E3A, 2008, MP, Mathématiques A

(6 pages)

Questions de cours et exemples

- 1. Un polynôme annulateur de f est un polynôme $P \in \mathbb{R}[X]$ tel que $P(f) = 0_{\mathcal{L}(E)}$.
- 2. J_f est un idéal de $\mathbb{R}[X]$ (et accessoirement un sous-espace vectoriel de $\mathbb{R}[X]$).
- 3. Si $J_f \neq \{0\}$, le polynôme minimal de f est l'unique polynôme unitaire π_f tel que $J_f = \pi_f \mathbb{R}[X]$. C'est aussi le polynôme unitaire appartenant à J_f de plus petit degré.
- 4. D'après le théorème de Cayley-Hamilton, $J_f \neq \{0\}$ puisque le polynôme caractéristique de f, χ_f appartient à J_f .
- **5. 1.** On a $M = \begin{pmatrix} 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \end{pmatrix}$ donc $M^2 = M$ et donc, par récurrence, $\forall k \in \mathbb{N}^*, \ M^k = M$.
 - **2.** Ainsi $X^2-X\in J_f$ donc $\pi_f\mid X^2-X=X(X-1)$ et donc $\pi_f\in \left\{X,X-1,X^2-X\right\}$ (1 n'est pas annulateur si $E\neq \{0\}$). Or $M\neq 0$ et $M\neq I_4$ donc $\pi_f=X^2-X$.
- **6. 1.** \diamond L'équation homogène y''+y=0 est à coefficients constants et a pour équation caractéristique $X^2+1=0$ donc les solutions sur $\mathbb R$ à valeurs dans $\mathbb R$ de y''+y=0 sont les fonctions $x\mapsto A\cos(x)+B\sin(x)$ pour $(A,B)\in\mathbb R^2$.

Comme $\operatorname{ch}'' = \operatorname{ch}$, une solution particulière de $y'' + y = \operatorname{ch}(x)$ est la fonction $x \mapsto \frac{1}{2}\operatorname{ch}(x)$ donc les solutions sur \mathbb{R} de $y'' + y = \operatorname{ch}(x)$ sont les $y : x \mapsto \frac{1}{2}\operatorname{ch}(x) + A\cos(x) + B\sin(x)$ pour $(A, B) \in \mathbb{R}^2$.

- $\diamond \text{ De même, } \underbrace{\text{les solutions sur } \mathbb{R} \text{ de } y'' + y = \text{sh} (x) \text{ sont les fonctions } x \mapsto \frac{1}{2} \text{sh} (x) + A \cos(x) + B \sin(x) }_{\text{pour } (A,B) \in \overline{\mathbb{R}^2}}.$
- 2. Puisque f est supposée de classe C^4 sur $\mathbb R$ alors g est de classe C^2 sur $\mathbb R$ et donc :

I unsque
$$f$$
 est supposee de classe C sur \mathbb{R} alors g est de classe C sur \mathbb{R} en $\Big(f \text{ solution de } (H_1)\Big) \Longleftrightarrow \Big(\forall x \in \mathbb{R}, \ f^{(4)}(x) = f(x)\Big) \\ \Longleftrightarrow \Big(\forall x \in \mathbb{R}, \ f^{(4)}(x) + f''(x) = f(x) + f''(x)\Big) \\ \Longleftrightarrow \Big(\forall x \in \mathbb{R}, \ g''(x) = g(x)\Big) \\ \text{donc } \underline{\Big(f \text{ solution de } (H_1)\Big) \Longleftrightarrow \Big(g = f'' + f \text{ solution de } y'' = y\Big)}.$

3. $(H_2): y''-y=0$ est linéaire, homogène, à coefficients constants et a pour équation caractéristique $X^2-1=0$ donc a pour solutions les fonctions $x\mapsto A\,e^x+B\,e^{-x}$ avec $(A,B)\in\mathbb{R}^2$, ou aussi, les solutions de (H_2) sont les $y: x\mapsto A\operatorname{ch}(x)+B\operatorname{sh}(x)$ pour $(A,B)\in\mathbb{R}^2$.

- **4.** Le principe de superposition des solutions et les résultats de la question [6.1] donnent : les solutions de (H_1) sont les $y: x \mapsto A\cos(x) + B\sin(x) + C\cot(x) + D\sin(x)$ avec $(A, B, C, D) \in \mathbb{R}^4$.
- **5. 1.** Par définition de E, la famille (cos, sin, ch, sh) en est génératrice. De plus, si $A \cos + B \sin + C \cosh + D \sinh = 0$ alors, en dérivant deux fois, $-A \cos B \sin + C \cosh + D \sinh = 0$ donc $A \cos + B \sin = 0$ et $C \cosh + D \sinh = 0$. En prenant les valeurs en 0 (par exemple), on obtient A = B = C = D = 0 donc cette famille est libre etc'est donc une base de E. Ainsi dim(E) = 4.
 - **2.** La dérivation est linéaire et $(A \cos + B \sin + C \cosh + D \sinh)' = -A \sin + B \cos + C \sinh + D \cosh \in E$ donc E est stable. Donc la dérivation induit bien un endomorphisme de E.
 - 3. D'après [6.4], E est l'ensemble des solutions de (H_1) donc $\forall y \in E, \ y^{(4)} = \delta^4(y) = y$. Ainsi $X^4 1 \in J_\delta$ et $\pi_\delta \mid X^4 1$. Si $\pi_\delta \neq X^4 1$ alors $\deg(\pi_\delta) \leqslant 3$ donc $\pi_\delta = \sum_{i=0}^3 a_i X^i$. On alors

$$\forall (A, B, C, D) \in \mathbb{R}^4, \quad 0 = \pi_\delta(\delta) [A \cos + B \sin + C \cosh + D \sinh]$$

$$= \sum_{i=0}^3 a_i [A \cos + B \sin + C \cosh + D \sinh]^{(i)}$$

$$= ((a_0 - a_2)A + (a_3 - a_1)B) \cos + ((a_0 - a_2)B + (a_1 - a_3)A) \sin + ((a_0 + a_2)C + (a_1 + a_3)D) \cosh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)C + (a_1 + a_3)D) \cosh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)C + (a_1 + a_3)D) \cosh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)D) \sinh + ((a_0 + a_2)D + (a_1 + a_3)C) \sinh + ((a_0 + a_2)D + (a_1 + a_3)D) \sinh + ((a_0 + a_2)D + (a_1 + a_2)D + (a_1 + a_3)D) \sinh + ((a_0 + a_2)D + (a_1 +$$

donc, par liberté de (cos, sin, ch, sh),

$$\forall (A, B, C, D) \in \mathbb{R}^4, \begin{cases} (a_0 - a_2)A + (a_3 - a_1)B = 0\\ (a_0 - a_2)B + (a_1 - a_3)A = 0\\ (a_0 + a_2)C + (a_1 + a_3)D = 0\\ (a_0 + a_2)D + (a_1 + a_3)C = 0 \end{cases}$$

soit $a_0=a_2=-a_0$ et $a_1=a_3=-a_1$ donc $a_0=a_1=a_2=a_3=0$ ce qui est absurde. Donc $\pi_\delta=X^4-1$.

Problème

Partie I

- 1. On a dim $(E_n) = n + 1$ et une base est $(X^k)_{k \in [0,n]}$.
- $2. \qquad \diamond \forall P \in E, \ u(P) = P' \in E \ \text{et} \ \forall (P,Q) \in E^2, \ \forall \lambda \in \mathbb{R}, \ u(P+\lambda Q) = (P+\lambda Q)' = P' + \lambda Q' = u(P) + \lambda u(Q) \ \text{donc} \ \underline{u \in \mathcal{L}(E)} \ .$ De plus, si $\deg(P) \neq 0$, $\deg(P') = \deg(P) 1$ et si $\deg(P) = 0$, $\deg(P') = -\infty$ donc $\underline{u(E_n) \subset E_n}$. $\diamond \text{Si } P \neq 0 \ \text{et} \ \deg(P) = d \ \text{avec} \ P = \sum_{k=0}^d a_k X^k \ \text{avec} \ a_d \neq 0 \ \text{alors} \ v(P) = \sum_{k=0}^d a_k (X+1)^k = \sum_{k=0}^d a_k \left(X^k + kX^{k-1} + \cdots\right) = a_d X^d + \left(da_d + a_{d-1}\right) X^{d-1} + \cdots \ \text{donc} \ \underline{v(E_n) \subset E_n} \ .$ On a donc $\forall P \in E, \ v(P) \in E \ \text{et} \ \forall (P,Q) \in E^2, \ \forall \lambda \in \mathbb{R}, \ v(P+\lambda Q) = (P+\lambda Q)(X+1) = P(X+1) + \lambda Q(X+1) = v(P) + \lambda v(Q) \ \text{donc} \ v \in \mathcal{L}(E) \ .$

3.
$$\diamond u(1) = 0 \text{ et } \forall k \in \mathbb{N}^*, \ u(X^k) = k X^{k-1} \text{ donc } U_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & n \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$$

$$\diamond \forall k \in \mathbb{N}, \ v(X^k) = (X+1)^k = \sum_{i=0}^k \binom{k}{i} X^i \text{ donc } V_n = \begin{pmatrix} 1 & 1 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & \binom{2}{1} & \vdots & \vdots & \binom{n}{1} \\ \vdots & \ddots & 1 & \ddots & \binom{n}{2} \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$$

- 4. $\diamond P' = 0$ si et seulement si P est constant donc $\underline{\mathrm{Ker}(u_n) = E_0}$ et $\mathrm{Im}(u_n) = \mathrm{Vect}\big(u_n(1), u_n(X), \dots, u_n(X^n)\big) = \mathrm{Vect}\big(0, 1, \dots, nX^{n-1}\big)$ donc $\underline{\mathrm{Im}(u_n) = E_{n-1}}$. $\diamond \det(v_n) = \det(V_n) = 1 \neq 0$ donc v_n est un automorphisme de E_n et donc $\mathrm{Ker}(v_n) = \{0\}$ et $\mathrm{Im}(v_n) = E_n$.
- 5. On a $\forall P \in E$, $u \circ v(P) = (P(X+1))' = P'(X+1) = v \circ u(P)$ donc u_n et v_n commutent.
- 6. $\Rightarrow \chi_{u_n} = \chi_{U_n} \text{ donc } \underline{\chi_{u_n} = X^{n+1}}$. $\Rightarrow \text{Donc } 0$ est valeur propre de multiplicité n+1 et l'espace propre associé est $E_0(u_n) = \text{Ker}(u_n) = E_0 \neq E_n$ car $n \in \mathbb{N}^*$ donc u_n n'est pas diagonalisable .
- 7. $\Rightarrow \chi_{v_n} = \chi_{V_n} \text{ donc } \chi_{v_n} = (X-1)^{n+1}$. $\Rightarrow \text{Donc Sp}(v_n) = \{1\}$ et donc si v_n était diagonalisable sa matrice dans une base de diagonalisation serait I_{n+1} et ceci serait vrai dans toute base donc v_n n'est pas diagonalisable .
- **8.1.** On a $\forall k \in [0, n]$, $\deg(Q_k) = k$ donc la famille $(Q_k)_{0 \le k \le n}$ est une famille de degrés étagés donc $(Q_k)_{0 \le k \le n}$ est une base de E_n .
 - $2. \quad \diamond w_n(Q_0) = v_n(Q_0) Q_0 = Q_0 Q_0 \text{ donc } \underline{w_n(Q_0) = 0} \ .$ $\diamond \forall k \geqslant 2, \ w_n(Q_k) = v_n(Q_k) Q_k = \frac{1}{k!} \prod_{j=0}^{k-1} (X+1-j) \frac{1}{k!} \prod_{j=0}^{k-1} (X-j) = \frac{1}{k!} \prod_{j=-1}^{k-2} (X-j) \frac{1}{k!} \prod_{j=0}^{k-1} (X-j)$ $= \frac{1}{k!} \prod_{j=0}^{k-2} (X-j) [(X+1) (X-k+1)] = \frac{k}{k!} \prod_{j=0}^{k-2} (X-j) = \frac{1}{(k-1)!} \prod_{j=0}^{k-2} (X-j)$ et, pour k = 1, $w_n(Q_1) = (X+1) X = 1 = Q_0$ donc $\underline{\forall k \geqslant 1, \ w_n(Q_k) = Q_{k-1}}$.

3.
$$W_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$$

4. On lit sur la matrice W_n : $\operatorname{rg}(W_n) = n$, $Q_0 \in \operatorname{Ker}(w_n)$, $\forall k \in [0, n-1]$, $Q_k \in \operatorname{Im}(w_n)$ donc $\operatorname{\underline{Ker}}(w_n) = \mathbb{R}.Q_0$ et $\operatorname{Im}(w_n) = \operatorname{Vect}(Q_k)_{0 \leqslant k \leqslant n-1}$.

- 5. On a, par récurrence sur j, $w_n^j(Q_k) = \begin{cases} Q_{k-j} & \text{si } j \leqslant k \\ 0 & \text{si } j > k \end{cases}$
- **9.1.** Puisque \mathcal{B} est une base de E_n , $\forall P \in E_n$, $\exists ! (\beta_k)_{0 \leq k \leq n}$, $P = \sum_{k=0}^n \beta_k Q_k$.
 - 2. On a $w_n^j(P) = \sum_{k=0}^n \beta_k w_n^j(Q_k) = \begin{cases} \sum_{k=j}^n \beta_k Q_{k-j} & \text{si } j \leq n, \\ 0 & \text{si } j > n. \end{cases}$ De plus, $Q_i(0) = \begin{cases} 1 & \text{si } i = 0, \\ 0 & \text{si } i \geq 1. \end{cases}$ Donc $w_n^j(P)(0) = \begin{cases} \beta_j & \text{si } j \leq n, \\ 0 & \text{si } j > n. \end{cases}$
 - 3. Ainsi $\forall k \in \llbracket 0, n \rrbracket$, $\beta_k = w_n^k(P)(0)$. Or $w_n^k = (v_n e_n)^k = \sum_{j=0}^k (-1)^{k-j} {k \choose i} v_n^j$ car v_n et e_n commutent. Et, par récurrence facile, $v_n^j(P)(X) = P(X+j)$ donc $w_n^k(P)(X) = \sum_{j=0}^k (-1)^{k-j} {k \choose j} P(X+j)$. En évaluant en 0, on obtient donc $\forall k \in \llbracket 0, n \rrbracket$, $\beta_k = \sum_{j=0}^k (-1)^{k-j} {k \choose i} P(j)$.
 - 4. Et donc la base duale de \mathcal{B} est $\mathcal{B}^* = \left(Q_k^*\right)_{0 \leqslant k \leqslant n}$ avec $Q_k^*(P) = w_n^k(P)(0) = \sum_{j=0}^k (-1)^{k-j} {k \choose i} P(j)$.
- **10.** \diamond Selon la question [8.5], $\forall k \in [0, n], \ w_n^{n+1}(Q_k) = 0$ donc $\underline{w_n^{n+1} = \theta_n}$. \diamond De la même question on tire $w_n^n(Q_n) = Q_0$.

Partie II

- 1. Le théorème de Cayley-Hamilton donne $\chi_f \in J_f$ donc $\pi_f \mid \chi_f$.
- **2. 1.** On a, par récurrence sur k, $\forall P \in E$, $u^k(P) = P^{(k)}$. Or, si $P \in E_n$ alors $\deg(P) < n+1$ donc $P^{(n+1)} = 0$. Ainsi $u_n^{n+1} = \theta_n$.
 - **2.** De même, $u_n^n(X^n) = n!$ (en dérivant n fois).
 - 3. Selon [1], $u_n^{n+1} = \theta_n$ donc $X^{n+1} \in J_{u_n}$ donc $\pi_{u_n} \mid X^{n+1}$ et donc $\exists m \leqslant n+1, \ \pi_{u_n} = X^m$. Si on avait $m \leqslant n$ alors $\pi_{u_n} \mid X^n$ donc $u_n^n = \theta_n$ mais ceci est faux selon [2]. Finalement, $\underline{\pi_{u_n} = X^{n+1}}$.
 - **4.** Selon [**I.10**], $w_n^{n+1} = \theta_n$ et $w_n^n \neq \theta_n$ donc, comme ci-dessus, $\pi_{w_n} = X^{n+1}$.
- **3. 1.** $\pi_{v_n} \mid \chi_{v_n} = \chi_{V_n} = (X-1)^{n+1} \text{ donc } \exists m \in [1, n+1], \ \pi_{v_n} = (X-1)^m.$
 - **2.** Donc $(v_n e_n)^m = \theta_n$ soit $w_n^m = \theta_n$ donc $\pi_{w_n} \mid X^m$ et donc, vu le résultat de [2.4], $\underline{m = n + 1}$.
- **4.1.** Puisque deg(P) = m, on a $a_m \neq 0$.

2.
$$r\left(\frac{X^m}{m!}\right) = \sum_{j=0}^m a_j u^j \left(\frac{X^m}{m!}\right) = \sum_{j=0}^m \frac{a_j}{m!} u^j (X^m) = \sum_{j=0}^m \frac{a_j}{m!} (X^m)^{(j)} = \sum_{j=0}^m \frac{a_j}{m!} m(m-1) \cdots (m-j+1) X^{m-j} = \sum_{j=0}^m \frac{a_j}{m!} \frac{m!}{(m-j)!} X^{m-j}$$
 once $r\left(\frac{X^m}{m!}\right) = \sum_{j=0}^m \frac{a_j}{(m-j)!} X^{m-j}$.

- **3.** Ainsi $r\left(\frac{X^m}{m!}\right) \neq 0$ donc $r \neq \theta$ donc $\forall P \in \mathbb{R}[X] \setminus \{0\}, \ P(u) \neq \theta$ donc $\underline{J_u = \{0\}}$.
- **5. 1.** Soit $P \in J_v$, on a $P(v) = \theta$ donc, par restriction à E_n stable par v, $P(v_n) = \theta_n$ donc $\pi_{v_n} \mid P$. Ceci donne bien, avec le résultat de [3.2], $\forall n \in \mathbb{N}^*$, $(X-1)^{n+1} \mid P$.
 - **2.** Donc $\forall n \in \mathbb{N}^*$, $\exists Q_n \in E$, $P = (X 1)^{n+1}Q_n$ donc $\deg(P) = n + 1 + \deg(Q_n)$. En prenant $n \geqslant \deg(P)$, ceci donne $\deg(Q_n) = -\infty$ donc P = 0. Donc $J_v = \{0\}$.
- **6. 1.** Soit Q = s(P) et $R = s^2(P)$, on a R(X) = Q(1-X) = P(1-(1-X)) = P(X) donc $S^2 = e$ (s involution).
 - 2. On a donc $X^2-1 \in J_s$ et donc $J_s \neq \{0\}$. Ainsi s a un polynôme minimal π_s et $\pi_s \in \{X+1, X-1, X^2-1\}$. Or $s \neq e$ car $s(X) = 1 X \neq X$ et, de même, $s \neq -e$ donc $\pi_s = X^2 1$ et $J_s = (X^2 1)$. $\mathbb{R}[X]$.

Partie III

- 1. $\exp(u_n) = \sum_{m=0}^{+\infty} \frac{u_n^m}{m!} = \sum_{m=0}^{n} \frac{u_n^m}{m!}$ d'après [II.2.1]. On peut donner deux démonstrations de l'égalité demandée :
 - Première démonstration :

Montrons que $\exp(u_n)$ et v_n coïncident sur la base canonique $(X^k)_{0 \le k \le n}$:

$$v_n(X^k) = (X+1)^k = \sum_{j=0}^k \binom{k}{j} X^{k-j}$$

$$\forall k \in [0, n],$$

$$\exp(u_n)(X^k) = \sum_{m=0}^n \frac{u_n^m(X^k)}{m!} = \sum_{m=0}^k \frac{k!}{m!(k-m)!} X^{m-k} \text{ selon } [\mathbf{II.4.2}]$$

et donc $v_n = \exp(u_n)$.

• Deuxième démonstration :

La formule de Taylor en X appliquée à $P \in E$ donne $P(X+h) = \sum_{m=0}^{+\infty} \frac{P^{(m)}(X)}{m!} h^m$. En prenant h = 1, on obtient $P(X+1) = \sum_{m=0}^{+\infty} \frac{P^{(m)}(X)}{m!} = \sum_{m=0}^{+\infty} \frac{u_n^m(P)}{m!}$ soit $\underline{v_n = \exp(u_n)}$.

2. 1. D'après [**I.9.3**], $\forall k \in [\![0,n]\!]$, $u_n(Q_k) = \sum_{j=0}^n w_n^j \left(u_n(Q_k)\right)(0) Q_j$. Or u_n et v_n commutent ([**I.5**]) donc u_n et $w_n = v_n - e_n$ également donc $w_n^j \left(u_n(Q_k)\right) = u_n \left(w_n^j(Q_k)\right) = \begin{cases} u_n \left(Q_{k-j}\right) & \text{si } j \leqslant k \\ u_n \left(0\right) & \text{si } j > k \end{cases}$ d'après ([**I.8.5**]). Ceci donne $\forall k \in [\![0,n]\!]$, $u_n(Q_k) = \sum_{j=0}^k u_n \left(Q_{k-j}\right)(0) Q_j$ soit $\forall k \in [\![0,n]\!]$, $u_n(Q_k) = \sum_{m=0}^k u_n \left(Q_m\right)(0) Q_{k-m}$.

2.
$$u_n(Q_m)(0) = Q'_m(0) = \lim_{\substack{X \to 0 \\ X \neq 0}} \frac{Q_m(X) - Q_m(0)}{X} \text{ avec } \frac{Q_m(X) - Q_m(0)}{X} = \begin{cases} 0 & \text{si } m = 0, \\ \frac{1}{m!} \prod_{j=1}^{m-1} (X - j) & \text{si } m \geqslant 1. \end{cases}$$

$$\text{Donc } u_n(Q_m)(0) = \begin{cases} 0 & \text{si } m = 0, \\ \frac{(-1)^{m-1}}{m} & \text{si } m \geqslant 1. \end{cases}$$

3. Ainsi
$$\forall k \in [0, n], \ u_n(Q_k) = \sum_{m=1}^k \frac{(-1)^{m-1}}{m} Q_{k-m}$$
. D'autre part,

$$\sum_{m=1}^{+\infty} \frac{(-1)^{m-1}}{m} \left(v_n - e_n \right)^m (Q_k) = \sum_{m=1}^{+\infty} \frac{(-1)^{m-1}}{m} w_n^m (Q_k) = \sum_{m=1}^{k} \frac{(-1)^{m-1}}{m} Q_{k-m} \quad \text{ selon } [\mathbf{I.8.5}].$$

Les deux endomorphismes de E_n , u_n et $\sum_{m=1}^{+\infty} \frac{(-1)^{m-1}}{m} \left(v_n - e_n\right)^m$ coïncident sur la base $\mathcal B$ donc ils sont égaux soit $u_n = \sum_{m=1}^{+\infty} \frac{(-1)^{m-1}}{m} \left(v_n - e_n\right)^m$.

* * *

* *

*