Mines MP 2013 - Épreuve de Mathématiques 2

A. Produit scalaire de matrices

- 1°) La *i*-ième composante d'un vecteur x de \mathbb{R}^n dans une base orthonormée (e_1, e_2, \dots, e_n) est donnée par $\langle x, e_i \rangle$. En particulier, $\langle Ae_i, e_i \rangle$ représente la *i*-ième composante du vecteur $f(e_i)$ où f désigne l'endomorphisme de \mathbb{R}^n canoniquement associé à A. Par suite, $\sum_{i=1}^n \langle Ae_i, e_i \rangle$ est la somme des éléments diagonaux de la matrice de f dans la base (e_1, e_2, \dots, e_n) , c'est-à-dire la trace de f, encore égale à tr(A) par invariance de la trace par changement de base.
- **2°)** L'application \langle , \rangle est symétrique car $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}({}^tAB) = \operatorname{tr}({}^t({}^tAB)) = \operatorname{tr}({}^tBA).$
 - Cette application étant clairement linéaire à droite par linéarité de la trace, elle est bilinéaire.
 - -Soit (e_1, e_2, \ldots, e_n) une base orthonormée de \mathbb{R}^n . Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on a $A \in A$, $A = \sum_{i=1}^n A_i e_i > 1$ soit $\sum_{i=1}^n A_i e_i > 1$, d'où $A \in A$, $A = \sum_{i=1}^n \|A_i e_i\|^2 \ge 1$ avec égalité si et seulement si $\forall i \in [1, n]$, $A \in A \in A$ c'est-à-dire ssi $A \in A \cap A$ est nulle.

L'application $\langle \cdot, \cdot \rangle$ définit donc un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

3°) On rappelle (propriété du cours ou définition selon le point de vue adopté) qu'une matrice symétrique réelle A est positive si et seulement si $\forall x \in \mathbb{R}^n, < Ax, x > \geqslant 0$.

Toute matrice symétrique réelle étant diagonalisable dans $O_n(\mathbb{R})$ d'après le théorème spectral, il existe une base orthonormée (e_1, e_2, \dots, e_n) de \mathbb{R}^n formée de vecteurs propres de B. En appelant μ_i la valeur propre de B associée au vecteur e_i , il vient :

$$< A, B> = \operatorname{tr}({}^{t}\!AB) = \sum_{i=1}^{n} < {}^{t}\!ABe_{i}, e_{i}> = \sum_{i=1}^{n} \mu_{i} < Ae_{i}, e_{i}>,$$

quantité qui est bien positive puisque $\forall x \in \mathbb{R}^n, \langle Ax, x \rangle \geqslant 0$ et $\forall i \in [1, n], \mu_i \geqslant 0$.

B. Décomposition polaire

- **4°)** La matrice ${}^t\!AA$ est symétrique réelle de manière immédiate. De plus, pour tout vecteur $x \in \mathbb{R}^n$, on a $\langle {}^t\!AAx \,,\, x \rangle = \|Ax\|^2 \geqslant 0$ donc ${}^t\!AA$ est positive.
 - Soit $\lambda_1, \lambda_2, \dots, \lambda_n$ les valeurs propres de ${}^t\!AA$, avec $0 \leqslant \lambda_1 \leqslant \lambda_2 \leqslant \dots \leqslant \lambda_n$, et (e_1, e_2, \dots, e_n) une base orthonormée de vecteurs propres associés. Alors, pour tout vecteur unitaire $X = \sum_{i=1}^n x_i e_i$ de \mathbb{R}^n , on a

$$||AX||^2 = \sum_{i=1}^n \lambda_i x_i^2 \leqslant \lambda_n ||X||^2 = \lambda_n,$$

d'où $||A||_2 \leqslant \sqrt{\lambda_n}$. Par ailleurs, le vecteur unitaire e_n réalise l'égalité $||Ae_n|| = \sqrt{\lambda_n}$, d'où au final $||A||_2 = \sqrt{\lambda_n}$.

- 5°) $f^* \circ f$ étant autoadjoint positif (puisque sa matrice ${}^t\!AA$ dans une base orthonormée est symétrique positive), il se diagonalise dans une base orthonormée que l'on notera encore (e_1, e_2, \ldots, e_n) . L'endomorphisme défini par $\forall i \in [\![1, n]\!], \ h(e_i) = \sqrt{\lambda_i} e_i$ est alors autoadjoint positif et, par construction, $f^* \circ f = h^2$.
- 6°) Si $x \in \operatorname{Ker} \tilde{h}$, alors il existe $y \in E$ tel que x = h(y) et h(x) = 0. Or, par construction de h, on a clairement $\operatorname{rg}(h) = \operatorname{rg}(h^2)$ et, comme $\operatorname{Ker} h \subset \operatorname{Ker} h^2$, il vient $\operatorname{Ker} h = \operatorname{Ker} h^2$ d'après le théorème du rang. L'égalité $h^2(y) = 0$ entraı̂ne donc h(y) = 0, d'où x = 0. L'endomorphisme \tilde{h} est donc injectif et comme $\operatorname{Im} h$ est un espace vectoriel de dimension finie, \tilde{h} définit bien un automorphisme de $\operatorname{Im} h$.
- 7°) Pour tout $x \in \mathbb{R}^n$,

$$||f(x)||^2 = \langle f^* \circ f(x), x \rangle = \langle h^2(x), x \rangle = \langle h^* \circ h(x), x \rangle = ||h(x)||^2,$$

d'où ||h(x)|| = ||f(x)||.

- Il en ressort en particulier que Ker h = Ker f, d'où dim Ker $h = \dim \text{Ker } f = \dim (\text{Im } f)^{\perp}$.
- N'importe quelle application linéaire v envoyant une base orthonormée de Ker h sur une base orthonormée de (Im f) $^{\perp}$ conserve alors la norme donc réalise un isomorphisme de Ker h sur (Im f) $^{\perp}$.

- 8°) On observe pour commencer que $\operatorname{Ker} h = (\operatorname{Im} h^{*})^{\perp} = (\operatorname{Im} h)^{\perp}$.
 - -Les sous-espaces Ker h et Im h d'une part, et Im f et $(\operatorname{Im} f)^{\perp}$ d'autre part, étant supplémentaires orthogonaux dans E, il existe un unique endomorphisme u de E qui coïncide avec $f \circ \tilde{h}^{-1}$ sur Im h et v sur Ker h.
 - De plus, l'application $f \circ \tilde{h}^{-1}$ conserve la norme : en effet, $\forall x \in \text{Im } h$, $||f \circ \tilde{h}^{-1}(x)|| = ||h \circ \tilde{h}^{-1}(x)|| = ||x||$. Comme v conserve également la norme des vecteurs de Ker h, le théorème de Pythagore entraı̂ne que $\forall x \in E$, ||u(x)|| = ||x||, ce qui montre que u appartient à O(E).
 - Enfin, les endomorphismes f et $u \circ h$ coïncident par construction sur les sous-espaces supplémentaires $\operatorname{Ker} h$ et $\operatorname{Im} h$, donc sont égaux.
- 9°) Il s'agit de l'interprétation matricielle du résultat de la question 8°) : si f est l'endomorphisme canoniquement associé à A, la relation $f = u \circ h$ se traduit matriciellement par A = US, avec $U \in O_n(\mathbb{R})$ et S symétrique positive (puisque la base canonique est orthonormée pour le produit scalaire usuel).

C. Projeté sur un convexe compact

- 10°) L'application $d_x: h \mapsto \|x h\|$ est 1-lipschitzienne donc continue de E dans \mathbb{R} . Comme H est compact, d_x est bornée et atteint sa borne inférieure sur H d'après le théorème des bornes, d'où l'existence de $h_0 \in H$ tel que $d(x, H) = \|x h_0\|$.
 - Si $h_1 \neq h_0$ est un autre élément de H tel que $d(x,H) = ||x h_1||$, alors d'après le théorème de la médiane,

$$\|x - \frac{1}{2}(h_0 + h_1)\|^2 = \frac{1}{2} \|x - h_0\|^2 + \frac{1}{2} \|x - h_1\|^2 - \frac{1}{4} \|h_0 - h_1\|^2 < (d(x, H))^2.$$

Or $\frac{1}{2}(h_0 + h_1) \in H$ vu que H est convexe, ce qui conduit à une contradiction avec la définition de la borne inférieure.

11°) – Utilisons cette fois l'indication de l'énoncé. Pour tout $h_1 \in H$ et tout $t \in [0,1]$, on a $th_0 + (1-t)h_1 \in H$ par convexité de H, donc $q(t) \ge ||x - h_0||^2$. En écrivant q(t) sous la forme $||x - h_0| + (1-t)(h_0 - h_1)||^2$ et en développant le carré scalaire, il vient alors :

$$\forall t \in [0, 1[, (1-t). < x - h_0, h_0 - h_1 > + (1-t)^2 ||h_0 - h_1||^2 \ge 0.$$

En divisant par (1-t) > 0 et en faisant tendre t vers 1 par valeurs inférieures, on obtient alors $\forall h_1 \in H$, $\langle x - h_0, h_0 - h_1 \rangle \geqslant 0$, ce qui équivaut à la condition demandée.

– Réciproquement, si on a $\forall h_1 \in H$, $\langle x - h_0, h_0 - h_1 \rangle \geqslant 0$, alors $\forall t \in [0,1], \ q(t) \geqslant ||x - h_0||^2$ en remontant les calculs précédents. En particulier, $q(0) \geqslant ||x - h_0||^2$, ce qui signifie que $\forall h_1 \in H$, $||x - h_1|| \geqslant ||x - h_0||$ et h_0 est bien (l'unique) point de H tel que $d(x, H) = ||x - h_0||$.

Remarque : cette condition signifie géométriquement que l'angle formé par les vecteurs $x - h_0$ et $h - h_0$ est obtus.

D. Théorème de Carathéodory et compacité

12°) Soit CC(H) l'ensemble des combinaisons convexes des éléments de H. Toute partie convexe de E qui contient H contenant aussi les combinaisons convexes de leurs éléments, on a déjà l'inclusion immédiate $CC(H) \subset \text{conv}(H)$.

De plus, H est clairement inclus dans CC(H) (tout $x \in H$ s'écrit x = 1.x) et CC(H) est convexe. En effet, si $x = \sum_{i=1}^{p} \lambda_i x_i \in CC(H)$ et $y = \sum_{j=1}^{q} \mu_j y_j \in CC(H)$ (avec $\forall i \in \llbracket 1, p \rrbracket$, $\lambda_i \geqslant 0$, $x_i \in H$ et $\sum_{i=1}^{p} \lambda_i = 1$, et de

même $\forall j \in [1, q], \ \mu_j \ge 0, \ y_j \in H \ \text{et} \ \sum_{j=1}^q \mu_j = 1) \ \text{et si} \ \alpha \in [0, 1],$

$$\alpha.x + (1-\alpha).y = \sum_{i=1}^{p} \alpha \lambda_i x_i + \sum_{i=1}^{q} (1-\alpha)\mu_j y_j$$

donc $\alpha.x + (1-\alpha).y \in H$ vu que les scalaires $\alpha\lambda_i$ et $(1-\alpha)\mu_j$ sont positifs et que $\sum_{i=1}^p \alpha\lambda_i + \sum_{j=1}^q (1-\alpha)\mu_j = 1$. CC(H) est donc le plus petit convexe de E contenant H, d'où l'égalité CC(H) = conv(H).

13°) La famille $(x_2-x_1,\,x_3-x_1,\ldots,\,x_p-x_1)$ est liée car de cardinal $p-1\geqslant n+1$ dans un espace vectoriel de dimension n. Il existe donc des réels non tous nuls μ_2,μ_3,\ldots,μ_p tels que $\sum_{i=2}^p \mu_i(x_i-x_1)=0$. En posant $\mu_1=-\sum_{i=2}^p \mu_i$, on a bien trouvé p réels non tous nuls tels que

$$\sum_{i=1}^{p} \mu_i x_i = 0 \quad \text{et} \quad \sum_{i=1}^{p} \mu_i = 0.$$

14°) Pour un indice i fixé, l'ensemble des réels θ tels que $\lambda_i - \theta \mu_i \geqslant 0$ est un intervalle fermé contenant 0, égal à \mathbb{R} si $\mu_i = 0$, borné supérieurement si $\mu_i > 0$ et borné inférieurement si $\mu_i < 0$. Comme l'un au moins des μ_i est strictement positif et l'un au moins strictement négatif, l'ensemble $\{\theta \in \mathbb{R} \mid \forall i \in \llbracket 1, p \rrbracket, \ \lambda_i - \theta \mu_i \geqslant 0\}$ est un segment. Choisissons pour θ l'une de ses bornes : il existe alors un indice $j \in \llbracket 1, p \rrbracket$ tel que $\lambda_j - \theta \mu_j = 0$ et, pour tout $i \neq j, \ \lambda_i - \theta \mu_i \geqslant 0$. De plus,

$$x = \sum_{i=1}^{p} (\lambda_i - \theta \mu_i) x_i$$
 et $\sum_{i=1}^{p} (\lambda_i - \theta \mu_i) = 1$.

Il en ressort que x est combinaison convexe d'au plus p-1 éléments de H. Si ce nombre d'éléments est encore supérieur ou égal à n+2, on peut recommencer le raisonnement et, par une itération finie, on se ramène à une combinaison convexe d'au plus n+1 éléments de H.

15°) L'ensemble Λ est bien un compact de \mathbb{R}^{n+1} : il est en effet fermé (comme intersection de demi-espaces fermés et d'un hyperplan affine) et borné (si $(t_1, t_2, \dots, t_{n+1} \in \Lambda)$, alors $\forall i \in [1, n+1]$, $0 \le t_i \le 1$). D'après les questions 12°) et 14°), conv(H) est précisément l'ensemble des combinaisons convexes d'au plus n+1 points de H, donc l'image de $\Lambda \times H^{n+1}$ par l'application

$$\phi: ((t_1, t_2, \dots, t_{n+1}), (x_1, x_2, \dots, x_{n+1})) \longmapsto \sum_{i=1}^{n+1} t_i x_i.$$

(À noter qu'une combinaison convexe de moins de n+1 points s'obtient aussi de la sorte, en prenant certains t_i nuls).

L'application ϕ étant continue sur $\mathbb{R}^{n+1} \times E^{n+1}$ (car par exemple bilinéaire en dimension finie) et $\Lambda \times H^{n+1}$ étant compact en tant que produit de compacts, $\operatorname{conv}(H) = \phi(\Lambda \times H^{n+1})$ est donc un compact de E.

E. Enveloppe convexe de $\mathcal{O}_n(\mathbb{R})$

- 16°) $O_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$ comme image réciproque du fermé $\{I_n\}$ par l'application continue $M \mapsto {}^t M M$. Il est de plus borné car tout vecteur colonne d'une matrice orthogonale est de norme euclidienne égale à 1. $O_n(\mathbb{R})$ est ainsi un compact de $\mathcal{M}_n(\mathbb{R})$ et, d'après le résultat de la question 15°), son enveloppe convexe $\operatorname{conv}(O_n(\mathbb{R}))$ est donc également un compact de $\mathcal{M}_n(\mathbb{R})$.
- 17°) Soit M une matrice de $O_n(\mathbb{R})$. Alors, pour tout vecteur unitaire X de \mathbb{R}^n , on a ||MX|| = 1, d'où $||M||_2 = 1$. L'ensemble $O_n(\mathbb{R})$ est donc contenu dans la boule unité \mathcal{B} de $(\mathcal{M}_n(\mathbb{R}), ||.||_2)$ et, comme la boule \mathcal{B} est convexe, il vient $\operatorname{conv}(O_n(\mathbb{R})) \subset \mathcal{B}$.
- 18°) D'après la question 11°), le projeté N de M sur $\operatorname{conv}(O_n(\mathbb{R}))$ est caractérisé par

$$\forall V \in \text{conv}(O_n(\mathbb{R})), \qquad \langle M - N, V - N \rangle \leqslant 0,$$

ce qui se traduit par l'inégalité $\operatorname{tr}(AV) \leqslant \operatorname{tr}(AM)$. De plus, comme $M \not\in \operatorname{conv}(O_n(\mathbb{R}))$,

$$\operatorname{tr}(AN) - \operatorname{tr}(AM) = \langle M - N, N \rangle - \langle M - N, M \rangle = -\|M - N\|_{2}^{2} \langle 0.$$

En écrivant A sous la forme US avec $U \in O_n(\mathbb{R})$ et S symétrique positive, il vient $\forall V \in \text{conv}(O_n(\mathbb{R}))$, tr(USV) < tr(USM). En particulier, pour V = U, on obtient

$$\operatorname{tr}(US^{t}U) = \operatorname{tr}(^{t}UUS) = \operatorname{tr}(S) < \operatorname{tr}(USM).$$

19°) S étant symétrique réelle, il existe une base orthonormée (e_1, e_2, \ldots, e_n) formée de vecteurs propres de S. En posant $Se_i = \lambda_i e_i$ (avec $\lambda_i \ge 0$), l'inégalité de Cauchy-Schwarz donne alors :

$$\langle MUSe_i, e_i \rangle = \lambda_i \langle MUe_i, e_i \rangle \leqslant \lambda_i \|MUe_i\| \times \|e_i\| \leqslant \lambda_i \|Ue_i\| \times \|e_i\| = \lambda_i \|e_i\|^2 = \lambda_i.$$

En appliquant la question 1°),

$$\operatorname{tr}(MUS) = \sum_{i=1}^{n} \langle MUSe_{i}, e_{i} \rangle \leqslant \sum_{i=1}^{n} \lambda_{i} = \operatorname{tr}(S).$$

20°) Or $\operatorname{tr}(MUS) = \operatorname{tr}(USM)$: les inégalités des questions **18°)** et **19°)** conduisent alors à $\operatorname{tr}(S) < \operatorname{tr}(S)$. L'hypothèse $M \not\in \operatorname{conv}(O_n(\mathbb{R}))$ amenant à une contradiction, on en déduit que $\mathcal{B} \subset \operatorname{conv}(O_n(\mathbb{R}))$, d'où finalement $\operatorname{conv}(O_n(\mathbb{R})) = \mathcal{B}$ d'après le **16°)**.

F. Points extrémaux

21°) D'après l'inégalité triangulaire,

$$\|X\| = \|UX\| = \frac{1}{2} \|VX + WX\| \leqslant \frac{1}{2} (\|VX\| + \|WX\|) = \frac{1}{2} (\|X\| + \|X\|) = \|X\|.$$

La norme $\|.\|$ étant euclidienne, les vecteurs VX et WX sont donc colinéaires (et de même sens).

Il en résulte que ${}^tVVX=X$ et tVWX sont colinéaires pour tout vecteur $X\in\mathbb{R}^n$ ce qui entraîne, par un résultat classique que nous admettrons à ce stade du problème, que tVW est une matrice scalaire de la forme αI_n . On obtient alors $W=\alpha V$ mais, comme V et W sont orthogonales, on a nécessairement $\alpha=\pm 1$.

Le cas $\alpha=-1$ est impossible (car on aurait U=0). Il reste donc $\alpha=1$, ce qui conduit à U=V=W, c'est-à-dire au fait que U soit extrémal dans \mathcal{B} .

22°) En utilisant à nouveau la décomposition polaire, A s'écrit sous la forme US avec $U \in O_n(\mathbb{R})$ et S symétrique positive.

Or, d'après le théorème spectral, il existe $Q \in O_n(\mathbb{R})$ et D diagonale à coefficients diagonaux positifs tels que $S = Q^{-1}DQ$.

On obtient alors $A = (UQ^{-1})DQ$ et il suffit de poser $P = UQ^{-1} \in O_n(\mathbb{R})$ pour conclure.

23°) – Soit $X = Q^{-1}e_i$, où e_i désigne le *i*-ième vecteur de la base canonique de \mathbb{R}^n . On a alors ||QX|| = ||X|| = 1 et comme A appartient à \mathcal{B} , il vient $||AX|| \leq 1$.

Or $AX = PDe_i = P(d_ie_i)$ donc, comme d_i est positif, $||AX|| = d_i ||Pe_i|| = d_i ||e_i|| = d_i$, ce qui conduit à $d_i \leq 1$.

- Si tous les coefficients d_i valaient 1, D serait égale à la matrice identité I_n , d'où $A = PQ \in O_n(\mathbb{R})$: impossible. Il existe donc un indice $j \in [1, n]$ tel que $d_j < 1$.
- 24°) Soit $\alpha = 1 \alpha_j$ avec les notations du 23°). Appelons D_{α} , resp. $D_{-\alpha}$, la matrice diagonale dont les coefficients diagonaux sont les mêmes que ceux de D, à l'exception du j-ième qui vaut $d_j + \alpha$, resp. $d_j \alpha$. Posons enfin $A_{\alpha} = PD_{\alpha}Q$ et $A_{-\alpha} = PD_{-\alpha}Q$.

Pour tout vecteur unitaire X de \mathbb{R}^n ,

$$||A_{\alpha}X|| = ||PD_{\alpha}QX|| = ||D_{\alpha}QX|| \leqslant ||D_{\alpha}||_{2} \cdot ||QX|| = ||D_{\alpha}||_{2} \cdot ||X|| = ||D_{\alpha}||$$

Or, d'après le 4°), $||D_{\alpha}||_{2} \leq 1$ étant donné que D_{α} est symétrique positive et que ses valeurs propres sont majorées par 1.

En observant que $||D_{-\alpha}||_2 = ||D_{-\alpha}||_2$, où $|D_{-\alpha}|$ est la matrice diagonale dont les coefficients sont les valeurs absolues de ceux de $D_{-\alpha}$, on obtient de même $||D_{-\alpha}||_2 \le 1$.

On a ainsi construit deux matrices A_{α} et $A_{-\alpha}$ de \mathcal{B} telles que $A = \frac{1}{2}(A_{\alpha} + A_{-\alpha})$ et $A_{\alpha} \neq A$: la matrice A n'est donc pas extrémale.

Conclusion: les points extrémaux de \mathcal{B} sont exactement les matrices orthogonales $A \in O_n(\mathbb{R})$.

4