soit M un majorant des valeurs absolues de toutes les coordonnées de tous les ν_i dans la base canonique de \mathbb{R}^n . Pour $k\in\mathbb{N}$, les translatés h+P avec $h\in [\![-k,k]\!]^n$ sont deux à deux disjoints, au nombre de $(2k+1)^n$ et tous inclus dans le pavé $Q=[-k-M,k+M]^n$. Avec la propriété admise, il vient $vol(P)\leqslant (\frac{2k+2M}{2k+1})^n$ puis $vol(P)\leqslant 1$ en faisant tendre k vers l'infini.

- 7.2. B(r) est un pavé de volume 2r donc f⁻¹(½B(r)) est un pavé de volume r/(2ⁿ⁻¹|det(M)|) avec det(M) ≠ 0 (déterminant de Vandermonde, les x_i sont distincts et distincts de 1 qui n'est pas algébrique de degré m). Avec le théorème de Minkowski, si ce volume dépasse 1 alors f⁻¹(½B(r)) contient deux points distincts w, w' tels que h = w w' ∈ Zⁿ. On a alors f(h) = f(w) f(w') ∈ B(r), soit h ∈ f⁻¹(B(r)) et par construction h ∈ Zⁿ \ {0}.
- **7.3.** $|s(x_i)| \leq \frac{1}{2}$ résulte du fait que $f(h) \in B(r)$. $s(x_i) \neq 0$ car le polynôme minimal des x_i est de degré $m > \deg(s)$.
- 7.4. Supposons dans un premier temps que les nombres $s(x_i)$ sont distincts. Soit $f \in \mathcal{C}^0([-1,1],\mathbb{R})$ telle que $f(s(x_i)) = y_i$ pour $i \in \{1, \ldots, n-1\}$ et f(0) = f(1) = f(-1) = 0. D'après la question 4.12, il existe un polynôme $q \in \mathbb{Z}[X]$ tel que $||f q||_{[-1,1]} < \varepsilon$. Alors le polynôme $p = q \circ s$ convient.

Lorsque la suite $(s(x_1),\ldots,s(x_{n-1}))$ comporte des répétitions, on remplace s dans le raisonnement précédent par $s_k(X)=Xs(X)^k$ où $k\in\mathbb{N}$ est un entier à choisir. Pour chaque i on peut trouver un rang à partir duquel $|s_k(x_i)|\leqslant \frac{1}{2}$ et $s_k(x_i)\neq 0$ ($x_i\neq 0$ par algébricité de degré m). Par ailleurs, si $s_k(x_i)=s_k(x_j)$ pour deux indices $i\neq j$ alors $k\ln(|s(x_i)/s(x_j)|)=\ln(|x_j/x_i|)$ donc il n'y a qu'un nombre fini de valeurs de k ne convenant pas.

- 7.5. La différence avec la situation de la question précédente est le fait que les x_i ne sont pas tous conjugués d'un même x. On imite la construction de Lagrange : mettons par exemple x₁, x₂, x₃ sont conjugués de a et x₄, x₅ sont conjugués de b ≠ a. On trouve p envoyant x₁, x₂, x₃ près de y₁, y₂, y₃ et q envoyant x₄, x₅ près de y₄, y₅. Alors le polynôme p(X)p_b(X) + q(X)p_a(X) envoie chaque x_i près de y_ip_a(x_i) ou y_ip_b(x_i) selon les cas. Ces valeurs sont tout aussi arbitraires que y₁,...,y₅ car p_a et p_b n'ont pas de racine en commun.
- 7.6. Par définition, l'ensemble F(I) est constitué d'entiers algébriques et il est stable par conjugaison. Donc le polynôme $p = \prod_{x \in F(J)} p_x$ est un polynôme unitaire à coefficients entiers dont l'ensemble des racines est exactement F(I). En particulier, pour tout $x \in S$ on a $p(x) \neq 0$. Avec la question précédente, pour $\varepsilon > 0$ on peut trouver un polynôme $r \in \mathbb{Z}[X]$ tel que pour tout $x \in S : |r(x) f(x)/p(x)| < \varepsilon$. Il vient :

$$\forall x \in F(I) \cup S, |f(x) - p(x)r(x)| \leq \varepsilon ||p||_I.$$

Soit ϕ définie comme en 4.10 avec $\varepsilon \|p\|_I$ à la place de ε et $g(x) = \phi(f(x) - p(x)r(x))$. g est continue sur I et s'annule sur $F(I) \cup S$ qui est l'ensemble des racines de q donc g est limite uniforme de polynômes à coefficients entiers et on peut trouver un tel polynôme g tel que $\|g - g\|_I \leqslant \varepsilon$. En conséquence, $\|f - pr - g\|_I \leqslant \|f - pr - g\|_I + \|g - g\|_I \leqslant \varepsilon(\|p\|_I + 1)$. On a trouvé un polynôme à coefficients entiers arbitrairement proche de f.

7.7. Si $\alpha \in J(I) \setminus F(I)$ alors on peut facilement construire une fonction $f \in \mathcal{C}^0(I,\mathbb{R})$ telle que f(x) = 0 pour tout $x \in F(J)$, $f(\alpha) = \frac{1}{2}$ et $\|f\|_I < 1$. Si p est un polynôme à coefficients entiers suffisament proche de f alors on a $p(\alpha) \neq 0$ et $\|p\|_I < 1$ en contradiction avec l'hypothèse « $\alpha \in J(I)$ ». Ainsi $J(I) \subset F(I)$ et l'inclusion réciproque a été établie en 6.7.

Fin du corrigé