Corrigé X 2014 filière MP sujet B

Première partie

Pour simplifier, on posera dans cette partie $M=M_{p,q,r}$ et $N=M_{p',q',r'}$. On utilisera les calculs suivants :

Four simplifier, on posera dans cette partie
$$M = M_{p,q,r}$$
 et $N = M_{p',q',r'}$. Consider $MN = \begin{pmatrix} 0 & 0 & pq' \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $(I+M)(I+N) = \begin{pmatrix} 1 & p+p' & r+r'+pq' \\ 0 & 1 & q+q' \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Comme $M^3 = 0$, on a $\exp M_{p,q,r} = I_3 + M_{p,q,r} + M_{p,q,r}^2 = \begin{pmatrix} 1 & p & \frac{pq}{2} + r \\ 0 & 1 & q \\ 0 & 0 & 1 \end{pmatrix}$.
- 2. (a) $M_{p,q,r} * M_{p',q',r'} = \begin{pmatrix} 0 & p+p' & \frac{pq'-p'q}{2} + r + r' \\ 0 & 0 & q+q' \\ 0 & 0 & 0 \end{pmatrix} \in L$, donc la loi * est interne dans L.

L'élément neutre est $0 = M_{0,0,0}$.

qp'' - q'p''). Par symétrie dans l'expression de x, on constate que (M*N)*P = M*(N*P), donc * est associative.

Enfin, $M_{p,q,r} * M_{-p,-q,-r} = M_{-p,-q,-r} * M_{p,q,r} = 0$, donc (L,*) est un groupe.

- (b) $M_{p,q,r}$ commute avec tout élément $M_{p',q',r'}$ de L si et seulement si pq' p'q = p'q pq' pour tout (p',q',r'), c'est-à-dire pq' = p'q, donc p = q = 0. Les éléments solutions décrivent la droite vectorielle \mathbb{R} $M_{0,0,1}$. En particulier, (L,*) n'est pas abélien.
- 3. $\exp M \times \exp N = \begin{pmatrix} 1 & p+p' & y \\ 0 & 1 & q+q' \\ 0 & 0 & 1 \end{pmatrix}$ avec $y = \frac{1}{2}(pq+p'q') + pq' + r + r'$.

En utilisant 2a et 1, $\exp(M*N) = \begin{pmatrix} 1 & p+p' & z \\ 0 & 1 & q+q' \\ 0 & 0 & 1 \end{pmatrix}$ avec $z = \frac{1}{2}(p+p')(q+q') + r + r' + \frac{1}{2}(pq'-qp') = y$, donc $\exp M \times \exp N = \exp(M*N)$.

4. $[M,N] = (pq'-qp')M_{0,0,1}$, dont le carré est nul, d'où $\exp([M,N]) = I_3 + [M,N] = I_3 + (pq'-qp')M_{0,0,1}$.

 $\exp M \exp N = M_{p+p',q+q',a}$ avec $a = \frac{1}{2}(pq+p'q') + pq' + r + r'$, et de même $\exp(-M) \exp(-N) = M_{-p-p',-q-q',b}$ avec $b = \frac{1}{2}(pq+p'q') + pq' - r - r'$.

D'après les calculs initiaux, $\exp M \exp N \exp(-M) \exp(-N) = I_3 + (a+b+(p+p')(-q-q')) M_{0,0,1} = I_3 + (\frac{1}{2}(pq+p'q')+pq'+r+r'+\frac{1}{2}(pq+p'q')+pq'-r-r'+(p+p')(-q-q')) M_{0,0,1} = I_3 + (pq'-qp') M_{0,0,1},$ d'où $\exp M \exp N \exp(-M) \exp(-N) = \exp([M,N]).$

5. I_3+M est triangulaire supérieure à coefficients diagonaux 1, donc $\det(I_3+M)=1$, d'où $H\subset SL_3(\mathbb{R})$.

 $(I_3 + M)(I_3 + N) = I_3 + M_{p+p',q+q',pq'+r+r'}$, qui appartient à H.

 $(I_3+M)^{-1}=I_3+M_{-p,-q,pq-r}\in H$, et $I\in H$, donc H est un sous-groupe de $SL_3(\mathbb{R})$.

Pour tout $M \in L$, $\exp M \in H$. D'après la question 3, exp est un morphisme de groupes de (L, *) dans (H, \times) .

1

D'après 1, $\exp M = I_3$ implique p = q = r = 0, d'où M = 0.

Enfin, $\exp M_{p,q,r-\frac{1}{2}pq} = I + M_{p,q,r}$, donc on a un isomorphisme.

Deuxième partie

On rappelle pour cette partie que pour toute matrice M, exp M est inversible, d'inverse $\exp(-M)$.

6. (a) On montre d'abord par récurrence sur $k \ge 1$ que $AB^k - B^kA = kB^{k-1}[A, B]$.

C'est vrai pour k = 1.

Supposons le vrai au rang k. Alors $AB^{k+1} - B^{k+1}A = (AB^k - B^kA)B + B^k(AB - BA) =$ $kB^{k-1}[A, B]B + B^{k}[A, B] = (k+1)B^{k}[A, B] \text{ car } [A, B] \text{ commute avec } B.$

Le lemme annoncé est démontré.

Il en résulte que pour $k \ge 1$, $A \frac{B^k}{k!} - \frac{B^k}{k!} A = \frac{B^{k-1}}{(k-1)!} [A, B]$. On somme de k = 1 à $+\infty$. En utilisant que $AI_d - I_d A = 0$, on obtient $[A, \exp(B)] = \exp(B)[A, B]$.

(b) On rappelle que $(\exp(tA))' = A \exp(tA) = \exp(tA)A$.

Posons $\varphi(t) = \exp(tA) \exp(tB)$. Alors $\varphi'(t) = \exp(tA)(A \exp(tB) + \exp(tB)B)$.

En appliquant 6a à tA et tB (qui commutent avec [tA, tB]), on obtient en simplifiant par tque $A \exp(tB) - \exp(tB)A = \exp(tB)tAB$.

D'où $\varphi'(t) = \exp(tA) \exp(tB)(A + B + t[A, B]) = \varphi(t)(A + B + t[A, B]).$

(c) On pose $\psi(t) = \varphi(t) \exp(-t(A+B) - \frac{t^2}{2}[A, B])$.

Alors $\psi'(t) = (\varphi'(t) - \varphi(t)(A + B + t[A, B])) \exp(-t(A + B) - \frac{t^2}{2}[A, B]) = 0$. Par suite, ψ est constante. Or $\psi(1) = \exp(A) \exp(B) \exp(-((A + B + \frac{1}{2}[A, B])))$ et $\psi(0) = I_d$, d'où $\exp(A) \exp(B) = \exp(A + B + \frac{1}{2}[A, B]).$

7. (a) Posons M = pA + qB + r[A, B] et N = p'A + q'B + r'[A, B]. Les matrices A, B et [A, B]commutent avec [A, B] donc par linéarité, M et N commutent avec [A, B].

Le crochet est distributif, antisymétrique ([A,B]=-[B,A], d'où [A,A]=0) et [A,[A,B]]=[B,[A,B]]=0 par hypothèse, donc [M,N]=(pq'-qp')[A,B], ce qui entraine que M et Ncommutent avec [M, N].

(b) G est inclus dans $GL_d(\mathbb{R})$. $I = \exp 0 \in G$.

Soient M et N dans \mathcal{L} . [M,N] commute avec M et N, donc d'après 6a, $\exp(M)\exp(N)$

 $\exp(P)$ avec $P = M + N + \frac{1}{2}[M, N]$ qui appartient à \mathcal{L} , donc $\exp(M) \exp(N) \in G$. Enfin, $-M \in \mathcal{L}$ et $\exp(M)^{-1} = \exp(-M) \in G$. Donc G est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

(*) $M_{p,q,r} M_{p',q',r'} = M_{p+p',q+q',r+r'+\frac{1}{2}(pq'-qp')}$.

En appliquant la formule du 6c à M = pA + qB + r[A, B] et N = p'A + q'B + r'[A, B] qui commutent avec [M, N] d'après 7a, on obtient $\exp(M) \exp(N) = \exp(M + N + \frac{1}{2}[M, N]) =$ $\exp((p+p')A + (q+q')B + (r+r' + \frac{1}{2}(pq'-qp')[A,B]).$

En comparant avec (*), on en déduit que $\Phi(\exp(M_{p,q,r} M_{p',q',r'})) = \Phi(\exp(M_{p,q,r}))\Phi(\exp(M_{p',q',r'}))$, donc Φ est un morphisme de groupes.

8. (a) $\frac{n!}{(n-k)! \, n^k} = \frac{n(n-1)\cdots(n-k+1)}{n^k} \xrightarrow[n\to\infty]{} 1.$ $\frac{n!}{(n-k)! \, n^k} = (1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n}) \text{ appartient à } [0,1] \text{ d'où } 0 \leqslant 1-\frac{n!}{(n-k)! \, n^k} \leqslant 1.$

On pose $\varepsilon_n = \sum_{l=0}^n \frac{1}{k!} D_n^k - \left(I_d + \frac{D_n}{n}\right)^n$. D'après ce qui précède, $\varepsilon_n = \sum_{l=0}^n \frac{1}{k!} \left(1 - \frac{n!}{(n-k)!} n^k\right) D_n^k$

d'où
$$\left\| \sum_{k=0}^{n} \frac{1}{k!} D_n^k - \left(I_d + \frac{D_n}{n} \right)^n \right\| \le \sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{n!}{(n-k)!} \frac{1}{n^k} \right) \lambda^k = \sum_{k=0}^{n} \frac{\lambda^k}{k!} - \left(1 + \frac{\lambda}{n} \right)^n$$
en re-

montant le calcul dans l'autre sens. On sait que $n \ln(1+\frac{\lambda}{n}) \xrightarrow[n\to\infty]{} \lambda$ donc par continuité de

l'exponentielle, $\left(1+\frac{\lambda}{n}\right)^n\xrightarrow[n\to\infty]{}e^{\lambda}$, donc ε_n tend vers 0 quand n tend vers $+\infty$.

2

(b) On prouve l'inégalité par récurrence sur k.

Elle est vérifiée pour k=1. Supposons la vraie au rang k.

Alors $D_n^{k+1} - D^{k+1} = D_n(D_n^k - D^k) + (D_n - D)D^k$. Comme la norme est sous-multiplicative, on en déduit en utilisant l'hypothèse de récurrence que :

$$||D_n^{k+1} - D^{k+1}|| \le ||D_n|| \, ||D_n^k - D^k|| + ||D_n - D|| \, ||D||^k \le \lambda \, k \lambda^{k-1} ||D_n - D|| + \lambda^k ||D_n - D||.$$

D'où finalement $||D_n^{k+1} - D^{k+1}|| \le (k+1)\lambda^k ||D_n - D||$

(c)
$$\exp(D) - \left(I_d + \frac{D_n}{n}\right)^n = \sum_{k=0}^{\infty} \frac{D^k - D_n^k}{k!} + \sum_{k=0}^n \frac{D_n^k}{k!} - \left(I_d + \frac{D_n}{n}\right)^n + \sum_{k=n+1}^{\infty} \frac{D_n^k}{k!}$$
 d'où

$$\|\exp(D) - \left(I_d + \frac{D_n}{n}\right)^n\| \leqslant \|\varepsilon_n\| + \sum_{k=1}^{\infty} \frac{k\lambda^{k-1}}{k!} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_{k=n+1}^{\infty} \frac{\lambda^k}{k!} = \|\varepsilon_n\| + e^{\lambda} \|D_n - D\| + \sum_$$

qui tend vers 0 quand n tend vers $+\infty$.

- 9. (a) $\|\exp(D) I_d D\| = \|\sum_{n=2}^{\infty} \frac{D^n}{n!}\| \leqslant \sum_{n=2}^{\infty} \frac{\|D\|^n}{n!} \leqslant \|D\|^2 \sum_{n=2}^{\infty} \frac{1}{n!} = (e-2)\|D\|^2$, d'où le résultat avec $\mu = e-2$.
 - (b) On pose $\exp(A) = I_d + \frac{A}{n} + A_n$ et $\exp(B) = I_d + \frac{B}{n} + B_n$. Soit n_0 le premier entier naturel supérieur ou égal à ||A|| et ||B||. Alors pour tout $n \ge n_0$, on a d'après 9a que $||A_n|| \le \mu \frac{||A||^2}{n^2}$ et $||B_n|| \le \mu \frac{||B||^2}{n^2}$. On en déduit :

$$\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right) = I_d + \frac{A+B}{n} + C_n \text{ avec } C_n = A_n + B_n + \frac{AB}{n^2} + \frac{A_nB}{n} + \frac{AB_n}{n} + \frac{A_nB_n}{n^2}.$$

D'après a, pour tout $n \ge n_0$, on obtient $||C_n|| \le \frac{\nu_0}{n^2}$ où on a posé par exemple $\nu_0 = ||AB|| + \mu \left(||A||^2 + ||B||^2 + ||A||^2 ||B|| + ||A|| ||B||^2 + \mu ||A||^2 ||B||^2 \right)$.

En prenant $\nu_1 = \max_{1 \le n < n_0} (n^2 \| \exp(\frac{A}{n}) \exp(\frac{B}{n}) - I_d - \frac{A}{n} - \frac{B}{n} \|)$ et $\nu = \max(\nu_0, \nu_1)$, on obtient finalement l'égalité voulue avec $\|C_n\| \le \frac{\nu}{n^2}$ pour tout $n \ge 1$.

10. On applique 8c avec $D_n = A + B + n C_n$ qui converge vers A + B d'après 9b :

$$\left(\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right)\right)^n = \left(I_d + \frac{D_n}{n}\right)^n \text{ converge vers } \exp(A+B) \text{ quand } n \to +\infty.$$

Troisième partie

- 11. (a) L'équation différentielle ED proposée est linéaire à valeurs dans $\mathcal{M}_3(\mathbb{R})$ à coefficients continus sur [0,T], donc en appliquant le théorème de Cauchy-Lipschitz linéaire, le problème de Cauchy proposé par ED et $\gamma(0) = I_3$ admet une unique solution sur [0,T].
 - (b) On pose $\gamma(t) = (a_{ij}(t))_{1 \leq i,j \leq 3}$. En explicitant ED, on arrive à :

$$\begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ a'_{21} & a'_{22} & a'_{23} \\ a'_{31} & a'_{32} & a'_{33} \end{pmatrix} = u(t) \begin{pmatrix} 0 & a_{11} & 0 \\ 0 & a_{21} & 0 \\ 0 & a_{31} & 0 \end{pmatrix} + v(t) \begin{pmatrix} 0 & 0 & a_{12} \\ 0 & 0 & a_{22} \\ 0 & 0 & a_{32} \end{pmatrix}.$$

En particulier, $a'_{11} = 0$ et $a_{11}(0) = 1$, donc $a_{11} = 1$. $a'_{21} = a'_{31} = 0$ et $a_{21}(0) = a_{31}(0) = 0$, donc $a_{21} = a_{31} = 0$. Ensuite, $a'_{22} = 0$ et $a_{22}(0) = 1$, d'où $a_{22} = 1$. $a'_{32} = 0$ et $a_{32}(0) = 0$ donc $a_{32} = 0$ et $a'_{33} = 0$ et $a_{33}(0) = 1$, d'où $a_{33} = 1$. Il en résulte que $\gamma(t) \in H$ pour tout $t \in [0, T]$.

On peut donc écrire
$$\gamma(t) = \exp(M_{p(t),q(t),r(t)}) = \begin{pmatrix} 1 & p(t) & \frac{1}{2}p(t)q(t) + r(t) \\ 0 & 1 & q(t) \\ 0 & 0 & 1 \end{pmatrix}$$
.

On en tire $p'=u,\ q'=v$ et $r'=pv-\frac{1}{2}(p'q+pq'),$ d'où avec les conditions initiales :

$$p(t) = \int_0^t u(s) \, ds, \, q(t) = \int_0^t v(s) \, ds \, \operatorname{et} \, r(t) = \frac{1}{2} \int_0^t v(s) (\int_0^s u(y) \, dy) \, ds - \frac{1}{2} \int_0^t u(s) (\int_0^s v(y) \, dy) \, ds.$$

12. (a)
$$p(t) = \int_0^t \sin(\theta - \varphi s) ds = \frac{\cos(\theta - t\varphi) - \cos\theta}{\varphi}$$
. $q(t) = \int_0^t \cos(\theta - \varphi s) ds = \frac{\sin\theta - \sin(\theta - t\varphi)}{\varphi}$. On pose $R: t \mapsto \frac{t\varphi - \sin(t\varphi)}{2\varphi^2}$ avec $R(0) = 0$. Alors R est \mathcal{C}^1 sur \mathbb{R} et $R'(t) = \frac{1 - \cos(t\varphi)}{2\varphi}$.
$$\frac{1}{2}v(t)p(t) - \frac{1}{2}u(t)q(t) = \cos(\theta - t\varphi)\frac{\cos(\theta - t\varphi)}{2\varphi} - \sin(\theta - t\varphi)\frac{\sin\theta - \sin(\theta - t\varphi)}{\varphi} = R'(t), \text{ d'où par les formules du 11b, } r(t) = R(t).$$

- (b) Dans cette question, $\varphi=0$. En reprenant les formules du 11b, on obtient $p(t)=t\sin\theta$, $q(t)=t\cos\theta$, r(t)=0, c'est-à-dire $\gamma_{\theta,0}(t)=\begin{pmatrix} 1 & t\sin\theta & \frac{1}{2}t^2\sin\theta\cos\theta \\ 0 & 1 & t\cos\theta \\ 0 & 0 & 1 \end{pmatrix}$.
- 13. Les fonctions f et g sont de classe \mathcal{C}^{∞} sur \mathbb{R}^* et $\lim_{s\to 0} f(s) = 1$, $\lim_{s\to 0} g(s) = 0$ (en fait f et g ainsi prolongées sont développables en série entière sur \mathbb{R} donc \mathcal{C}^{∞}).

 $f'(s) = \frac{2}{s^3}\varphi(s)$ avec $\varphi(s) = s\sin s + 2\cos s - 2$. $\varphi'(s) = -\sin s + s\cos s$, $\varphi''(s) = -s\sin s$. $\varphi'' < 0$ sur $]0,\pi[$ et $\varphi'' > 0$ sur $\pi,2\pi[$, donc φ' décroit sur $[0,\pi]$ et croit sur $[\pi,2\pi[$, strictement. Comme $\varphi'(0) = \varphi'(2\pi) = 0$, $\varphi' < 0$ sur $]0,2\pi[$, donc φ décroit strictement et $\varphi(0) = 0$ donc f' < 0 sur $]0,2\pi[$, donc f est un homéomorphisme décroissant de $[0,2\pi]$ sur [0,1].

 $g'(s) = \frac{1}{2s^3}(-s(1+\cos s) + 2\sin s) = -\frac{2\cos\frac{s}{2}}{s^3}\varphi'(\frac{s}{2}) \text{ qui est du signe de } \cos\frac{s}{2}, \text{ donc } g \text{ croit sur } [0,\pi]$ et décroit sur $[\pi,2\pi]$ donc atteint son maximum en π , avec $g(0) = 0, \ g(\pi) = \frac{1}{2\pi}$ et $g(2\pi) = \frac{1}{4\pi}$.

14. On part de $\gamma_{\theta,\varphi}(1) = \exp(M_{p,q,r})$.

Si $\varphi = 0$, d'après 12b, $p^2 + q^2 = \cos^2 \theta + \sin^2 \theta = 1$ et $r = 0 = g(0) = (g \circ f^{-1})(1)$.

Supposons $\varphi \neq 0$. $p^2 + q^2 = \left(\frac{\cos(\theta - \varphi) - \cos\theta}{\varphi}\right)^2 + \left(\frac{\sin\theta - \sin(\theta - \varphi)}{\varphi}\right)^2 = \frac{2 - 2\cos\varphi}{\varphi^2} = f(\varphi)$, d'où $(g \circ f^{-1})(p^2 + q^2) = g(\varphi) = r$ d'après 12a.

Enoncé de la réciproque : Soit $(p,q) \in \mathbb{R}^2$ tel que $p^2 + q^2 = 1$. Soit $r = (g \circ f^{-1})(p^2 + q^2)$. Alors $r \ge 0$ et $(p,q,r) \in B(1)$.

Preuve:

– Si $p^2+q^2=1$, alors $\exists \theta \in [-\pi,\pi], \ p=\cos \theta$ et $q=\sin \theta$, d'où $\gamma_{\theta,0}(1)=\exp(M_{p,q,0})$ d'où $(p,q,0)\in B(1)$.

 $-\operatorname{Si} p^2 + q^2 < 1, \, \operatorname{posons} \varphi = f^{-1}(p^2 + q^2), \, \operatorname{de} \, \operatorname{sorte} \, \operatorname{que} \, r = g(\varphi), \, \operatorname{soit} \left(\frac{p\varphi}{2\sin\frac{\varphi}{2}}\right)^2 + \left(\frac{q\varphi}{2\sin\frac{\varphi}{2}}\right)^2 = 1.$ Il existe donc $\theta \in [-\pi,\pi]$ tel que $p\varphi = 2\sin\frac{\varphi}{2}\sin(\theta - \frac{\varphi}{2})$ et $q\varphi = 2\sin\frac{\varphi}{2}\cos(\theta - \frac{\varphi}{2})$, c'est-à-dire $p = \frac{\cos(\theta - \varphi) - \cos\theta}{\varphi}$ et $q = \frac{\sin\theta - \sin(\theta - \varphi)}{\varphi}$. Avec les formules du 12a, on en déduit que $(p,q,r) \in B(1)$.

15. En reprenant 12a, on remarque que r(1) > 0 pour $\varphi \in]0, 2\pi[$ et r(1) est impair par rapport à φ .

Si $\exp(M_{p,q,r}) = \gamma_{\theta,\varphi}(1)$, alors les formules du 12a donnent que $\exp(M_{-p,q,-r}) = \gamma_{-\theta,-\varphi}(1)$, donc pour encadrer $p^2 + q^2 + |r|$ dans B(1), on peut se limiter à $r \ge 0$. Dans ce cas, $p^2 + q^2 + r = x + (g \circ f^{-1})(x)$ avec $x = p^2 + q^2$ décrivant [0,1].

Les fonctions id et $g \circ f^{-1}$ sont continues positives sur le compact [0,1], et s'annulent respectivement uniquement en 0 et 1. On en déduit que leur somme ne s'annule pas, donc atteint sa borne inférieure m > 0 et sa borne supérieure M, d'où l'encadrement $c_1^{-1} \leqslant p^2 + q^2 + |r| \leqslant c_1$, avec $c_1 = \max(m^{-1}, M)$.

16. (a) – Supposons p = q = 0.

Si r > 0, d'après 14, $(0,0,\lambda^2 r) \in B(1) \iff \lambda^2 r = (g \circ f^{-1})(0)$. Or $(g \circ f^{-1})(0) = \frac{1}{4\pi}$ donc la seule valeur de λ solution est $\frac{1}{\sqrt{4\pi}}$.

Si r < 0, $(0, 0, -\frac{1}{4\pi}r) \in B(1)$ d'après la remarque du 15.

- Supposons $(p,q) \neq (0,0)$.

D'après la remarque du 15, $(\lambda p, \lambda q, \lambda^2 r) \in B(1)$ si et seulement si $(-\lambda p, \lambda q, -\lambda^2 r) \in B(1)$, donc on peut se limiter à $r \ge 0$.

D'après 14, $(\lambda p, \lambda q, \lambda^2 r) \in B(1) \iff \lambda^2 (p^2 + q^2) \leqslant 1$ et $\lambda^2 r = (g \circ f^{-1})(\lambda^2 p^2 + \lambda^2 q^2)$.

On pose $h:]0,1] \to \mathbb{R}^+$, $s \mapsto \frac{(g \circ f^{-1})(s^2)}{s^2}$. La fonction h est continue sur]0,1], h(1)=0 et $\lim_{s\to 0} h(s) = +\infty.$

En posant $s = \lambda \sqrt{p^2 + q^2}$, la condition se traduit par $h(s) = \frac{r}{p^2 + q^2}$. Il s'agit donc de montrer que h est bijective de [0,1] sur \mathbb{R}^+ .

Pour $s \in]0,1]$, posons $x = f^{-1}(s^2)$. On a $s^2 = f(x) = \frac{2(1-\cos x)}{r^2}$

Par suite, $h(s) = \frac{x^2 g(x)}{1 - \cos x} = \frac{x - \sin x}{4(1 - \cos x)} = \frac{u(x)}{4u'(x)}$ avec $u(x) = x - \sin x$. Posons $H = \frac{u}{4u'}$. On a $H' = \frac{N}{4u'^2}$ avec $N = u'^2 - uu''$. Après calcul, $N(x) = 2 - 2\cos x - x\sin x$, $N'(x) = \sin x - x\cos x$, $N''(x) = x\sin x$ qui est positif sur $[0, \pi]$ et négatif sur $[\pi, 2\pi]$, donc N' croit sur $[0,\pi]$ et décroit sur $[\pi,2\pi]$. Or N'(0)=0 et $N'(2\pi)=-2\pi$ donc N' s'annule en un certain α entre π et 2π , et N croit sur $[0,\alpha]$ et décroit sur $[\alpha,2\pi]$, strictement, et $N(0)=N(2\pi)=0$ donc N est strictement positive sur $[0, 2\pi[$. Comme f^{-1} décroit, h est strictement décroissante donc bijective de [0,1] sur \mathbb{R}^+ .

On conclut à l'existence et l'unicité de λ dont la valeur est $\frac{1}{\sqrt{n^2+a^2}}h^{-1}\left(\frac{r}{p^2+q^2}\right)$.

(b) Soit $A \in H$, il existe $(p,q,r) \in \mathbb{R}^3$ unique tel que $A = \exp(M_{p,q,r})$.

D'après a, il existe θ_0 , φ_0 et $\lambda > 0$ tels que $\gamma_{\theta_0,\varphi_0}(1) = \exp(M_{\lambda p,\lambda q,\lambda^2 r})$, ce qui s'écrit :

$$\lambda p = \frac{\cos(\theta_0 - \varphi_0) - \cos\theta_0}{\varphi_0}, \ \lambda q = \frac{\sin\theta_0 - \sin(\theta_0 - \varphi_0)}{\varphi_0}, \ \lambda^2 r = \frac{\varphi_0 - \sin(\varphi_0)}{2\varphi_0^2}.$$

Il suffit alors de poser $T(A) = \lambda^{-1}$, $\varphi = \lambda \varphi_0$ et $\theta = \theta_0$ pour avoir grâce aux formules du 12 :

$$\gamma_{\theta,\varphi}(T(A)) = \begin{pmatrix} 1 & \frac{\cos(\theta - T\varphi) - \cos\theta}{\varphi} & \frac{T\varphi - \sin(T\varphi)}{2\varphi^2} \\ 0 & 1 & \frac{\sin\theta - \sin(\theta - T\varphi)}{\varphi} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{\cos(\theta - \varphi_0) - \cos\theta_0}{\lambda\varphi_0} & \frac{\varphi_0 - \sin(\varphi_0)}{2\lambda^2\varphi_0^2} \\ 0 & 1 & \frac{\sin\theta_0 - \sin(\theta_0 - \varphi_0)}{\lambda\varphi_0} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{\cos(\theta_0 - \varphi_0) - \cos\theta_0}{\lambda\varphi_0} & \frac{\varphi_0 - \sin(\varphi_0)}{2\lambda^2\varphi_0^2} \\ 0 & 1 & \frac{\sin\theta_0 - \sin(\theta_0 - \varphi_0)}{\lambda\varphi_0} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2}pq + r \\ 0 & 1 & q \\ 0 & 0 & 1 \end{pmatrix} = A.$$

(c) On applique la question 15 au triplet de la question 16a : $c_1^{-1} \leqslant \lambda^2(p^2 + q^2 + |r|) \leqslant c_1$, or $T(\exp(M_{p,q,r})) = \lambda^{-1}$, d'où $c_1^{-1/2} \sqrt{p^2 + q^2 + |r|} \leqslant T(\exp(M_{p,q,r})) \leqslant c_1^{1/2} \sqrt{p^2 + q^2 + |r|}$, d'où le résultat demandé avec $c_2 = \sqrt{c_1}$.