Corrigé du problème E3A MP 2003 épreuve A

Philippe PATTE (MP Lakanal)

Jérôme FEHRENBACH

5 juin 2003

Première partie

1. On sait que $\forall t \in]-1,1[,\ln(1+t)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n}t^n.$ Pour $x\in [0,1[,$ on a donc

$$\frac{1}{2}\ln\frac{1+x}{1-x} = \frac{1}{2}(\ln(1+x) - \ln(1-x)) = \frac{1}{2}\sum_{n=1}^{+\infty}\frac{(-1)^{n-1} + 1}{n}x^n = \sum_{p=0}^{+\infty}\frac{x^{2p+1}}{2p+1}.$$

- 2. (a) Immédiat d'après la question précédente avec x_n dans [0,1[pour $n\geq 1.$
 - (b) On majore $\frac{1}{2p+1}$ par $\frac{1}{3}$ dans la relation de la question précédente. On obtient

$$v_n \le \frac{1}{3} \sum_{p=1}^{+\infty} x^{2p} = \frac{1}{3} x_n^2 \sum_{p=0}^{+\infty} x^{2p} = \frac{1}{3} \frac{x_n^2}{1 - x_n^2} = \frac{1}{6n(n+1)} = \frac{1}{12n} - \frac{1}{12(n+1)}.$$

- (c) i. D'après I2a, $v_n = \ln U_n \ln U_{n+1} > 0$ pour $n \ge 1$. Donc la suite $(\ln U_n)_{n \ge 1}$ est strictement décroissante.
 - ii. L'inégalité du I2b s'écrit $\ln U_n \frac{1}{12n} \le \ln U_{n+1} \frac{1}{12(n+1)}$ pour $n \ge 1$. Donc la suite $(\ln U_n \frac{1}{12n})_{n \ge 1}$ est croissante.
- 3. Comme la suite $(\frac{1}{12n})_{n\geq 1}$ converge vers 0, les suites $(\ln U_n)_{n\geq 1}$ et $(\ln U_n \frac{1}{12n})_{n\geq 1}$ sont adjacentes, donc convergent vers une même limite l. Par continuité de l'exponentielle, la suite $(U_n)_{n\geq 1}$ converge vers le réel strictement positif $\exp(l)$.

Deuxième partie

- 1. On note $a_n = \frac{n^{n-1}}{n!}$ le coefficient de x^n dans la série entière. D'après la formule de Stirling, $a_n \sim \frac{1}{\sqrt{2\pi}} \frac{\exp(n)}{n^{\frac{3}{2}}}$. Donc $\left|\frac{a_{n+1}}{a_n}\right|$ converge vers e et le rayon de convergence de la série entière vaut $\exp(-1)$.
- 2. En reprenant la question précédente, $a_n \exp(-n) \sim \frac{1}{\sqrt{2\pi}} \frac{1}{n^{\frac{3}{2}}}$. Avec des séries à termes positifs, on obtient la convergence de la série entière pour $x = \exp(-1)$.
- 3. On a donc la majoration de $|a_n x^n|$ sur $[-\exp(-1), \exp(-1)]$ par $a_n \exp(-n)$, indépendant de la variable x, terme général d'une série convergente. D'où la convergence normale et uniforme de la série entière définissant f sur $[-\exp(-1), \exp(-1)]$.
- 4. Comme le terme général de la série entière est continu sur $[-\exp(-1), \exp(-1)]$ et que la série entière converge uniformément sur $[-\exp(-1), \exp(-1)]$, f est continue sur $[-\exp(-1), \exp(-1)]$.

Troisième partie

- 1. On note $\theta(x) = \ln(1+x) x$. la fonction θ est dérivable sur] $-1, +\infty$ (, de dérivée $\theta' = \frac{-x}{1+x}$. Sur $]0, \infty[$, $\theta' < 0$. Donc θ est strictement décroissante sur $[0, \infty[$. Comme $\theta(0) = 0$, la fonction θ est à valeurs strictement positives sur $]0, \infty[$.
 - Pour $n \ge 1$, on a donc $n \ln(1 + \frac{1}{n}) < n$ et par stricte croissance de l'exponentielle, $(1 + \frac{1}{n})^n < e$.
- 2. La fonction f est somme d'une série entière de rayon de convergence $\exp(-1)$, donc est de classe C^{∞} sur l'intervalle $]-\exp(-1)$, $\exp(-1)[$ et ses dérivées se calculent par dérivation terme à terme. En particulier, sur $]-\exp(-1)$, $\exp(-1)[$, $f'(x)=\sum_{n=1}^{+\infty}\frac{n^{n-1}}{(n-1)!}x^{n-1}=\sum_{n=0}^{+\infty}\frac{(n+1)^n}{n!}x^n$.

3. Sur l'intervalle $[0, \exp(-1)[, f'(x) > 0.$ Sur l'intervalle $] - \exp(-1), 0[$: en notant $\alpha_n = \frac{(n+1)^n}{n!} x^n$, on a

$$f'(x) = \lim_{p \to +\infty} \sum_{n=0}^{2p-1} \alpha_n = \lim_{p \to +\infty} \sum_{k=0}^{p-1} (\alpha_{2k} + \alpha_{2k+1}) = \sum_{k=0}^{+\infty} (\alpha_{2k} + \alpha_{2k+1}).$$

Or $\frac{|\alpha_{2k+1}|}{|\alpha_{2k}|} = (1 + \frac{1}{2k+1})^{2k+1}|x| < e.\frac{1}{e} = 1$. Donc $\alpha_{2k} + \alpha_{2k+1}$ est du signe de α_{2k} , i.e. strictement positif. Finalement f'(x) > 0 sur tout l'intervalle $] - \exp(-1)$, $\exp(-1)[$ et f est strictement croissante sur cet intervalle.

Quatrième partie

- 1. On note $b_n=(-1)^n\frac{n^{n-1}}{n!}(\frac{1}{\mathbf{e}})^n$ et $c_n=|b_n|$ de sorte que $A_N=\sum_{n=0}^{2N}b_n$ et $B_N=\sum_{n=0}^{2N+1}b_n$. Pour $N\geq 1$, $A_{N+1}-A_N=b_{2N+1}+b_{2N+2}=c_{2N+2}-c_{2N+1}$ et $B_{N+1}-B_N=-c_{2N+3}-c_{2N+2}$. Or $\frac{c_{n+1}}{c_n}=(1+\frac{1}{n})^{n-1}\mathbf{e}^{-1}<(1+\frac{1}{n})^n\mathbf{e}^{-1}<1$. Donc la suite $(c_n)_{n\geq 1}$ est strictement décroissante et pour $N\geq 1$, $A_{N+1}-A_N<0$ et $B_{N+1}-B_N>0$. Donc la suite $(A_N)_{N\geq 1}$ est strictement décroissante et la suite $(B_N)_{N\geq 1}$ est strictement croissante. Comme $A_N-B_N=-b_{2N+1}$ converge vers 0 (car la série $\sum b_n$ converge), les suites $(A_N)_{N\geq 1}$ et $(B_N)_{N\geq 1}$ sont adjacentes.
- 2. La limite des suites $(A_N)_{N\geq 1}$ et $(B_N)_{N\geq 1}$ est $f(-\frac{1}{e})$. Donc $B_N < f(-\frac{1}{e}) < A_N$ pour tout $N\geq 1$.
- 3. $A_N-B_N=-b_{2N+1}=c_{2N+1}$ décroît vers 0. On calcule successivement c_1,c_3,\ldots jusqu'à obtenir un terme strictement inférieur à 10^{-2} . $c_{13}<10^{-2}$.
- 4. Donc $\frac{1}{2}(A_6 + A_6)$ est une valeur approchée de $f(-\frac{1}{6})$ à $0, 5.10^{-2}$. On trouve donc $f(-\frac{1}{6}) \approx -0,77$ à 10^{-2} près.

Cinquième partie

1. ϕ est de classe C^{∞} sur \mathbb{R} comme composée d'une fonction polynôme et de l'exponentielle. Par récurrence, on obtient le résultat demandé.

Le résultat est immédiat pour i = 0.

Soit i entre 0 et m-1. S'il existe un polynôme P_i tel que $\forall x \in \mathbb{R}, \phi^{(i)}(x) = P_i(\exp(x))(1 - \exp(x))^{m-i}$: $\forall x \in \mathbb{R}, \phi^{(i+1)}(x) = \exp(x)P_i'(\exp(x))(1 - \exp(x))^{m-i} - (m-i)\exp(x)P_i(\exp(x))(1 - \exp(x))^{m-i}, \operatorname{donc} \phi^{(i+1)}(x) = P_{i+1}(\exp(x))(1 - \exp(x))^{m-(i+1)}$ où P_{i+1} est le polynome $P_{i+1} = X(1 - X)P_i' - (m-i)XP_i$. Donc pour tout i entre 0 et m, il existe un polynôme P_i tel que $\forall x \in \mathbb{R}, \phi^{(i)}(x) = P_i(\exp(x))(1 - \exp(x))^{m-i}$.

2. Soit $x \in \mathbb{R}$. $\phi(x) = \sum_{n=0}^m \mathrm{C}_m^n (-1)^n \exp(nx) = \sum_{n=0}^m \mathrm{C}_m^n (-1)^n \sum_{k=0}^{+\infty} \frac{(nx)^k}{k!} = \sum_{k=0}^{+\infty} (\sum_{n=0}^m \mathrm{C}_m^n (-1)^n \frac{(n)^k}{k!}) x^k.$ Comme le développement en série entière est donné par la série de Taylor de ϕ , pour tout k dans \mathbb{N} ,

$$\sum_{n=0}^{m} C_{m}^{n} (-1)^{n} \frac{(n)^{k}}{k!} = \frac{\phi^{k}(0)}{k!}.$$

En particulier pour k=m-1. Or si $m\geq 2$, $\phi^{m-1}(0)=0$ d'après la question précédente. Donc

$$\sum_{n=0}^{m} C_m^n (-1)^n n^{m-1} = \sum_{n=1}^{m} C_m^n (-1)^n n^{m-1} = 0.$$

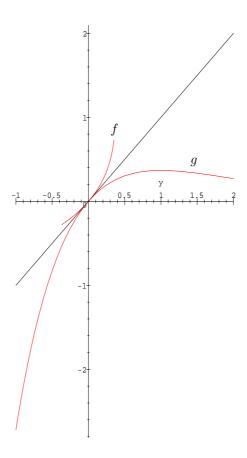
- 3. La fonction g est de classe C^{∞} sur \mathbb{R} et $g'(y)=(1-y)\exp(-y)$. Donc g est strictement croissante sur $]-\infty,1]$ et strictement décroissante sur $[1,+\infty[$. Elle tend vers 0 en $+\infty$ et vers $-\infty$ en $-\infty$ avec une branche parabolique de direction l'axe des ordonnées. Le maximum, atteint en 1, vaut $\frac{1}{e}$.
- 4. La fonction g est continue et strictement monotone sur]-1,0[; g(0)=0 et g(-1)=-e. Comme $-\frac{1}{e}$ est strictement entre -e et 0, il existe un unique $\alpha \in]-1,0[$ tel que $g(\alpha)=-\frac{1}{e}.$ Soit $g\in [\alpha,1]$. Comme g est croissante sur $[\alpha,1],g(y)\in [g(\alpha),g(1)]=[-\frac{1}{e},\frac{1}{e}].$
- 5. Soit $y \in [\alpha, 1]$. Comme $g(y) \in [-\frac{1}{e}, \frac{1}{e}]$: $f(y \exp(-y)) = f(g(y)) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} (y \exp(-y))^n = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n \exp(-ny) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} y^n (\sum_{k=0}^{+\infty} (-1)^k \frac{n^k}{k!} y^k) = \sum_{n=1}^{+\infty} (\sum_{k=0}^{+\infty} (-1)^k \frac{n^{n+k-1}}{n!k!} y^{n+k}) = \sum_{n=1}^{+\infty} (\sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m).$

- 6. Soit $y \in [\alpha, -\alpha]$. On étudie la suite double de terme général positif $|z_{n,m}|$. À n fixé, la série de terme général $|z_{n,m}|$ est convergente, de somme $s_n = \sum_{m=0}^{+\infty} |z_{n,m}| = \sum_{m=n}^{+\infty} \frac{n^{m-1}}{n!(m-n)!} |y|^m = \sum_{k=0}^{+\infty} \frac{n^{n+k-1}}{n!(k)!} |y|^{n+k} = \frac{n^{n-1}}{n!} |y|^n \sum_{k=0}^{+\infty} \frac{1}{k!} |ny|^k = \frac{n^{n-1}}{n!} |y|^n \exp(|ny|) = \frac{n^{n-1}}{n!} (|y| \exp(|y|))^n$. Comme $-|y| \in [\alpha, 0], |y| \exp(|y|) = -g(-|y|) \in [-\frac{1}{e}, \frac{1}{e}]$. Or la série entière définissant f converge sur $[-\frac{1}{e}, \frac{1}{e}]$. Donc la série $\sum s_n$ converge. Donc la suite double $|z_{n,m}|$, et donc la suite double $|z_{n,m}|$, sont sommables.
- 7. Pour $y \in [\alpha, -\alpha]$, on peut donc permuter les deux \sum dans l'égalité de la question 5:

$$f(y\exp(-y)) = \sum_{n=1}^{+\infty} (\sum_{m=1}^{+\infty} z_{n,m}) = \sum_{m=1}^{+\infty} (\sum_{n=1}^{+\infty} z_{n,m}) = \sum_{m=1}^{+\infty} (\sum_{n=1}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m) = \sum_{m=1}^{+\infty} (\frac{(-1)^m}{m!} \sum_{n=1}^{m} (-1)^n n^{m-1} C_m^n) y^m.$$

En reprenant l'égalité de la question 2, il ne reste que le terme m=1. D'où l'égalité demandée.

8. Sur l'intervalle $[\alpha, 1]$, g est continue et strictement monotone et on a l'égalité f(g(y)) = y. La fonction f est donc la fonction réciproque de la restriction de g à $[\alpha, 1]$. On obtient sa courbe représentative par rapport à la première bissectrice de la courbe représentative de la restriction de g à $[\alpha, 1]$.



9. La fonction g est dérivable en α et en 1, g'(1) = 0 et $g'(\alpha 1) \neq 0$. Donc f est dérivable en α mais pas en 1.