
Un corrigé E3A MP 2021 Mathématiques

1 Exercice I

1. f : x 7→ e−x ln(x) est continue sur ]0, 1] comme produit et composition de fonctions continues et, pour
n > 0, les fn sont continues sur ]0, 1] comme produit de fonctions continues.

De plus, d’après les croissances comparées, pour n > 0

lim
x→0+

f(x) = lim
x→0+

e−x ln(x) = 1 = f(0) et lim
x→0+

fn(x) = lim
x→0+

(−1)n

n!
(x ln(x))n = 0 = fn(0)

Donc f et les fn pour n > 0 sont continues en 0. Enfin, f0 est constante donc continue donc
f est continue sur I et ∀n ∈ IN, fn est continue sur I .

2. Notons que, ∀x ∈ I\{0},
∑

fn(x) =
∑ (−x ln(x))n

n!
est la série entière de l’exponentielle en−x ln(x).

Comme l’exponentielle est développable en série entière sur IR,
∑

fn(x) est convergente et

+∞∑
n=0

fn(x) = e−x ln(x) = f(x).

Si x = 0,
∑
fn(0) converge car fn(0) = 0 si n > 0 et

+∞∑
n=0

fn(0) = f0(0) = 1 = f(0).

Donc
∑

fn converge simplement sur I et

+∞∑
n=0

fn = f sur I .

3. ϕ est dérivable comme produit de fonctions dérivables et ϕ′(t) = ln(t) + 1 donc ϕ′(t) ≤ 0 si t ∈
]
0, 1e
]

et ϕ′(t) ≥ 0 si t ∈
[
1
e , 1
]
. Ce qui donne le tableau de variation suivant :

x 0 1
e 1

ϕ′(x) − 0 +

0 0
ϕ(x) ↘ ↗

−1
e

4. lim
t→0+

ϕ′(t) = −∞ donc la tangente en 0 est d’équation x = 0 et ϕ′(1) = 1 donc la tangente en 1 est

d’équation y = x− 1. d’où le graphique :

x

y

0 1

−1
e

1
e

5. Comme fn s’annule en 0, que sur ]0, 1] fn =
(−1)n

n!
ϕn et que d’après la question 3., N∞ (ϕ) =

1

e
alors

N∞ (fn) =
1

n!en
.
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Or
∑ 1

n!en
converge car c’est la série entière de l’exponentielle en

1

e
donc∑

fn converge normalement sur I .

6. 1. Notons gx : t 7→ tx−1e−t.
— gx est continue par morceaux sur IR∗+ comme produit et composition de fonctions fonctions

continues par morceaux.

— lim
t→+∞

t2gx(t) = 0 par croissances comparées donc gx(t) = o
t→+∞

(
1

t2

)
et comme, d’après les

intégrales de Riemann t 7→ 1

t2
est intégrable en +∞ alors, d’après le théorème de comparaison,

gx est intégrable en +∞.

— gx(t) ∼
t→0+

1

t1−x
et, d’après les intégrales de Riemann t 7→ 1

t1−x
est intégrable en 0+ si et

seulement si x > 0. Donc, d’après le théorème de comparaison, gx est intégrable en 0+ si et
seulement si x > 0.

Donc Γ est définie sur IR∗+ .

6.2 Posons Pn : Γ(n+ 1) = n!.

— Γ(1) =

∫ +∞

0
e−tdt =

[
−e−t

]+∞
0

= 1 donc P0 est vraie.

— Supposons Pn vrai. En procédant par intégration par parties (les fonctions concernées sont de
classe C1), pour x > 0{

u = tn+1

v′ = e−t

{
u′ = (n+ 1)tn

v = −e−t∫ x

0
tn+1e−tdt =

[
−tn+1e−t

]x
0

+ (n+ 1)

∫ x

0
tne−tdt

= −xn+1e−x + (n+ 1)

∫ x

0
tne−tdt

En faisant tendre x vers +∞, d’après les croissances comparées et en utilisant Pn, on obtient
Γ(n+ 2) = (n+ 1)Γ(n+ 1) = (n+ 1)n! = (n+ 1)! donc Pn+1 est vraie.

Donc, par récurrence, ∀n ∈ IN, Γ(n+ 1) = n! .

7. Avec le changement de variable

{
u = − ln(t)

du = −dt
t

qui est de classe C1 et strictement décroissant,

∫ 1

0
fn(t)dt =

(−1)n

n!

∫ 1

0
(t ln(t))ndt =

(−1)n+1

n!

∫ 1

0
tn+1 lnn(t)

(
−dt
t

)
=

(−1)n+1

n!

∫ 0

+∞
e−(n+1)u(−u)ndu

=
1

n!

∫ +∞

0
une−(n+1)udu

Avec le changement de variable

{
v = (n+ 1)u
dv = (n+ 1)du

qui est de classe C1 et strictement croissant, on

obtient :∫ 1

0
fn(t)dt =

1

n!

∫ +∞

0
une−(n+1)udu =

1

n!

∫ +∞

0

vn

(n+ 1)n
e−v

dv

n+ 1
=

1

n!(n+ 1)n+1
Γ(n+ 1)

Donc d’après la question précédente, ∀n ∈ IN∗, Jn =
1

(n+ 1)n+1
.

8. — D’après la question 1., les fn sont continues donc continues par morceaux sur le segment [0, 1]
donc intégrables sur I.
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— D’après la question 2.,
∑
fn converge simplement vers f qui, d’après la question 1, est continue

donc continue par morceaux sur I.

— d’après la question 7, si n ∈ N∗,
∫ 1

0
|fn(t)|dt =

∫ 1

0
fn(t)dt =

1

(n+ 1)n+1
et∫ 1

0
|f0(t)|dt =

∫ 1

0
1dt = 1 = 1−1. Donc

∑∫ 1

0
|fn(t)|dt =

∑
n≥1

n−n.

Or lim
n→+∞

n2n−n = 0 donc n−n = o
n→+∞

(
1

n2

)
. Comme, d’après les séries de Riemann,

∑
n≥1

1

n2
est

convergente alors, d’après le théorème de comparaison,
∑∫ 1

0
|fn(t)|dt =

∑
n≥1

n−n l’est aussi.

Donc d’après le théorème d’intégration terme à terme, f est intégrable sur I et

J =

∫ 1

0
f(t) =

+∞∑
n=0

∫ 1

0
fn(t)dt =

+∞∑
n=1

n−n .

9. Notons que ∀n > n0, 0 ≤ n−n ≤ (n0 + 1)−n donc, d’après la somme d’une série géométrique,

0 ≤
+∞∑

n=n0+1

n−n ≤
+∞∑

n=n0+1

(n0 + 1)−n = (n0 + 1)−(n0+1) 1

1− 1
n0+1

=
1

(n0 + 1)n0n0

Avec n0 = 9, le reste est inférieur à 9.10−9 donc à 10−6 donc

la somme partielle d’ordre 9 est une valeur approchée à 10−6 de J .

Avec la calculette on trouve n0 = 7 est le plus petit n0 possible, mais elle n’était pas autorisée ici.

2 Exercice 2

1. 1. Théorème spectral : Si f est un endomorphisme symétrique d’un espace euclidien E alors il est
diagonalisable dans une base orthonormée de E.

1.2. Comme f est non inversible alors χf (0) = det(0−f) = (−1)n det(f) = 0 donc 0 est valeur propre de f

Si f n’admet que 0 comme valeur propre, alors comme f symétrique dans un espace vectoriel eucli-
dien, d’après le théorème spectral, il existe une base orthonormée dans laquelle la matrice de f est
diagonale. Comme les coefficients diagonaux de la matrice diagonale sont les valeurs propres de f ,
elle est nulle donc f est nul. Contradiction avec l’énoncé donc f admet une valeur propre non nulle .

1.3. Soit x ∈ Ker(f) et y ∈ Im(f) donc f(x) = 0 et ∃z ∈ E, f(z) = y. Comme f est symétrique :

(x|y) = (x|f(z)) = (f(x)|z) = (0|z) = 0

Donc ∀x ∈ Ker(f), ∀y ∈ Im(f), x⊥y donc Ker(f) et Im(f) sont orthogonaux .

Comme ils sont orthogonaux, ils sont en somme directe. De plus, d’après le théorème du rang,

dim(Im(f)) + dim(Ker(f)) = dim(E) donc Ker(f) et Im(f) sont supplémentaires dans E .

1.4. Comme f est diagonalisable d’après la question 1.2.,

k⊕
i=0

Ei = E. Donc

∀x ∈ E, ∀i ∈ {0, . . . , n}, ∃!xi ∈ Ei, x =
k∑
i=0

xi. De plus les Ei sont orthogonaux deux à deux car f

est symétrique donc ∀i ∈ {0, . . . , n},
k∑

j 6=i,j=0

xj ∈ E⊥i et comme xi ∈ Ei et x = xi +

k∑
j 6=i,j=0

xj alors

d’après la définition de pi, pi(x) = xi. Et donc ∀x ∈ E,
k∑
i=0

pi(x) =
k∑
i=0

xi = x. Donc
k∑
i=0

pi = idE .
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1.5. Soit x ∈ E, alors, avec les notations de la question précédente, pi ◦ pj(x) = pi(xj). or xj ∈ Ej
donc, comme i 6= j et donc Ei⊥Ej , xj ∈ E⊥i donc pi ◦ pj(x) = pi(xj) = 0 donc

∀(i, j) ∈ {0, . . . , k}2, si i 6= j alors pi ◦ pj = 0 .

1.6. Toujours avec les notations des questions précédentes, ∀x ∈ E,

f(x) = f

(
k∑
i=0

xi

)
=

k∑
i=0

f(xi) =
k∑
i=0

λixi =
k∑
i=0

λipi(x)

Donc f =

k∑
i=0

λipi .

1.7. Comme E0 = Ker(f) = Im(f)⊥ d’après la question 1.3. alors d’après la question 1.4., ∀x ∈ E,

x0 ∈ E0 = Im(f)⊥ et
k∑
i=1

xi ∈ E⊥0 = Im(f) donc p(x) =
k∑
i=1

xi =
k∑
i=1

pi(x). Donc p =
k∑
i=1

pi .

2. 1. Soit x ∈ E,

f ◦ f I(x) = f ◦ f I
(

k∑
i=0

xi

)
= f

(
k∑
i=1

1

λi
pi(x)

)
= f

(
k∑
i=1

1

λi
xi

)
=

k∑
i=1

1

λi
f(xi) =

k∑
i=1

xi = p(x)

Donc f ◦ f I = p . Donc

f(x) = p(y)⇔ f(x)− f ◦ f I(y) = 0⇔ f(x− f I(y)) = 0⇔ x− f I(y) ∈ Ker(f)

Donc ∀(x, y) ∈ E2, f(x) = p(y)⇔ x− f I(y) ∈ Ker(f) .

2.2. Comme Im(f) = {f(z), z ∈ E} alors inf
z∈E
‖f(z)− y‖ = d(y, Im(f)). Comme Im(f) est un sous-

espace vectoriel de dimension finie de E, la borne inférieure est un minimum qui est atteint
uniquement quand f(z) est le projeté orthogonal de y sur Im(f) donc

‖f(x)− y‖ = inf
z∈E
‖f(z)− y‖ ⇔ f(x) = p(y)

Donc d’après la question précédente, ∀x ∈ E,

(
‖f(x)− y‖ = inf

z∈E
‖f(z)− y‖ ⇔ x− f I(y) ∈ Ker(f)

)
.

3. 1. Comme la matrice de f dans une base orthonormée est symétrique, f est symétrique .

Comme A 6= 0 alors f est non nul .

Comme les deuxième et quatrième colonnes de A sont opposées, rg(A) < 4 et donc A n’est pas

inversible. Donc f n’est pas inversible .

3.2. Pour λ ∈ IR,

χA(λ) =

∣∣∣∣∣∣∣∣
λ− 3 0 1 0

0 λ− 1 0 1
1 0 λ− 3 0
0 1 0 λ− 1

∣∣∣∣∣∣∣∣
L4←L4+L2=
L3←L3+L1

∣∣∣∣∣∣∣∣
λ− 3 0 1 0

0 λ− 1 0 1
λ− 2 0 λ− 2 0

0 λ 0 λ

∣∣∣∣∣∣∣∣
C2←C2−C4=
C1←C1−C3

∣∣∣∣∣∣∣∣
λ− 4 0 1 0

0 λ− 2 0 1
0 0 λ− 2 0
0 0 0 λ

∣∣∣∣∣∣∣∣
= λ(λ− 2)2(λ− 4)

Donc 2 est valeur propre double de la matrice A
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3.3. D’après la question précédente A admet exactement trois valeurs propres λ0 < λ1 < λ2

(avec λ0 = 0, λ1 = 2 et λ2 = 4).

3.4. D’après la question 1.6., f =
2∑
j=0

λjpj donc

A = matB(f) = matB

 2∑
j=0

λjpj

 =

2∑
j=0

λjmatB(pj) =

2∑
j=0

λjMj

Et d’après la question précédente, A = 2M2 + 4M4 .

3.5. Soit X =


x
y
z
t

 alors

AX = 4X ⇔


−x− z = 0
−3y − t = 0
−x− z = 0
−y − 3t = 0

⇔


z = −x
t = −3y
0 = 0
−y + 9y = 0

⇔
{
z = −x
y = t = 0

⇔ X =


x
0
−x
0

 = x


1
0
−1
0



Donc, en notant u =


1
0
−1
0

, E2 = Vect(u) et comme u est non nul, dim(E2) = 1 . Comme

‖u‖ =
√

2 alors v2 = 1√
2
u est un vecteur de E2 tel que ‖v2‖ = 1 .

3.6. Soit x ∈ E, comme (v2) est une base orthonormale du sous-espace vectoriel de dimension finie E2

alors p2(x) = (x|v2)v2 .

3.7. Soit x ∈ E. En notant X = matB(x) et V2 = matB(v2) alors, d’après la question précédente et
comme αV2 = V2.(α) (avec (α) ∈M1(IR)).

matB(p2(x)) = (x|v2)matB(v2) = V2.(V
T
2 X) = (V2V

T
2 )X

Donc M2 = V2V
T
2 = 1

2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 .

4. D’après la question 3.4. et la précédente, M1 = 1
2(A − 4M2) = 1

2


1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1

. D’après la

définition de f I ,

matB(f I) = matB

(
1

λ1
p1 +

1

λ2
p2

)
=

1

2
M1 +

1

4
M2 =

1

8


3 0 1 0
0 2 0 −2
1 0 3 0
0 −2 0 2



Donc matB(f I) = 1
8


3 0 1 0
0 2 0 −2
1 0 3 0
0 −2 0 2

 .
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3 Exercice 3

1. D’après le cours, ∀t ∈]− 1, 1[,
1

1− t
=

+∞∑
n=0

tn, donc ∀t ∈]− 2, 2[,

GX(t) =
1

2− t
=

1

2

1

1− t
2

=
1

2

+∞∑
n=0

tn

2n

Donc ∀t ∈]− 2, 2[, GX(t) =

+∞∑
n=0

tn

2n+1
.

2. D’après le cours, ∀t ∈]− 1, 1[, (1 + t)α =
+∞∑
n=0

n−1∏
k=0

(α− k)

n!
tn donc, ∀t ∈]− 1, 1[,

(1 + t)
1
2 =

+∞∑
n=0

n−1∏
k=0

(
1

2
− k
)

n!
tn

Pour n ∈ IN∗, le coefficient d’ordre n est donc :

n−1∏
k=0

(
1

2
− k
)

n!
=

1

2

(−1)n−1
n−1∏
k=1

(2k − 1)

2n−1n!
=

(−1)n−1(2n− 2)!

2n

(
n−1∏
k=1

2k

)
n!

=
(−1)n−1(2n− 2)!

22n−1(n− 1)!n!

Donc, ∀n ∈ IN∗, le coefficient d’ordre n demandé est
(−1)n−1(2n)!

22n(n!)2(2n− 1)
.

3. D’après la question précédente,

GY (t) = 2−
√

2

√
1− t

2
= 2−

√
2−
√

2

+∞∑
n=1

(−1)n−1(2n)!

22n(n!)2(2n− 1)

(
− t

2

)n
= 2−

√
2+
√

2

+∞∑
n=1

(2n)!

23n(n!)2(2n− 1)
tn

4. D’après le cours GX(t) =

+∞∑
n=0

P (X = n)tn et GY (t) =
+∞∑
n=0

P (Y = n)tn donc d’après l’unicité du

développement en séries entières, ∀n ∈ IN, P (X = n) =
1

2n+1
et

P (Y = 0) = 2−
√

2 et ∀n ∈ IN∗, P (Y = n) =

√
2(2n)!

23n(n!)2(2n− 1)
.

5. CommeX et Y sont indépendantes, d’après le cours,GS(t) = GX+Y (t) = GX(t)GY (t) =
1

1− t
2

− (2− t)−
1
2 .

De même que dans les questions précédentes,

1

1− t
2

=
+∞∑
n=0

tn

2n
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et

(2− t)−
1
2 =

1√
2

(
1− t

2

)− 1
2

=
1√
2

+∞∑
n=0

n−1∏
k=0

(
−1

2
− k
)

n!

(
− t

2

)n

=
1√
2

+∞∑
n=0

n−1∏
k=0

(2k + 1)

22nn!
tn

=
1√
2

+∞∑
n=0

(2n)!

23n(n!)2
tn

Donc GS(t) =
+∞∑
n=0

1

2n

(
1− (2n)!

22n
√

2(n!)2

)
tn et par unicité du développement en série entière,

∀n ∈ IN, P (S = n) =
1

2n

(
1− (2n)!

22n
√

2(n!)2

)
.

6. 1. Comme X(Ω) = IN, (X + 1)(Ω) = IN∗ et

∀n ∈ IN∗, P (X + 1 = n) = P (X = n− 1) = 1
2n = 1

2

(
1− 1

2

)n−1
donc X + 1 ∼ G

(
1

2

)
.

6.2. D’après le cours E(X) = E(X + 1)− 1 =
1
1
2

− 1 = 1 et V (X) = V (X + 1) =
1− 1

2(
1
2

)2 = 2 .

6.3 GY est deux fois dérivable sur [−1, 1] comme différence et composition de fonctions deux fois

dérivables et ∀t ∈ [−1, 1], G′Y (t) =
1

2
(2− t)−

1
2 et G′′Y (t) =

1

4
(2− t)−

3
2 . Donc

E(Y ) = G′Y (1) =
1

2
et E(Y (Y − 1)) = G′′Y (1) =

1

4
.

6.4 Donc, d’après la formule de Koenig-Huygens, la linéarité de l’espérance et la question précédente,

V (Y ) = E(Y 2)− E(Y )2 = E(Y (Y − 1)) + E(Y )− E(Y )2 =
1

4
+

1

2
−
(

1

2

)2

Donc V (Y ) =
1

2
.

6.5 D’après la linéarité de l’espérance E(S) = E(X + Y ) = E(X) + E(Y ) donc E(S) =
3

2
.

Comme X et Y sont indépendantes, V (S) = V (X + Y ) = V (X) + V (Y ) donc V (S) =
5

2
.

4 Exercice 4

1. Notons P0 = 1 et pour k > 0, Pk = Xk−1(X − 1). Alors ∀k ∈ {0, . . . , n}, deg(Pk) = k donc

B = (P0, . . . , Pn) est une famille de polynômes à degrés successifs donc B est une base de IRn[X] .

2. 1. Soient (P,Q) ∈ IRn[X]2 et (λ, µ) ∈ IR2 alors, d’après la linéarité de l’intégrale,

ϕ(λP + µQ) =

∫ 1

0
(λP (t) + µQ(t))dt = λ

∫ 1

0
P (t)dt+ µ

∫ 1

0
Q(t)dt = λϕ(P ) + µϕ(Q)

Donc ϕ est linéaire et comme de plus ϕ : IRn[X]→ IR alors ϕ est une forme linéaire sur IRn[X] .

7



2.2. Comme Im(ϕ) est un sous-espace vectoriel de IR alors Im(ϕ) = {0} ou Im(ϕ) = IR.

Or 1 = ϕ(1) ∈ Im(ϕ) donc Im(ϕ) = IR .

D’après le théorème du rang dim(Ker(ϕ)) = dim(IRn[X]) − dim(Im(ϕ)) = n + 1 − dim(IR) donc

dim(Ker(ϕ)) = n .

3. 1. Soient (P,R) ∈ IRn[X]2 et (λ, µ) ∈ IR2 alors, d’après la linéarité de l’intégrale, ∀x ∈ IR,

ψ(λP + µR)(x) =

∫ x

0
(λP (t) + µQ(t))dt = λ

∫ x

0
P (t)dt+ µ

∫ x

0
R(t)dt = λψ(P )(x) + µψ(Q)(x)

Donc ψ(λP + µR) = λψ(P ) + µψ(Q) donc ψ est linéaire .

3.2 Im(ψ) = ψ(IRn[X]) = ψ(Vect(1, X, . . . ,Xn)) = Vect(ψ(1), ψ(X), . . . , ψ(Xn)) = Vect

(
X,

X2

2
, . . . ,

Xn+1

n+ 1

)
Donc Im(ψ) = Vect(X,X2, . . . , Xn+1) .

3.3 Notons que P ∈ Ker(ϕ)⇔
∫ 1
0 P (t)dt = 0⇔ ψ(P )(1) = 0⇔ (X − 1)|ψ(P ).

Or, d’après la question précédente Q ∈ Im(ψ)⇔ X|Q et deg(Q) ≤ n+ 1,

donc P ∈ Ker(ϕ)⇔ X(X−1)|ψ(P ) et deg(ψ(P )) ≤ n+1⇔ ∃R ∈ IRn−1[X], ψ(P ) = RX(X−1).

Donc P ∈ Ker(ϕ)⇔ ∃(b0, . . . , bn−1) ∈ IRn, ψ(P ) =

n−1∑
j=0

bjX
j

X(X − 1) =
k=j+1

n∑
k=1

bk−1X
k(X − 1)

Donc P ∈ Ker(ϕ)⇔ ψ(P ) ∈ Vect(X(X − 1), . . . , Xn(X − 1)) .

3.4 Comme ψ(P )(x) =
∫ x
0 P (t)dt, en dérivant on obtient (ψ(P ))′(x) = P (x). Donc

ψ(P ) ∈ Vect(X(X − 1), . . . , Xn(X − 1)) ⇒ ∃(c1, . . . , cn) ∈ IRn, ψ(P ) =

n∑
k=1

ckX
k(X − 1)

⇒ ∃(c1, . . . , cn) ∈ IRn, ψ(P )′ =

n∑
k=1

ck((k + 1)Xk − kXk−1)

⇒ ∃(c1, . . . , cn) ∈ IRn, P =

n∑
k=1

ck((k + 1)Xk − kXk−1)

Donc, d’après la question précédente,

P ∈ Ker(ϕ)⇒ P ∈ Vect(2X − 1, 3X2 − 2X, . . . , (n+ 1)Xn − nXn−1). donc

Ker(ϕ) ⊂ Vect(2X − 1, . . . , (n+ 1)Xn − nXn−1). Notons C = (2X − 1, . . . , (n+ 1)Xn − nXn−1).
D’après la question 2.2., dim(Ker(ϕ)) = n = Card(C) ≥ dim(Vect(C)).
Donc Ker(ϕ) = Vect(C) = Vect(2X − 1, . . . , (n+ 1)Xn − nXn−1) .

4. 1. dim(H) = dim(L(IRn[X], IR)) = dim(IRn[X]) dim(IR) = n+ 1 .

4.2. Tout d’abord on constate que les ψk sont dans H.

Soient (λ0, . . . , λn) ∈ IRn+1, tels que

n∑
k=0

λkψk = 0.

Si j < k, (Xj)(k) = 0 et si j ≥ k, (Xj)(k) =
j!

(j − k)!
Xj−k donc ψk(X

j) = 0 si j 6= k et ψk(X
k) = 1.

Soit P =

n∑
j=0

λjX
j alors notons que ψk(P ) =

n∑
j=0

λjψk(X
j) = λk donc

0 =

(
n∑
k=0

λkψk

)
(P ) =

n∑
k=0

λkψk(P ) =
∑
k

λ2k

Donc, comme une somme de termes positifs est nulle si et seulement si tous ses termes sont nuls
alors λ0 = λ1 = . . . = λn = 0. Donc (ψ0, . . . , ψn) est une famille libre de H.
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Et comme, d’après la question précédente, Card(ψ0, . . . , ψn) = n+ 1 = dim(H) alors

(ψ0, . . . , ψn) est une base de H .

4.3. D’après la question précédente, si P =

n∑
k=0

akX
k alors ψk(P ) = ak donc

ϕ(P ) =

∫ 1

0
P (t)dt =

∫ 1

0

(
n∑
k=0

akt
k

)
dt =

n∑
k=0

ak
k + 1

=

n∑
k=0

ψk(P )

k + 1

Donc ϕ =
n∑
k=0

ψk
k + 1

.
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