CORRIGÉ: MATH 1; MP; Mines-ponts_2011

A. Décomposition de Dunford

1) $P(X) = \prod P_i(X)$ et les $P_i(X)$ sont deux à deux premiers entre eux.

D'aprés le théorème de décomposition des noyaux : $\ker(P(f)) = \bigoplus_{i=1}^{r} \ker(P_i(f)) = \bigoplus_{i=1}^{r} F_i$.

Mais d'aprés le théorème de Cayley-Hamilton : P(f) = 0. D'où $E = \bigoplus F_i$.

2) $P_i \in \mathbb{C}[X]$, alors $F_i = \ker(P_i(f))$ est stable par f.

Pour tout $i \in [[1,r]]$, F_i n'est pas réduit à $\{0\}$, car λ_i est une valeur propre de f, et donc F_i contient au moins un vecteur propre de f associé à la valeur propre λ_i .

Toute valeur propre de f_i est racine de P_i , et la seule racine de P_i est λ_i , alors la Polynôme caractéristique de f_i est de la forme : $(\lambda_i - X)^{\beta_i}$.

Pour chaque $i \in [[1,r]]$, soit B_i une base de F_i et A_i la matrice de f_i dans la base B_i .

La matrice de f dans la base $B = (B_1, ..., B_r)$ adaptée à la somme directe : $E = \bigoplus F_i$,

est la matrice diagonale par blocs : $M = diag(A_1, ..., A_r)$.

Le polynôme caractéristique de f est celui de M donné donc par : $P = \prod_{i=1}^{n} Q_i(X)$

avec Q_i le polynôme caractéristique de A_i , c'est à dire de f_i . D'où $P = \prod_{i=1}^r (\lambda_i - X)^{\beta_i} = \prod_{i=1}^r (\lambda_i - X)^{\alpha_i}$, mais les λ_i sont deux à deux distinctes, alors par unicité des multiplicités des racines de P, on a : $\alpha_i = \beta_i$ pour tout $i \in [[1, r]]$.

Finalement : pour tout $i \in [[1,r]]$, le polynôme caractéristique de f_i est $P_i = (\lambda_i - X)^{\alpha_i}$.

3) Pour chaque $i \in [[1,r]]$, le polynôme caractéristique de f_i est $P_i = (\lambda_i - X)^{\alpha_i}$, qui est en particulier scindé sur \mathbb{C} , donc f_i est trigonalisable, et il existe une base B_i de F_i dans laquelle la matrice de f_i est une matrice A_i triangulaire supérieure, et puisque la seule valeur propre de f_i est λ_i , A_i est de la forme : $A_i = \lambda_i I_{\alpha_i} + N_i$ avec N_i triangulaire supérieure à diagonale nulle, donc N_i est nilpotente.

 $B = (B_1, ..., B_r)$ est une base de E, adaptée à la somme directe : $E = \bigoplus F_i$.

La matrice de f dans cette base est $M=diag(A_1,\ldots,A_r)=\begin{pmatrix} \lambda_1I_{\alpha_1}+N_1 & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & \lambda_rI_{\alpha_r}+N_r \end{pmatrix}.$ D'où A est semblable à une matrice $A'=\begin{pmatrix} \lambda_1I_{\alpha_1}+N_1 & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & \lambda_rI_{\alpha_r}+N_r \end{pmatrix}$ où $N_i\in M_{\alpha_i}(\mathbb{C})$ est nilpotente pour tout $i\in \lceil\lceil 1.r\rceil\rceil$

en particulier il existe
$$P \in GL_n(\mathbb{C})$$
 telle que : $P^{-1}AP = A' = \left(\begin{array}{ccccc} \lambda_1 I_{\alpha_1} + N_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_r I_{\alpha_r} + N_r \end{array} \right).$

4) Sous les notations de la question précèdente, on pose :

 $D' = diag(\lambda_1 I_{\alpha_1}, \dots, \lambda_r I_{\alpha_r})$ qui est une matrice diagonale par blocs, et diagonale.

 $N' = diag(N_1, ..., N_r)$ qui est diagonale par blocs et nilpotente. $(N'^n = diag(N_1^n, ..., N_r^n) = 0)$ et on a : $A = P(D' + N')P^{-1} = D + N$ où $D = PD'P^{-1}$ qui est une matrice diagonalisable, et

 $N = PN'P^{-1}$ qui est nilpotente, puisque : $N^n = PN'^nP^{-1} = 0$.

Il reste juste à vérifier que DN = ND.

Remarquons d'abord que D'N' = N'D'. (faire le produit par blocs)

$$DN = PD'P^{-1}PN'P^{-1} = PD'N'P^{-1} = PN'D'P^{-1} = PN'P^{-1}PD'P^{-1} = ND.$$

N.B:

La décomposition A = D + N, ci dessus est dite la décomposition de Dunford de la matrice A. On admettra dans la suite que les matrices D et N sont uniques et ne dépendent que de A.

5) Exemple:

$$A = \left(\begin{array}{ccc} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{array}\right).$$

$$\chi_{A}(\lambda) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ 2 & -\lambda & 1 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} 2 - \lambda & -1 & 0 \\ 2 - \lambda & -\lambda & 1 - \lambda \\ 0 & -1 & 1 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda) \begin{vmatrix} 1 & -1 & 0 \\ 1 & -\lambda & 1 \\ 0 & -1 & 1 \end{vmatrix}$$

$$\chi_A(\lambda) = (2 - \lambda) (1 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & -1 & 1 \end{vmatrix} = (2 - \lambda)^2 (1 - \lambda).$$

a) Cherchons $E_2(A)$ le sous espace propre de A associé à la valeur propre 2.

$$A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases} 3x - y + z = 2x \\ 2x + z = 2y \\ x - y + 2z = 2z \end{cases} \Leftrightarrow \begin{cases} x - y + z = 0 \\ 2x - 2y + z = 0 \\ x = y \end{cases} \Leftrightarrow \begin{cases} x = y \\ z = 0 \end{cases}$$

$$E_2(A) = \mathbb{C} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

b) Cherchons $ker((A-2I_3)^2)$.

$$(A - 2I_3)^2 = \left(\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{array} \right) \left(\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{array} \right).$$

$$\ker((A-2I_3)^2)$$
 est le plan d'équation $x=y$ et donc $\ker((A-2I_3)^2)=\mathbb{C}\begin{pmatrix}1\\1\\0\end{pmatrix}\oplus\mathbb{C}\begin{pmatrix}0\\0\\1\end{pmatrix}$.

c) Cherchons $E_1(A)$ le sous espace propre de A associé à la valeur propre 1.

$$A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} 3x - y + z = x \\ 2x + z = y \\ x - y + 2z = z \end{cases} \iff \begin{cases} 2x - y + z = 0 \\ 2x - y + z = 0 \\ x - y + z = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = z \end{cases}.$$

$$E_1(A) = \mathbb{C} \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right).$$

$$d) A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Posons alors
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. On a : $A = PTP^{-1}$.

Selon l'étude précèdente on a :
$$D = P \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}$$
 et $N = P \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$.

Tout calcul fait :
$$P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
; $D = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$; $N = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

B. Commutation et conjugaison

Pour toutes matrices B de $M_n(\mathbb{C})$ et P de $GL_n(\mathbb{C})$, on note $comm_B$ et $conj_P$ les endomorphismes de $M_n(\mathbb{C})$ définis par : $\forall X \in M_n(\mathbb{C})$; $\begin{cases} comm_B(X) = BX - XB \\ conj_P = PXP^{-1} \end{cases}$.

On se propose dans cette partie de démontrer que pour toute matrice A de $M_n(\mathbb{C})$, A est diagonalisable si et seulement si $comm_A$ est diagonalisable.

6) Soient
$$P \in GL_n(\mathbb{C})$$
 et $A, X \in M_n(\mathbb{C})$. $conj_{P^{-1}} \circ comm_A \circ conj_P(X) = conj_{P^{-1}} \circ comm_A(PXP^{-1}) = conj_{P^{-1}}(APXP^{-1} - PXP^{-1}A)$ $conj_{P^{-1}} \circ comm_A \circ conj_P(X) = P^{-1}(APXP^{-1} - PXP^{-1}A)P = P^{-1}APX - XP^{-1}AP = comm_{P^{-1}AP}(X)$

D'où : $conj_{P^{-1}} \circ comm_A \circ conj_P = comm_{P^{-1}AP}$

7) Soit *A* une matrice diagonale : $A = \sum_{k=1}^{n} \mu_k E_{k,k}$.

 $\forall i,j \in [[1,n]]$; $AE_{i,j} = \mu_i E_{i,i} E_{i,j} = \mu_i E_{i,j}$; $E_{i,j} A = E_{i,j} \mu_j E_{j,j} = \mu_j E_{i,j}$; $comm_A(E_{i,j}) = (\mu_i - \mu_j) E_{i,j}$. D'où $\forall i,j \in [[1,n]]$; $E_{i,j}$ est un vecteur propre de $comm_A$ associé à la valeur propre $(\mu_i - \mu_j)$. $(E_{i,j})_{i,i\in[[1,n]]}$ est une base de vecteurs propres de $comm_A$, alors $comm_A$ est diagonalisable et son spectre est $sp(comm_A) = \{\lambda - \mu \ tq \ \lambda, \mu \in sp(A)\}.$

- 8) On suppose ici que A est diagonalisable, il existe D une matrice diagonale et P une matrice inversible telles que : $A = PDP^{-1}$; D'aprés 6) $comm_A = conj_P \circ comm_D \circ conj_{P^{-1}}$. $conj_P$ est un automorphisme de $M_n(\mathbb{C})$ et $(conj_P)^{-1} = conj_{P^{-1}}$. De plus d'aprés la question précèdente, *comm*_D est diagonalisable. D'où $comm_A$ est diagonalisable.
- 9) On suppose que A est nilpotente, donc il existe un entier non nul k tel que : $A^k = 0$. $\forall X \in M_n(\mathbb{C})$; $comm_A(X) = AX - XA$; $comm_A^2(X) = A(AX - XA) - (AX - XA)A = A^2X - 2AXA + XA^2$. Par récurrence sur $p \in \mathbb{N}^*$, on montre que : $\forall X \in M_n(\mathbb{C})$; $comm_A^p(X) = \sum_{j=0}^p (-1)^j C_p^j A^{p-j} X A^j$.

Cette formule est vraie pour
$$p = 1$$
. soit $p \in \mathbb{N}^*$ tel que l'égalité ci dessus est vérifiée. $\forall X \in M_n(\mathbb{C})$; $comm_A^{p+1}(X) = \sum_{j=0}^p (-1)^j C_p^j A^{p+1-j} X A^j - \sum_{j=0}^p (-1)^j C_p^j A^{p-j} X A^{j+1}$ $comm_A^{p+1}(X) = A^{p+1-j} X + \sum_{j=1}^p (-1)^j C_p^j A^{p+1-j} X A^j + \sum_{j=1}^p (-1)^j C_p^{j-1} A^{p+1-j} X A^j + (-1)^{p+1} X A^{p+1}$ $comm_A^{p+1}(X) = A^{p+1-j} X + \sum_{j=1}^p (-1)^j (C_p^j + C_p^{j-1}) A^{p+1-j} X A^j + (-1)^{p+1} X A^{p+1}$ comme $C_p^j + C_p^{j-1} = C_{p+1}^j$, on obtient le résultat cherché :

$$\forall p \in \mathbb{N}^* \; ; \; \forall X \in M_n(\mathbb{C}) \; ; \; comm_A^p(X) = \sum_{j=0}^p (-1)^j C_p^j A^{p-j} X A^j.$$

$$\forall p \in \mathbb{N}^* \; ; \; \forall X \in M_n(\mathbb{C}) \; ; \; comm_A^p(X) = \sum_{j=0}^p \; (-1)^j C_p^j A^{p-j} X A^j.$$

$$\forall X \in M_n(\mathbb{C}) \; ; \; comm_A^{2k}(X) = \sum_{j=0}^k \; (-1)^j C_{2k}^j A^{2k-j} X A^j = 0 \; (\; \text{car} \; \forall j \in [[0,2k]] \; ; \; j \geq k \; \text{ou} \; (2k-j) \geq k \;).$$

 $comm_A^{2k}$ est l'endomorphisme nul de $M_n(\mathbb{C})$.

Finalement : $comm_A$ est nilpotent dés que A est nilpotente.

10) On suppose que A est nilpotente et que $comm_A$ est l'endomorphisme nul de $M_n(\mathbb{C})$.

$$\forall X \in M_n(\mathbb{C}) \; ; \; AX = XA. \; Posons \; A = \sum_{k=1}^n \sum_{l=1}^n a_{k,l} E_{k,l}.$$

$$\forall i,j \in [[1,n]] \; ; \; AE_{i,j} = E_{i,j} A = \sum_{k=1}^n a_{k,i} E_{k,j} = \sum_{l=1}^n a_{j,l} E_{i,l}.$$

Comme $(E_{i,j})_{i,j\in[[1,n]]}$ est une base de $M_n(\mathbb{C})$, pour $k\neq i$, $a_{k,i}=0$, alors A est une matrice diagonale, et comme A est nilpotente, on déduit que A est nulle.

11) Posons A = D + N, avec D diagonalisable et N nilpotente et DN = ND.

$$\forall X \in M_n(\mathbb{C})$$
; $comm_A(X) = AX - XA = DX - XD + NX - XN = comm_D(X) + comm_N(X)$. $comm_A = comm_D + comm_N$.

 $comm_D$ est diagonalisable d'aprés 8) et $comm_N$ est nilpotente d'aprés 9).

$$\forall X \in M_n(\mathbb{C}) \; ; \; comm_D \circ comm_N(X) = D(NX-XN) - (NX-XN)D = DNX - DXN - NXD - XND$$

Comme
$$ND = DN$$
; $\forall X \in M_n(\mathbb{C})$; $comm_D \circ comm_N(X) = NDX - NXD - DXN - XDN$

$$\forall X \in M_n(\mathbb{C}) ; comm_D \circ comm_N(X) = N(DX - XD) - (DX - XD)N = comm_N \circ comm_D(X).$$

D'où la décomposition de Dunford de $comm_A$ est $comm_A = comm_D + comm_N$.

conclusion:

 $comm_A$ est diagonalisable si et seulement si $comm_N$ est l'endomorphisme nul de $M_n(\mathbb{C})$. alors d'aprés 10) on a :

 $comm_A$ est diagonalisable si et seulement si N=0 si et seulement A=D est diagonalisable.

C. Formes bilinéaires sur un espace vectoriel complexe

lci E est un \mathbb{C} -espace vectoriel de dimension $p \in \mathbb{N}^*$ et b une forme bilinéaire symétrique sur E. Pour tout sous espace vectoriel F de E, on appelle orthogonal de F relativement à b, le sous espace vectoriel de *E* défini par : $F^{\perp} = \{x \in E \text{ tq } \forall y \in F ; b(x,y) = 0\}.$ On suppose que b est non dégénérée, c'est à dire que $E^{\perp} = \{0\}$.

- 12) Soit u un endomorphisme de E. Démontrons les implications suivantes :
- (i) u est diagonalisable \Rightarrow (ii) $\ker(u) = \ker(u^2) \Rightarrow$ (iii) $\ker(u) \cap \operatorname{Im}(u) = \{0\}$.
- $(i) \Rightarrow (ii)$ Soient B une base de E formée de vecteurs propres de u, et A la matrice de udans cette base. Puisque A est diagonale, alors A et A^2 ont le même rang qui est le nombre d'éléments non nuls sur leurs diagonales.

 $rg(u) = rg(u^2)$ alors d'aprés le théorème du rang, $\dim(\ker(u)) = \dim(\ker(u^2))$. et puisque $\ker(u) \subset \ker(u^2)$, alors : $\ker(u) = \ker(u^2)$.

 $(ii) \Rightarrow (iii)$ | Supposons que $\ker(u) = \ker(u^2)$, et soit $y \in \ker(u) \cap \operatorname{Im}(u)$. Il existe $x \in E$ tel que : y = u(x) et $u(y) = u^2(x) = 0$, alors $x \in \ker(u^2) = \ker(u)$ et y = u(x) = 0.

Soit *F* un sous espace vectoriel de *E*, de dimension *q*, et soit $(\varepsilon_1, \dots \varepsilon_q)$ une base de *F*. Pour tout $i \in [[1,q]]$, on note φ_i la forme linéaire définie sur E par : $\forall x \in E$; $\varphi_i(x) = b(\varepsilon_i,x)$.

13) Soient $\alpha_1, \ldots, \alpha_q \in \mathbb{C}$ tels que : $\sum_{i=1}^q \alpha_i \varphi_i = 0$.

 $\forall x \in E \; ; \; \sum_{i=1}^{q} \; \alpha_i \varphi_i(x) = 0 = \sum_{i=1}^{q} \; \alpha_i b(\varepsilon_i x) = b(\sum_{i=1}^{q} \; \alpha_i \varepsilon_i, x)$

b est non dégénérée alors $\sum_{i=1}^{q} \alpha_i \varepsilon_i = 0$ et puisque $(\varepsilon_1, \dots \varepsilon_q)$ est libre, alors : $\alpha_1 = \dots = \alpha_q = 0$.

On commpléte en une base $(\varphi_1, ..., \varphi_p)$ de E^* est on note $(e_1, ..., e_p)$ sa base antiduale.

14) Soit $x = \sum_{i=1}^{p} x_i e_i \in E^*$. puisque $(\varepsilon_1, \dots \varepsilon_q)$ est une base de F, on a : $x \in F^{\perp} \iff \forall y \in F \; ; \; b(x,y) = 0 \iff \forall i \in [[1,q]] \; ; \; b(\varepsilon_i,x) = 0 = \varphi_i(x) = x_i$

 $x \in F^{\perp} \iff \forall i \in [[1,q]] \; ; \; x_i = 0 \iff x \in vect(e_{q+1},...,e_p).$

Finalement $F^{\perp} = vect(e_{q+1}, \dots, e_p)$ est de dimension (p-q) et $\dim(F) + \dim(F^{\perp}) = p$.

D. Critère de Klarès

Le but de cette partie est de démontrer que A est diagonalisable si et seulement si $ker(comm_A) = ker((comm_A)^2).$

15) C'est clair que l'application $[(X,Y) \mapsto tr(XY)]$ est une forme bilinéaire symétrique sur $M_n(\mathbb{C})$. Montrons qu'elle est non dégénérée.

Soit $X \in M_n(\mathbb{C})$ telle que : $\forall Y \in M_n(\mathbb{C})$; tr(XY) = 0.

Posons : $X = (x_{i,j})_{1 \le i,j \le n}$ et $Y = X^* = {}^t\overline{X}$. $tr(XX^*) = 0 = \sum_{1 \le i,j \le n} |x_{i,j}|^2$, alors $\forall i,j \in [[1,n]]$; $x_{i,j} = 0$ et X est la matrice nulle.

16) Soient $X \in \ker(comm_A)$ et $Y \in \operatorname{Im}(comm_A)$, il existe $Z \in M_n(\mathbb{C})$ tel que : Y = AZ - ZA. tr(XY) = tr(XAZ - XZA) = tr(XAZ) - tr(XZA).

comme tr(XZA) = tr(ZAX) et AX = XA alors : tr(XZA) = tr(ZXA) = tr(XAZ). D'où tr(XY) = 0. Im $(comm_A) \subset (ker(comm_A))^{\perp}$.

D'aprés le théorème du rang et d'aprés la question 14) on a :

 $\dim(\operatorname{Im}(comm_A)) = \dim((\ker(comm_A))^{\perp}) = n^2 - \dim(\ker(comm_A)).$

D'où l'égalité : $Im(comm_A) = (ker(comm_A))^{\perp}$.

17) On suppose que A est nilpotente, Soit $Y \in \ker(comm_A)$, alors AY = YA.

Il existe $k \in \mathbb{N}^*$ tel que : $A^k = 0$, alors : $(AY)^k = A^kY^k = 0$, alors AY est nilpotente, et tr(AY) = 0. Alors $A \in (\ker(comm_A))^{\perp} = \operatorname{Im}(comm_A)$, c'est à dire il existe $X \in M_n(\mathbb{C})$ tel que : $A = comm_A(X)$.

 $\forall \lambda \in \mathbb{C}$; $comm_{A+\lambda I_n}(X) = comm_A(X) = A$.

Soient D et N les matrices de la décomposition de Dunford de A.

18) D'aprés 3) il existe $P \in GL_n(\mathbb{C})$ tel que : $P^{-1}AP$ soit de la forme :

$$A' = \begin{pmatrix} \lambda_1 I_{\alpha_1} + N_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_r I_{\alpha_r} + N_r \end{pmatrix}$$

avec $N_i \in M_{\alpha_i}(\mathbb{C})$ une matrice nilpotente, pour tout $i \in [[1,r]]$

D'aprés 17) $\forall i \in [[1,r]]$; $\exists X_i \in M_{\alpha_i}(\mathbb{C})$ tel que : $comm_{\lambda_i I_{\alpha_i} + N_i}(X_i) = N_i$.

On a $N' = diag(N_1, ..., N_r)$; $D' = diag(\lambda_1 I_{\alpha_1}, ..., \lambda_r I_{\alpha_r})$ et posons $X' = diag(X_1, ..., X_r)$.

 $comm_{A'}(X') = N'$. Or $N' = P^{-1}NP$ et posons : $X = PX'P^{-1}$. Alors $comm_{P^{-1}AP}(P^{-1}XP) = P^{-1}NP$, c'est à dire : $comm_A(X) = N$.

19) Si A est diagonalisable, alors d'aprés 8) $comm_A$ l'est aussi et donc d'aprés 12) $ker(comm_A) = ker((comm_A)^2)$.

Supposons réciproquement que $ker(comm_A) = ker((comm_A)^2)$.

Encore d'aprés 12) $ker(comm_A) \cap Im(comm_A) = \{0\}.$

 $N = comm_A(X) \in Im(comm_A).$

Comme ND = DN, alors $comm_A(N) = 0$ et $N \in ker(comm_A) \cap Im(comm_A) = \{0\}$.

Finalement A = D est une matrice diagonalisable.