
E3A- Math 2 - MP
Exercice 1

1. a. On a f(x) = 0 ⇐⇒ g(x) ∈ F⊥ ⇐⇒ x ∈ g−1(F⊥),

donc Ker f = g−1(F⊥).

Le rang de f est donc n−dim (F⊥), c’est donc dim F , et puisque Im f ⊂ F ,

Finalement Im f = F.

b. D’après le cours, pour h ∈ GL(E), on a h ◦ pF ◦ h−1 = ph(F)
(précisément, le cours décrit les espaces propres d’un conjugué); ici, on
voit donc que g−1 ◦ pF ◦ g = pF ′ , avec F′ = g−1(F).

c. On calcule f ◦ f∗ ◦ f = pF ◦ g ◦ g∗ ◦ p∗
F ◦ pF ◦ g; comme g ∈ O(E),

on a g ◦ g∗ = Id; de plus pF est symétrique et idempotent; il reste
f ◦ f∗ ◦ f = pF ◦ g = f .

2. a. Avec les notations de 1.b., il s’agit d’écrire: pF ◦ g = g ◦ pF , ou
g ◦ pF ′ = g ◦ pF , ie pF ′ = pF , la condition nécessaire et suffisante est
F ′ = F , soit enfin

pF ◦ g = g ◦ pF ⇐⇒ g−1(F ) = F ⇐⇒ g(F) = F.

b. L’ensemble G ne contient pas Id, car chacun de ses éléments a une
image incluse dans F (d’après 1.a.).

Donc, G n’est pas un sous-groupe du groupe linéaire.

Soit h ∈ G , donc h = pF ◦ g, où g(F ) = F . On note qu’alors (puisque g
est un automorphisme orthogonal), g(F⊥) = F⊥.
Si x ∈ F , h(x) = pF (g(x)) = g(x) (puisque g(x) ∈ F ); ainsi, h induit sur F
l’endomorphisme gF , élément de O(F ); et, si x ∈ F⊥, h(x) = pF (g(x)) =
0, car g(x) ∈ F ⊥.
On peut donc considérer Φ : G → O(F ), h 7→ hF , et Ψ : O(F ) → G, q 7→ h,
où h(x) = q(x) si x ∈ F , h(x) = 0 si x ∈ F⊥. Cette deuxième application
est bien à valeurs dans G : si l’on construit g telle que g(x) = q(x) si x ∈ F
et g(x) = x si x ∈ F⊥, on a un automorphisme orthogonal par recollement,
et pF ◦ g = h. Pour h ∈ G, on a maintenant Ψ(Φ(h)) = h, et, pour q ∈
O(F ), Φ(Ψ(q)) = q. Enfin, Φ(h◦h′) = (h◦h′)F = hF ◦h′

F = Φ(h)◦Φ(h′).
La bijection construite permet de transporter sur G la structure de groupe
de O(F ), et a posteriori est un isomorphisme entre les deux groupes.
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(G, ◦) est isomorphe à (O(F ), ◦).

c. Un éĺement de la forme pF ◦ g ne peut être nul: il faudrait que Im g ⊂
F⊥, ce qui est exclu puisque Im g = E. En revanche, un produit pF ◦
g ◦ pF ◦ h peut être nul (et donc hors de l’ensemble initial, qui n’est ainsi
pas stable par composition). Il suffit que g(pF (h(E))) ⊂ F ⊥, donc que
g(pF (E)) ⊂ F⊥, soit enfin g(F ) ⊂ F ⊥. Un tel exemple est possible pourvu
que dim F⊥ ≥ dim F .

L’ensemble n’est pas stable par composition en général.

3. On établit ici la réciproque de 1.c.
a. L’endomorphisme f ◦ f∗ est symétrique, et f ◦ f∗ ◦ f ◦ f∗ = f ◦ f∗,
donc c’est aussi un idempotent, finalement c’est un projecteur orthogonal.
C’est donc le projecteur sur son image, qui est Im f ◦ f∗ = Im f (on a en
effet clairement Im f ◦ f∗ ⊂ Im f , mais comme f = (f ◦ f∗) ◦ f , on a aussi
Im f ◦ f∗ ⊃ Im f).

f ◦ f∗ est le projecteur orthogonal sur Im f.

b. Il s’agit de voir que (f(x) | f(x)) = (x | x), ou ((f∗◦f)(x) | x) = (x | x)
(sachant que x ∈ Ker f⊥). Or on sait que f ◦ (f∗ ◦ f − Id) = 0, donc
Im (f∗ ◦ f − Id) ⊂ Ker f , puis Ker f⊥ ⊂

(
Im (f∗ ◦ f − Id)

)⊥: ainsi, si
x ∈ Ker f⊥, alors

(
x | (f∗ ◦ f)(x) − x

)
= 0, ce qu’il fallait voir.

Pour x ∈ Ker f⊥, ||f(x)|| = ||x||.

c. On sait qu’il faut prendre F = Im f . Considérons les deux sommes di-
rectes Ker f⊥⊕Ker f = E, Im f⊕Im f⊥ = E; les dimensions se correspon-
dent. On vient d’établir que la restriction de f à Ker f⊥ établit une appli-
cation qui conserve la norme à valeurs dans Im f , c’est donc une isométrie
g1. On choisit une quelconque isométrie g2 entre les deux espaces vec-
toriels euclidiens (de même dimension) Ker f et Im f⊥. On construit par
recollement une isométrie g de E sur E. Soit h = pF ◦g. Pour x ∈ Ker f⊥,
on a h(x) = pF (f(x)) = f(x); pour x ∈ Ker f , h(x) = pF (0) = 0 = f(x).

On a bien ainsi construit F et g tels que f = pF ◦ g.

Exercice 2

1. a. L’intégrande t 7→ h(t) =
tx

(1 + t)2
est positive et continue sur I =

]0,+∞[, l’existence de f(x) équivaut à la sommabilité de h sur I . Or
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h(t) ∼ tx en 0, et h(t) ∼ tx−2 en +∞; la condition nécessaire et suffisante
est x > −1 et x < 1, soit l’ensemble de définition:

D =] − 1, 1[.

b. On connâıt l’égalité, pour t > 0 et x ∈ R:

tx

(1 + t)2
=

+∞∑

n=0

(xln t)n

n!(1 + t)2
=

+∞∑

n=0

(ln t)n

n!(1 + t)2
xn.

2. a. Pour n ≥ 1, une intégration par parties donne

In =
∫ 1

0
1.(ln t)ndt =

[
t(ln t)n

]1
0 −

∫ 1

0
n(ln t)n−1dt = −nIn−1.

Ainsi, partant de I0 = 1, il vient ∀n ∈ N,

∫ 1

0
(ln t)ndt = (−1)nn!

b. On encadre
1

(1 + t)2
entre 1

4 et 1 (pour t ∈ [0, 1]).

L’intégrale
∫ 1

0

| ln t |n

(1 + t)2
dt est ainsi encadrée entre

1
4

| In | et | In | .

3. a. Le changement de variable u = 1
t donne facilement

∫ 1

0

(ln t)n

(1 + t)2
dt = (−1)n

∫ +∞

1

(ln t)n

(1 + t)2
dt.

Remarque: on retient que
∫ +∞

0

(ln t)n

(1 + t)2
dt = 0 si n est impair, et vaut

2
∫ 1

0

(ln t)n

(1 + t)2
dt si n est pair.

b. On a f(x) =
∫ +∞

0

+∞∑

n=0

an(x, t)dt, où an(x, t) =
xn

n!
(lnt)n

(1 + t)2
.

Regardons
+∞∑

n=0

∫ +∞

0
| an(x, t) | dt =

+∞∑

n=0

| x |n

n!
(
∫ +∞

0

| lnt |n

(1 + t)2
dt).

La parenthèse peut être majorée par 2n!, d’après 2b. et 3a. On peut donc

majorer le tout par 2
+∞∑

n=0

| x |n, quantité donc finie si | x |< 1. Dans ces
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conditions, le théorème d’intégration terme à terme peut être appliqué, et
il légitime l’échange des symboles, fournissant (pour x ∈] − 1, 1[): f(x) =
+∞∑

n=0

xn

n!
(
∫ +∞

0

lntn

(1 + t)2
dt) = 2

+∞∑

n=0

x2n

(2n)!
(
∫ 1

0

(lnt)2n

(1 + t)2
dt).

La minoration obtenue au 2b. permet de voir que le rayon de la série
entière obtenue est au plus 1, finalement:

Le rayon de la série entière obtenue est 1, et sa somme cöıncide
avec f sur D =] − 1,1[.

4. a. On pose t = u2p, ce qui donne pour valeur de l’intégrale
∫ +∞

0

2pu2p

(1 + u2p)2
du. On effectue une intégration par parties, en écrivant

∫ +∞

0
u

2pu2p−1

(1 + u2p)2
du =

[ −u

1 + u2p

]+∞
0 +

∫ +∞

0

du

1 + u2p
.

Finalement
∫ +∞

0

t1/2p

(1 + t)2
dt =

∫ +∞

0

du
1 + u2p .

b. Soit Ω l’ensemble des racines 2p-ièmes de −1, qui sont les exp(iθ), où

θ =
(2k + 1)π

2p
,−p ≤ k ≤ p − 1. On sait qu’il existe une décomposition

1
1 + u2p

=
∑

ω∈Ω

aω

u − ω
; et on calcule aω =

1
2pω2p−1 =

ω

2pω2p
= − ω

2p
.

Finalement: 1
1+u2p = − 1

2p

∑
ω∈Ω

ω
u−ω .

c. Notons Ω+ les éĺements de Ω de partie imaginaire strictement positive;
les éĺements manquants sont tous les opposés de ces éléments. Quand on

calcule
∫ X

0

du

1 + u2p
, à un facteur près, la contribution logarithmique est

[ ∑

ω∈Ω

ωln | u − ω |
]X

0 =
∑

ω∈Ω

ωln | X − ω

−ω
|=

∑

ω∈Ω

ωln | X − ω |

=
∑

ω∈Ω+

(
ωln | X − ω | −ωln | X + ω |

)
=

∑

ω∈Ω+

ωln | X − ω

X + ω
|. Quand on

fait tendre X vers +∞, on obtient ainsi la valeur zéro.

La contribution logarithmique à l’intégrale est nulle.
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d. On part de
p−1∑

k=−p

αk =
α−p − αp

1 − α
; on dérive (au sens des fractions

rationnelles, réelles ou complexes):

p−1∑

k=−p

kαk−1 =
−pα−p−1 − pαp−1

1 − α
+

α−p − αp

(1 − α)2
;

on multiplie enfin par (1 − α)α; il reste −pα−p − pαp +
α

1 − α
(α−p − αp).

Quand on choisit α = exp(iπ/p), il reste −p(−1 − 1) + 0 = 2p.

Ainsi, pourα = exp(iπ/p),
p−1∑

k=−p

kαk−1 = 2p.

Quand X → +∞, une quantité comme arg (X − ω) tend vers 0. Finale-
ment, l’intégrale qui nous occupe vaut seulement

1
2p

∑

ω∈Ω

ω i arg(−ω) =
1
2p

∑

ω∈Ω

−ω i arg(ω).

L’éĺement général ω s’́ecrit exp(iπ/2p)αk, on calcule donc

−1
2p

p−1∑

k=−p

exp(iπ/2p)αk i (
π

2p
+

kπ

p
)

=
−iπ

(2p)2
exp(iπ/2p)

p−1∑

k=−p

αk − iπ

2p2 exp(iπ/2p)
p−1∑

k=−p

kαk−1

= 0− iπ

p
exp(iπ/2p)

1
1 − α

= i
π

p

1
(exp(iπ/2p) − exp(−iπ/2p))

=
π/2p

sin(π/2p)
.

On conclut bien: pour p ∈ N∗, f(
1
2p

) =
π/2p

sin(π/2p)
.

5. Les théorèmes sur les séries entières assurent que h(x) = πx − f(x)sinπx
cöıncide avec une série entière au moins sur ] − 1, 1[, puisque c’est le cas
pour πx, f(x) et sinπx. D’autre part, h( 1

2p) = 0 d’après la question 4.
On conclut alors que h est identiquement nulle sur ] − 1,1[. En effet, soit

h(x) =
+∞∑

n=0

anxn le développement en série entière de h (sur ] − 1,1[).

Supposons les an non tous nuls, soit r le plus petit indice d’un an non nul:

alors h(x) = xr
+∞∑

n=r

anxn−r = xr
+∞∑

n=0

an+rx
n. Notons q(x) =

+∞∑

n=0

an+rx
n:
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c’est une fonction bien définie sur ]−1,1[ sauf peut-être en zéro, puisqu’elle
y vaut h(x)/xr, mais comme c’est une somme de série entière elle est
définie et continue sur ] − 1; 1[ entier. Cette fonction q vaut ar en zéro,
donc est non nulle en ce point, donc aussi sur un voisinage de zéro. Il en
résulte qu’il existe un voisinage de zéro tel que, dans ce voisinage, h ne
s’annule qu’en zéro. Cela contredit sa nullité aux points 1/2p. Finalement
tous les an sont nuls, donc h est identiquement nulle sur ] − 1, 1[.

∀x ∈] − 1, 1[,
∫ +∞

0

tx

(1 + t)2
dt =

πx
sinπx

.

Exercice 3

1. Soit P = {n ∈ N∗, ∃x, y, z ∈ Z, n = x2+y2+z2, xa+yb+zc ∈ D∩R\{0}}.
Par hypothèse, P est une partie non vide de N∗. On peut donc choisir un
plus petit élément de P , qui correspond à un u = xa+yb+zc ∈ D∩R\{0}
pour lequel x2 + y2 + z2 est minimum. Puisque u ∈ D ∩ R, alors le sous-
groupe engendré par u, soit Zu, est aussi inclus dans D ∩ R (qui est
un sous-groupe additif de E comme intersection de deux sous-groupes).
Réciproquement, tout élément de D ∩ R est déjà un éĺement de D, donc
de la forme tu, t ∈ R. Alors v = (t− [t])u ∈ D∩R par différence (où [t] est
la partie entière de t). Mais la somme des carrés de ses composantes dans
(a, b, c) vaut (t− [t])2(x2 +y2 +z2), strictement plus petit que x2 +y2 +z2,
donc, par choix de u, il faut que (t − [t])u = 0, finalement l’élément
considéré dans D ∩ R est [t]u ∈ Zu.

Il existe u ∈ D ∩ R, u 6= 0, tel que D ∩ R = Zu.

2. a. On calcule (a | A) = ∆
∆ = 1, (a | B) = 0 = (a | C), et de même pour

les autres. On a ainsi des relations de type (ei | fj) = δij (pour ei =
a, b, c, fi = A, B, C): on a construit la base duale de (a, b, c). Maintenant,
il est clair que (xa + yb + zc | αA + βB + γC) = xα + yβ + zγ.

b. Et en effet, cette base duale... est bien une base: par exemple, si
αA + βB + γC = 0, alors ∀x, y, z, on a xα + yβ + zγ = 0, donc α = β =
γ = 0.

(A,B,C) est une base.

3. Prenons deux vecteurs u = pa + qb + rc, v = p′a + q′b + r′c de R. Leur
produit vectoriel vaut pq′∆C +pr′(−∆B)+qp′(−∆C)+qr′∆A+rp′∆B+
rq′(−∆A) = ∆

(
(qr′ − rq′)A + (rp′ − pr′)B + (pq′ − qp′)C

)
. La somme

X2+Y 2+Z2 associée vaut donc ∆2
(
(qr′−rq′)2+(rp′−pr′)2+(pq′−qp′)2

)
.

m00rm2ca.tex - page 6



Puisque ∆2 est constant, on la minimise en minimisant
(
(qr′−rq′)2+(rp′−

pr′)2+(pq′ −qp′)2
)
, qui est un entier strictement positif quand u et v sont

indépendants dans R. On assure ainsi comme plus haut l’existence d’un
couple (u, v) de vecteurs indépendants de P ∩R qui minimise X2+Y 2+Z2

quand u ∧ v = XA + Y B + ZC.
Puisque u, v ∈ P ∩ R, le groupe engendré Zu + Zv est aussi inclus dans
P ∩R. Tout éĺement de P ∩R est dans le plan vectoriel engendré par u et
v (c’est P ), donc s’́ecrit tu + sv. On considère w = (t − [t])u + (s − [s])v,
qui est encore dans P ∩ R. Si par exemple t − [t] 6= 0, on fait le produit
vectoriel avec v, on trouve (t− [t])(u∧ v) 6= 0, la somme de carrés assocíee
est (t − [t])2(X2 + Y 2 + Z2), strictement plus petite que celle obtenue
pour u ∧ v, c’est absurde. De même, s = [s], finalement l’élément est
[t]u + [s]v ∈ Zu + Zv.

On trouve u, v indépendants dans P ∩ R tels que P ∩R = Zu+ Zv.

4. a. Si w ∈ P ∩ R, il faut que x, y, z ∈ Z. Il faut de plus que w soit
dans le plan engendré par u et v, donc que [w, u, v] = 0, ce qui s’́ecrit
(xa + yb + zc | u ∧ v) = 0. Notons, comme on l’a fait plus haut, u ∧ v =
XA + Y B + ZC = ∆(αA + βB + γC), avec α, β, γ entiers. La condition
devient xX+yY +zZ = 0 ou ∆(αx+βy+γz) = 0 puis (αx+βy+γz) = 0.
En divisant les trois nombres par leur pgcd, on se ramène à la même
condition où α,β, γ sont premiers entre eux.
Réciproquement, si αx + βy + γz = 0 et x, y, z entiers, d’une part w ∈ R,
d’autre part, on a écrit qu’il est dans le plan engendré par u et v, donc
w ∈ P ∩ R.

xa + yb + zx ∈ P ∩ R ⇐⇒ (x,y, z) ∈ Z3 et αx + βy + γz = 0.

b. Il est manifeste que les Pk ∩ R sont deux à deux disjoints et que leur
réunion reconstitue l’ensemble des éĺements de R pour lesquels αx+βy+γz
est un élément de Z , donc R tout entier. Il reste à voir que chacun
est non vide. Or, puisque α,β, γ sont premiers entre eux, on sait que
αZ + βZ + γZ = Z, on peut en particulier trouver un triplet (x, y, z)
d’entiers vérifiant αx + βy + γz = k. Le point xa + yb + zc est alors dans
Pk ∩ R.

Les Pk ∩ R forment une partition de R.

c. L’équation de Pk s’écrit (N | w) = k, ou encore (n | w) = k
||N|| , où

n = N
||N || , vecteur unitaire.

La distance entre Pk et Pk+1 est alors k+1
||N || − k

||N|| = 1
||N|| .
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