Un corrigé E3A MP 2021 Mathématiques

1 Exercice I

1. frx—e™® In(z) est continue sur 10, 1] comme produit et composition de fonctions continues et, pour

n > 0, les f,, sont continues sur |0, 1] comme produit de fonctions continues.
De plus, d’apres les croissances comparées, pour n > 0

—1)"
li = lim e ®@ =1=f(0) et Ili — tim Y @) = 0 = £2(0
Ay S )= i, e fO) ev lim, fnle) = B, S (wh(@)" =0=1(0)
Donc f et les f, pour n > 0 sont continues en 0. Enfin, fy est constante donc continue donc
‘ f est continue sur I et Vn € N, f,, est continue sur [ ‘

| n
2. Notons que, Vz € I\{0}, Z fnlx) = Z M est la série entiere de ’exponentielle en —z In(x).
n!

Comme ’exponentielle est développable en série entiere sur IR, Z fn(x) est convergente et

+oo
3 falz) = e = f(a).
n=0

+oo
Si =0, fn(0) converge car f(0) =0sin>0et Y _ f,(0) = fo(0) = 1= f(0).

n=0
—+o00
Donc n converge simplement sur I et n = fsur |
g
n=0

3. ¢ est dérivable comme produit de fonctions dérivables et ¢'(t) = In(t) + 1 donc ¢/(t) < 0sit € |0, 1]

et ¢'(t) > 0sit e [é, 1]. Ce qui donne le tableau de variation suivant : 0 0

p(z) N ) V

e

4. 1im+ ¢'(t) = —oo donc la tangente en 0 est d’équation z = 0 et ¢/(1) = 1 donc la tangente en 1 est
t—0
d’équation y = x — 1. d’ou le graphique :

Yy

1
T e

0

-1l

e

5. Comme f, s’annule en 0, que sur |0, 1] f,, = " et que d’apres la question 3., Ny (¢) = — alors
n! e
1
Noo (fn) = nle™’



1 , .. N ) . 1
Or E —, converge car ¢ est la série entiere de ’exponentielle en — donc
nle e

g fn converge normalement sur [ |.

6. 1. Notons g, : t — t* et
— gz est continue par morceaux sur IR’ comme produit et composition de fonctions fonctions

continues par morceaux.
1
— lim t?¢,(t) = 0 par croissances comparées donc t)y= o — | et comme, d’apres les
Jim_ £2,(t) = 0 p b =0 () d'ap
intégrales de Riemann ¢ — 2 est intégrable en 400 alors, d’apres le théoreme de comparaison,

gz est intégrable en +o0.

_ ) ~
9s )t—>0+ ti-=
seulement si x > 0. Donc, d’apres le théoréme de comparaison, g, est intégrable en 07 si et
seulement si x > 0.
Donc | I' est définie sur IR |.
6.2 Posons P, : I'(n + 1) = nl.

—+o00

— I'(1) = / e tdt = [—e7"] T2 — 1 donc Py est vraie.
0

1
et, d’apres les intégrales de Riemann ¢ — e est intégrable en 0T si et

0
— Supposons P, vrai. En procédant par intégration par parties (les fonctions concernées sont de
classe Ct), pour = > 0

{ u =ttt { u = (n+1)t"

v = et

x €T
/ t"letdt = [—t”+1e_t]g +(n+1) / t"eldt
0 0

€T
—z" e ™ 4 (n41) / t"etdt
0

En faisant tendre x vers 400, d’apres les croissances comparées et en utilisant P,,, on obtient
F'n+2)=mn+1)I'(n+1)=(n+1)n! = (n+1)! donc P,41 est vraie.
Donc, par récurrence, ‘Vn eN,I'(n+1)=n! ‘

= —1In(¢
7. Avec le changement de variable { Zu _ Iclhg ) qui est de classe C! et strictement décroissant,
-t
1 (_1)n 1 (_1)n+1 1 dt
t)dt = tin(t)"dt = ~—— [ t"TIn"(t) [ —=
[ i =8 o) o [ (<)
_1\n+1 0
_ ( 1)'71 / ef(nJrl)U(_u)ndu
n- +w
1 [T
= 5 ue” Yy,
n. Jo
. v=(n+1)u . 1 : .
Avec le changement de variable dv = (n+ 1)du qui est de classe C* et strictement croissant, on
obtient :
1 +00 +oo n
1 1 v dv 1
tydt = — ne(Hugy — — v = T(n+1
/0 falt) n! Jo “e - 0 (n+1)”6 n+1 nl(n+4 1)+t (n+1)
D d’apres 1 ti Scédente, | Vn € IN*, J, L
n r ion pr n =\
onc d’apres la question précédente, | Vn I = e
8. — D’apres la question 1., les f,, sont continues donc continues par morceaux sur le segment [0, 1]

donc intégrables sur I.



— D’apres la question 2., > f,, converge simplement vers f qui, d’apres la question 1, est continue
donc continue par morceaux sur I.

1 1
1
— d’apres la question 7, si n € N*, /0 | fr(t)|dt = /0 fn(t)dt = r T et
1 1 1
/ o) dt = / 1dt =1 = 1. Done Z/ )l =3 .
0 0 0 n>1
. 2 —n “n 1 s - . 1
Or lim n“n ™" =0doncn ™" = o — ). Comme, d’apres les séries de Riemann, Z — est
n—-+00 n—-+00 n2 n2

n>1

1
convergente alors, d’apres le théoreme de comparaison, Z / | fn(t)|dt = Z n~ " Pest aussi.
0 n>1
Donc d’apres le théoreme d’intégration terme a terme, f est intégrable sur I et

1 +o00 1 +o00
J:/O f(t)znzzo/o ot = 3|

9. Notons que Vn > ng, 0 <n~ " < (ng+ 1)™" donc, d’apres la somme d’une série géométrique,

oo +00 ) .
0x 55 e 3N o= g a e L
n=no+1 n=ng+1 1-— o1 (no + 1)”0n0

Avec ng = 9, le reste est inférieur & 9.1072 donc & 1075 donc

la somme partielle d’ordre 9 est une valeur approchée & 107% de J |.

Avec la calculette on trouve ng = 7 est le plus petit ng possible, mais elle n’était pas autorisée ici.

2 Exercice 2

1. 1. Théoreme spectral : Si f est un endomorphisme symétrique d’un espace euclidien E alors il est
diagonalisable dans une base orthonormée de E.

1.2. Comme f est non inversible alors x s(0) = det(0—f) = (=1)" det(f) = 0 donc|0 est valeur propre de f‘

Si f n’admet que 0 comme valeur propre, alors comme f symétrique dans un espace vectoriel eucli-
dien, d’apres le théoreme spectral, il existe une base orthonormée dans laquelle la matrice de f est
diagonale. Comme les coefficients diagonaux de la matrice diagonale sont les valeurs propres de f,
elle est nulle donc f est nul. Contradiction avec I’énoncé donc‘ f admet une valeur propre non nulle ‘

1.3. Soit z € Ker(f) et y € Im(f) donc f(z) =0et 3z € E, f(z) =y. Comme f est symétrique :
(zly) = (2|f(2)) = (f()|z) = (0]z) = 0

Donc Vz € Ker(f), Vy € Im(f), zLy donc ‘Ker(f) et Im(f) sont orthogonaux ‘
Comme ils sont orthogonaux, ils sont en somme directe. De plus, d’aprés le théoréeme du rang,
dim(Im(f)) + dim(Ker(f)) = dim(E) donc ’ Ker(f) et Im(f) sont supplémentaires dans F |

k
1.4. Comme f est diagonalisable d’apres la question 1.2., @ E; = E. Donc
i=0
k
Vee E,Vie{0,...,n},a; € B,z = Z x;. De plus les E; sont orthogonaux deux a deux car f
P .
est symétrique donc Vi € {0,...,n}, Z xj € EZL et comme x; € E; et v = x; + Z x;j alors
J#i,5=0 J#i,j=0
k k k
d’apres la définition de p;, p;(z) = z;. Et donc Vx € E, sz(x) = Z z; = x. Donc Zpi =idg |
i=0 i=0 i=0




1.5.

1.6.

1.7.

2.2.

3.2.

Soit « € E, alors, avec les notations de la question précédente, p; o p;(x) = pi(x;). or x; € Ej;
donc, comme i # j et donc E; LEj, x; € Ei- donc p; opj(x) = pi(z;) = 0 donc

V(i,7) €{0,...,k}?, si i # j alors p; op; = 0|.

Toujours avec les notations des questions précédentes, Vo € F,

k k k k
f@)=f (Z xz) =Y flw) =) Nwi=>_ Aipi(x)
i=0 i=0 i=0 i=0

k
Donc f = Z )\ipi .
=0

Comme Ey = Ker(f) = Im(f)* d’apres la question 1.3. alors d’apres la question 1.4., Vo € E,
k

k k k
xo € Eg = Im(f)* et z::::Z € Ei = Im(f) donc p(z) = le = sz(l“) Donc |p = Zpi .
i=1 i=1 i=1 i=1

. Soit x € E,

fofl(z)=fof! (i%) =f (ilm(fﬂ)) =f (ilﬂfz
iy 7

=0

Donc fofI =p| Donc

f@)=py) & fl@)—fofl(y) =0 flz— f(y) =0z — f(y) € Ker(f)

Done |V(z,y) € B, f(x) = p(y) & = — f'(y) € Ker(f) |
Comme Im(f) = {f(2),z € E} alors 1gg||f(z) —y|l = d(y,Im(f)). Comme Im(f) est un sous-

espace vectoriel de dimension finie de FE, la borne inférieure est un minimum qui est atteint
uniquement quand f(z) est le projeté orthogonal de y sur Im(f) donc

I£() = yll = inf 1£(2) =yl & f(@) = ply)

Donc d’apres la question précédente, |V € F, <||f(x) —y|l = ianE 1f(z) =yl &z — fl(y) € Ker(f)> )
zE

. Comme la matrice de f dans une base orthonormée est symétrique, ‘ f est symétrique ‘

Comme A # 0 alors .

Comme les deuxieme et quatrieme colonnes de A sont opposées, rg(A) < 4 et donc A n’est pas

inversible. Donc ‘ f n’est pas inversible ‘

Pour ) € R,
A—3 0 1 0 A—3 0 1 0
() = 0 A—1 0 1 Ly¢Lg+Lo 0 A—1 0 1
XA =1 A=3 0 Lsclotli | A=2 0 A—=2 0
0 1 0 A—1 0 A 0 A
A—4 0 1 0
C2+Ca—Cy 0 A—2 0 1
Cl<—51—03 0 0 )\—2 O
0 0 0 A

Donc | 2 est valeur propre double de la matrice A




3.3. D’apres la question précédente ‘ A admet exactement trois valeurs propres A\g < A1 < A

(avec A\g =0, A\; =2 et Ay =4).
2
3.4. D’apres la question 1.6., f = Z)\jpj donc
§=0

2 2 2
A = matg(f) = matp Z/\jpj = Z Ajmatg(p;) = Z/\ij
j=0

j=0 7=0

Et d’apres la question précédente, ‘ A =2Mjy+ 4My ‘

x
3.5. Soit X = Zz/ alors
t
—x—2=0 Z=-— T 1
_ —3y—t=0 t=—3y z=-x _ 0 _ 0
AX =4X & v 2=0 Y 0=0 @{y:tzo & X = U e
—y—3t=0 —y+9y=0 0 0
1
Donc, en notant u = R Ey = Vect(u) et comme u est non nul, |dim(E2) = 1| Comme
0

|lu|| = 2 alors | vy = \%u est un vecteur de Es tel que ||ve|| = 1|

3.6. Soit x € E, comme (v2) est une base orthonormale du sous-espace vectoriel de dimension finie Fs
alors ’pg(x) = (z|v2)va ‘

3.7. Soit x € E. En notant X = matg(x) et Vo = matpg(v2) alors, d’apres la question précédente et
comme oV = Vo.(a) (avec () € M1(R)).

mats(pz()) = (zfvz)matp(v2) = Va.(Vy' X) = (1215)X

1 0 -1 0
0 0 0 O
_ T_ 1
Donc | My = VoV = 5 10 1 0
0 0 0 O
1 0 1 0
) \ . ’ 7 1 1 0 ]. 0 - 5 N
4. D’apres la question 3.4. et la précédente, My = 5(A — 4Ma) = 3 1 0 1 o . D’apres la
0 -1 0 1
définition de f7,
3 0 1 0
1 1 1 1 1 0 2 0 -2
Iy _ -+ - _ = My = =
matB(f)_matB<A1p1+A2p2> M M2=51 1 0 3 0
0 -2 0 2
3 0 1 0
0 2 0 =2
Iy _ 1
Donc | matg(f*) = § 1 0 3 0
0 -2 0 2




3 Exercice 3
—+o00

1
1. D’apres le cours, Vt €] — 1,1[, —— = Zt", donc Vt €] — 2,2],
1—t
n=0
+oo
1 1 1 1 t"
2—-t 21-§ 2420
~+00 n
Donc |Vt €] —2,2[, Gx(t) = Z ST |
n=0

2. D’apres le cours, Vt €] — 1,1, (1 4+¢)* = Z k:(]i'tn donc, Vt €] — 1, 1],
n!

(L+t)s =5 F=0 - Ty

Pour n € IN*, le coefficient d’ordre n est donc :

n—1 1 1n—1
Z_k -1 2k —1
1 (2 ) 1( ) }1( ) (=) @n—2) (=) i(2n - 2)!

k=0

n! T2 on—1p| - n—1 T 22n-1(p —1)In!
on (H 2k:> n!
k=1

(=" (2n)!
22n(n!)2(2n — 1) |

Donc, | Vn € IN*, le coefficient d’ordre n demandé est

3. D’apres la question précédente,

nl n
Gy (t) =2-V2 1—7_2ff222n (2 )1)<—;) 2\f+\f223n ;;_Dt”

n_

4. D’apres le cours Gx( Z P(X =n)t" et Gy (t) Z P(Y = n)t" donc d’apres I'unicité du
, o N
développement en séries entieres, |Vn € N, P(X =n) = CTES] et
V2(2n)!
PY=0))=2—-+vV2etVneN*, P(Y =n) = :
(Y =0) V2 et vn € N', P(Y =n) 23n(n)2(2n — 1)
1
5. Comme X et Y sont indépendantes, d’apres le cours, Gg(t) = Gx1y(t) = Gx(t)Gy (t) = 1 (2 — t)_%
2

De méme que dans les questions précédentes,




et

2-1)"

—+00

[T @k+1)

k=0 n
22np)

1

1 X (2n)!

S A—"

23n(n!)2

) t" et par unicité du développement en série entiere,

Done Gs(t) = nz:O on <1 22n4/2(n!)?
1 (2n)!
vne N, P(S=mn) = <1_W2(n!)2> '

6. 1. Comme X(2) =N, (X +1)(Q) =N* et

6.2. D’apres le cours

VneN*, P(X +1=n)=P(X=n—1)= 2

B(X)=E(X+1)-1=

n— 1
Qn:%(l—%) ! donc X—|—1~Q(2>.
1
1 1-1
Tol=1letV(X)=V(X+1)=—2=2|
2 (3)

6.3 Gy est deux fois dérivable sur [—1,1] comme différence et composition de fonctions deux fois

1
dérivables et Vt € [—1,1], Gy (t) = = 2 —1)"2 et G (t :1 2 —t)~2. Donc
Y 2 Y 4

B(Y) = G (1) = § et BY(Y 1)) = G4(1)

1

=1l

6.4 Donc, d’apres la formule de Koenig-Huygens, la linéarité de ’espérance et la question précédente,

6.5 D’apres la linéarité de 'espérance E(S) = E(X +Y) = E(X) 4+ E(Y) donc

Donc

Comme X et Y sont indépendantes, V(S) =V (X +Y) =V (X)+ V(Y) donc

V(Y)=E(Y?) - E(Y)?

4 Exercice 4

11 2
EYY -1)+EY)-EY)*= ity <>

1. Notons Py = 1 et pour & > 0, P, = X" 1(X —1). Alors Vk € {0,...,n}, deg(Py) = k donc
B = (Py,...,P,) est une famille de polynomes a degrés successifs donc ‘ B est une base de R,,[X] ‘

2. 1. Soient (P,Q) € R,[X]? et (A, 1) € R? alors, d’apres la linéarité de I'intégrale,

POP+uQ) = [ AP0+ pQ)i =

1 1
P(t)dt + u/o Q(t)dt = Ap(P) + pp(Q)

Donc ¢ est linéaire et comme de plus ¢ : R,[X] — R alors ‘ ¢ est une forme linéaire sur R, [X] ‘

7



2.2. Comme Im(y) est un sous-espace vectoriel de R alors Im(¢) = {0} ou Im(p) = RR.

3.2

3.3

3.4

4. 1.
4.2.

Or 1 =¢(1) € Im(yp) donc m

D’apres le théoreme du rang dim(Ker(p)) = dim(IR,,[X])

’ dim(Ker(¢)) =n ‘

. Soient (P, R) € R,[X)? et

— dim(Im(p)) =n + 1 — dim(IR) donc

(A, 1) € R? alors, d’apres la linéarité de lintégrale, Vo € R,

VAP + ) (@) = [P0+ nQO)dt = [ PO+ u [ RO = \0(P)@) + il Q)(o)

Donc (AP + uR) = Mp(P) + p(Q) donc .

Im(4)

Donc

= (Rp[X]) = ¥(Vect(1, X, ..., X™)) = Vect(¥(1), (X)), . .., H(X™)) = Vect <X

Tm()

= Vect(X, X2,..., X" |

Notons que P € Ker(yp)
Or, d’apres la question précédente @ € Im(v)) < X|Q et deg(Q) < n +1,
donc P € Ker(¢) & X(X —1)|¥(P) et deg(¢(P)) <n+1< 3R € R,_1[X], v(P)=RX

Donc P € Ker(p) < 3(bo, ..., bp—1) € R",

Donc | P € Ker( ) ¢(P) € Vect(X(X —1),...

<:>f0 (t)dt =0 (P)(1) =0 (X

Comme (P

P(P) € Vect(X

=Jo P

(X -1),...

Donc, d’apres la question précédente,

P € Ker(¢) = P € Vect(2X — 1,3X?% - 2X,...,
Ker(p) C Vect(2X —1,...,
D’apres la question 2.2., dim(Ker(y)) = n = Card(C) > dim(Vect(C)).

= Vect(2X —1,...,

Donc

, XM(X = 1))

— D[(P).

2 Xn+1

S

(X—1).
J — kox —
(Zb X ) k:7+1 D b XH(X - 1)
k=1
XX - 1)),
t)dt, en dérivant on obtient (¢)(P)) (x) = P(z). Donc
= 3(c1,...,c0) €R™, (P chx’f
et yen) €R™Y, Y(P) =) ep((k+ 1D)XF — kXM
k=1
ety oven) €RY, P= cp((k+1)X* — kXF)
k=1
(n+1)X"™ —nX"1). donc
nX" 1. Notons C = (2X — 1,...,(n+ 1)X" —nX"1).

(n+1)X" —

Ker(p)

= Vect(C)

(n+1)X"

—nX" )|

[dim(H) = dim(£(R,,[X], R)) = dim(R,,[X]) dim(R) = n + 1]

Tout d’abord on constate que les 1, sont dans H.
n

Soient (Ao, ...

Sij <

ky (X9)0) = 0 et si j > k, (X7)) =

Soit P = Z Aj X7 alors notons que Y (P

7=0

0= (i: Ak%) (P
k=0

(J— k)
Z Ajp(X7) = Ny, done

) € R tels que Z)\kwk =0.
k=0

7=0

) =) Awvw(P
k=0

) =D X
k

X7 donc i (X9) = 0sij # ket p(XF) =

Donc, comme une somme de termes positifs est nulle si et seulement si tous ses termes sont nuls
alors \g = A\ =

= A, = 0. Donc (¢, ...

, ¥y est une famille libre de H.

)



Et comme, d’apres la question précédente, Card(y,...,¥,) =n+ 1 = dim(H) alors
’ (v0, .. .,%n) est une base de H ‘

n
4.3. D’apres la question précédente, si P = Z ap X" alors Vi (P) = ay, donc

k=0
1 1 n n n
a Vi (P)
©(P) :/ P(t)dt :/ (Z aktk> dt =) =>
0 o \i5p kzok‘—l-l kzok—I—l
Donc | p = kqffl




