

Concours ENSAM - ESTP - ECRIN - ARCHIMEDE

Epreuve de Mathématiques 3 MP

durée 4 heures

Problème

Notations

- Soit E un \mathbb{R} -espace vectoriel, f un endomorphisme de E; l'ensemble des valeurs propres de f sera noté Sp(f) (spectre de f). Le sous-espace propre de f associé à la valeur propre λ est le sous-espace vectoriel $Ker(f-\lambda Id)$ de E, Id désignant l'application identique de E.
- Soit $n \in \mathbb{N}^*$ et X une matrice appartenant à $\mathcal{M}_n(\mathbb{R})$, les éléments propres de X sont les éléments propres de l'endomorphisme canoniquement associé à la matrice X.
- On note $\Pi_f(X) = \det(X \operatorname{Id} f)$ le polynôme caractéristique de l'endomorphisme f.
- Soient $n \in \mathbb{N}^*$ et l'espace \mathbb{R}^n rendu euclidien par le produit scalaire défini par :

$$\forall (X,Y) \in (\mathbb{R}^n)^2, \quad X \bullet Y = {}^t XY = \sum_{1 \leqslant k \leqslant n} x_k y_k$$

où tX désigne la matrice transpoosée de X et où, grâce à une identification de \mathbb{R}^n à l'ensemble des matrices réelles de taille (n,1):

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

• Soit $f \in \mathcal{L}(\mathbb{R}^n)$; on note f^* l'adjoint de f, endomorphisme de \mathbb{R}^n défini par :

$$\forall (X,Y) \in (\mathbb{R}^n)^2, \quad f(X) \bullet Y = X \bullet f^*(Y).$$

• On rappelle que $||f|| = \sup_{\|x\| \leqslant 1, \|y\| \leqslant 1} |f(X) \bullet Y|$, $\|f^*\| = \|f\|$ et $\|f\|^2 = \|f \circ f^*\|$.

- Soit $A \in \mathcal{M}_n(\mathbb{R})$ et f l'endomorphisme de \mathbb{R}^n canoniquement associé à A; dans ces conditions on note $\Pi_A(X) = \Pi_f(X)$ et $\|A\| = \|f\|$, d'où $\forall (A,B) \in \left(\mathcal{M}_n(\mathbb{R})\right)^2, \ \|AB\| \leqslant \|A\| \ \|B\|$.
- On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques réelles A, c'est-à-dire telles que ${}^tA=A$.
- Pour $A \in \mathcal{M}_n(\mathbb{R})$, on écrit $A \geqslant 0$ si et seulement si $A \in S_n(\mathbb{R})$ et ${}^tXAX \geqslant 0$ pour tout $X \in \mathbb{R}^n$; alors $\|A\| = \max_{\lambda \in S_p(A)} (\lambda)$. On écrit A > 0 si et seulement si $A \in S_n(\mathbb{R})$ et ${}^tXAX > 0$ pour tout $X \in \mathbb{R}^n$ non nul (d'où $A \geqslant 0$).
- On appelle matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$ toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant ${}^tAA = I_n$ où I_n est la matrice unité de $\mathcal{M}_n(\mathbb{R})$.
- Pour toute application convexe f d'un intervalle I de $\mathbb R$ dans $\mathbb R$ et tous $(a_1,a_2,\ldots,a_n)\in I^n$ et $(t_1,t_2,\ldots,t_n)\in(\mathbb R_+)^n$ tel que $\sum_{1\leqslant k\leqslant n}t_k=1$, on a : $f\left(\sum_{1\leqslant k\leqslant n}t_k\,a_k\right)\leqslant\sum_{1\leqslant k\leqslant n}t_k\,f(\,a_k)$.

Partie I

Soient $n \in \mathbb{N}^*$, $n \geqslant 2$, et la matrice $A \in \mathcal{M}_n(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 2 & \dots & 0 & 0 & 0 \\ 0 & 2 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & n-2 & 0 \\ 0 & 0 & 0 & \dots & n-2 & 0 & n-1 \\ 0 & 0 & 0 & \dots & 0 & n-1 & 0 \end{pmatrix}$$

telle que :

$$\begin{cases} a_{i,i-1} = i - 1 & \text{si} \quad 2 \leqslant i \leqslant n \\ a_{i,i+1} = i & \text{si} \quad 1 \leqslant i \leqslant n - 1 \end{cases}$$

les autres coefficients étant nuls; enfin u est l'endomorphisme canoniquement associé à A.

- ${f 1}^{\circ}.$ Montrer que la matrice A admet n valeurs propres distinctes.
- ${f 2}^{\circ}$. On définit la suite de polynômes $(P_n)_{n\in\mathbb{N}^*}$ à coefficients réels par $P_1(X)=1$, $P_2(X)=X$ et, pour $n\geqslant 3$:

$$P_n(X) = \frac{X}{n-1} P_{n-1}(X) - \left(\frac{n-2}{n-1}\right) P_{n-2}(X).$$

Montrer que le polynôme caractéristique $\Pi_u(X)$ vérifie l'égalité suivante :

$$\Pi_u(X) = (n-1)! [X P_n(X) - (n-1) P_{n-1}(X)].$$

 $\mathbf{3}^{\circ}$. En déduire det A en fonction de l'entier n.

- $oldsymbol{4}^{\circ}$. On note Co (A) l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ qui commutent avec A.
 - (a) Montrer que Co (A) est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
 - **(b)** Déterminer la dimension de Co(A).

Partie II

Soient $n \in \mathbb{N}^*$ et D la matrice diagonale définie par $D = \operatorname{diag}\left(1,3,5,\ldots,2n-1
ight)$ soit :

$$D = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 3 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 2n-3 & 0 \\ 0 & 0 & \dots & 0 & 2n-1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}),$$

ainsi que la matrice B=D-A où A est la matrice de la première partie. Soit q la forme quadratique de \mathbb{R}^n dans \mathbb{R} définie par $X\mapsto q(X)={}^tXBX$.

- $\mathbf{1}^{\circ}$. Montrer que, pour tous $n\geqslant 2$ et $X\in\mathbb{R}^n$, on a ${}^tXBX=n\,x_n^2+\sum_{1\leqslant i\leqslant n-1}i\,(x_i-x_{i+1})^2$.
- 2° . En déduire le rang et la signature de la forme q.
- ${f 3}^{\circ}$. Application. Soit $(u_n)_{n\in \mathbb{N}^*}$ une suite de réels telle que la série $\sum u_k^2$ converge. On note :

$$U_n = \frac{\sum_{1 \leqslant k \leqslant n} u_k}{n}.$$

- (a) Montrer que $\sum_{1\leqslant j\leqslant n}U_j^2\leqslant 2\sum_{1\leqslant j\leqslant n}u_j\,U_j.$
- (c) En déduire que la série $\sum U_n^2$ est convergente.

Partie III

Soient $n\geqslant 2$, $\mathcal B$ la base canonique de $\mathbb R^n$, une matrice S>0 et le produit scalaire φ sur $\mathbb R^n$ défini par $\varphi(X,Y)={}^tXSY$.

- $\mathbf{1}^{\circ}$. Montrer qu'il existe une base \mathcal{B}' orthonormale pour le produit scalaire φ telle que la matrice de passage $[\mathcal{B}'\colon\mathcal{B}]$ de \mathcal{B} à \mathcal{B}' soit triangulaire supérieure, et vérifie $S={}^t[\mathcal{B}'\colon\mathcal{B}]^{-1}[\mathcal{B}'\colon\mathcal{B}]^{-1}$.
- $\mathbf{2}^{\circ}$. Montrer que det S est inférieur ou égal au produit $\prod\limits_{i} s_{i,i}$ des éléments diagonaux de S.

Partie IV

Soient $n\geqslant 2$, et $U=(u_{i,j})>0$ une matrice dont on note $\alpha_1,\alpha_2,\ldots,\alpha_n$ les n valeurs propres, distinctes ou non; on suppose qu'il existe une série entière $\sum b_k\,x^k$ de somme g(x) et de rayon de convergence R>0 vérifiant $b_k>0$ pour tout $k\in\mathbb{N}$ et $Sp(U)\subset]0,R[$. Enfin l'application $(\ln\circ g)$ est supposée convexe sur]0,R[.

- ${f 1}^{\circ}.$ (a) Montrer que la suite $\sum_{k=0}^{N}b_{k}\,U^{k}$ converge dans ${\cal M}_{n}(\mathbb{R})$ vers une matrice g(U)>0.
 - **(b)** Expliciter un majorant de det g(U).
- $\mathbf{2}^{\circ}$. (a) Montrer qu'il existe une matrice orthogonale $V=(v_{i,j})$ telle que :

$$\forall i, \quad 1 \leqslant i \leqslant n, \qquad u_{i,i} = \sum_{1 \leqslant k \leqslant n} v_{i,k}^2 \alpha_k.$$

- (b) Montrer que $0 < u_{i,i} < R$ pour tout i entre 1 et n.
- (c) Montrer, en utilisant l'inégalité de convexité rappelée dans le préambule, que :

$$\det g(U) \geqslant \prod_{1 \leqslant i \leqslant n} g(u_{i,i}).$$

(d) Retrouver de même le résultat de la question III 2°.

Partie V

Soient $n \geqslant 2$ et U la matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $u_{i,i} = a$ pour tout i et $u_{i,j} = b$ pour $j \neq i$, avec 0 < b < A Soit enfin $g : \mathbb{R} \to \mathbb{R}$ définie par $g(x) = 1 + e^x$.

- $\mathbf{1}^{\circ}$. En écrivant $U=\left(a-b
 ight)I_{n}+J$, déterminer le spectre de U.
- $\mathbf{2}^{\circ}$. Montrer que la matrice U et la fonction g vérifient les hypothèses de la partie \mathbf{N} .
- ${\bf 3}^{\circ}$. Montrer qu'il existe un polynôme R de degré 2 annulateur de la matrice U.
- $\mathbf{4}^{\circ}$. Exprimer U^k pour tout $k \in \mathbb{N}$ et l'exponentielle $\exp(U)$ en fonction de U et de I_n .
- ${f 5}^{\circ}$. Encadrer det $ig(I_n + \exp(U)ig)$ en fonction de a, b et n.
- **6**°. Dans cette question, on suppose n=3. Déterminer la nature de la quadrique d'équation ${}^tXUX=1$ où X décrit \mathbb{R}^3 .