E3A- Math 2 - MP|
Exercice 1

l.a.Ona f(z) =0 < g(z) € Ft < z € g }(F),
donc Ker f = g~ }(F™1).

Le rang de f est donc n—dim (F*), ¢’est donc dim F, et puisque Im f C F,

Finalement Im f = F. ‘

b. D’apres le cours, pour h € GL(E), on a hoppoh ! = Ph(F)
(précisément, le cours décrit les espaces propres d’un conjugué); ici, on

voit donc que g~ ! o pr o g = prr, avec | F = g~ 1(F).

c. On calcule fo f*of =ppogog*ophoppog; comme g € OE),
on a go g* = Id; de plus pr est symétrique et idempotent; il reste

fOf*Of:pFog:f.‘

2. a. Avec les notations de 1.b., il s’agit d’écrire: pr o g = g o pp, ou
gopr = gopp,ie ppr = pp, la condition nécessaire et suffisante est
F’ = F, soit enfin

prog=gopr < g '(F)=F < g(F)=F.

b. L’ensemble G ne contient pas Id, car chacun de ses éléments a une
image incluse dans F (d’apres 1.a.).

Donc, G n’est pas un sous-groupe du groupe linéaire.

Soit h € G, donc h = pg o g, ou g(F) = F. On note qu’alors (puisque g
est un automorphisme orthogonal), g(F*) = F*.

Siz e F, h(z) =pr(g9(z)) = g(x) (puisque g(x) € F); ainsi, h induit sur F
I'endomorphisme gr, élément de O(F); et, si x € F*, h(z) = pp(g(x)) =
0, car g(x) € Ft.

On peut donc considérer @ : G — O(F),h+— hp,et ¥ : O(F) — G, q+— h,
ou h(z) = q(z) sixz € F, h(z) = 0si x € F+. Cette deuxiéme application
est bien & valeurs dans G: si l’on construit g telle que g(z) = q(x) six € F
et g(x) = x si 2 € F*, on a un automorphisme orthogonal par recollement,
et ppog=h. Pour h € G, on a maintenant U(®(h)) = h, et, pour g €
O(F), ®(¥(q)) = g. Enfin, ®(hoh') = (hoh/)p = hpohly = ®(h) o (R').
La bijection construite permet de transporter sur G la structure de groupe
de O(F), et a posteriori est un isomorphisme entre les deux groupes.
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(G, o) est isomorphe a (O(F),o0).

c. Un élément de la forme pp o g ne peut étre nul: il faudrait que Img C
FL, ce qui est exclu puisque Img = E. En revanche, un produit pp o
g o pr o h peut étre nul (et donc hors de I'ensemble initial, qui n’est ainsi
pas stable par composition). Il suffit que g(pr(h(E))) € F*, donc que
g(pr(E)) C F+, soit enfin g(F) C F+. Un tel exemple est possible pourvu
que dim F+ > dim F.

L’ensemble n’est pas stable par composition en général.

3. On établit ici la réciproque de 1.c.
a. L’endomorphisme f o f* est symétrique, et fo f*o fo f* = fo f*
donc c’est aussi un idempotent, finalement c¢’est un projecteur orthogonal.
C’est donc le projecteur sur son image, qui est Im f o f* =Im f (on a en
effet clairement Im f o f* C Im f, mais comme f = (fo f*)o f, on a aussi
Im f o f* O Im f).

f o f* est le projecteur orthogonal sur Im f.

b. Il s’agit de voir que (f(z) | f(z)) = (z | z), ou ((f*of)(z) | ) = (z | z)
(sachant que = € Ker f). Or on sait que fo (f*o f — Id) = 0, donc

Im (f* o f — Id) C Ker f, puis Ker f+ C (Im(f* of — Id))l: ainsi, si
z € Ker f*, alors (z | (f* o f)(z) — ) = 0, ce qu’il fallait voir.

Pour z € Ker f+, ||f(z)|] = ||z||-

c. On sait qu’il faut prendre F' = Im f. Considérons les deux sommes di-
rectes Ker fr@Ker f = E, Im f@&Im f+ = E; les dimensions se correspon-
dent. On vient d’établir que la restriction de f & Ker f* établit une appli-
cation qui conserve la norme a valeurs dans Im f, c’est donc une isométrie
g1- On choisit une quelconque isométrie go entre les deux espaces vec-
toriels euclidiens (de méme dimension) Ker f et Im f+. On construit par
recollement une isométrie g de E sur E. Soit h = prog. Pour = € Ker f=,

on a h(x) = pr(f(x)) = f(2); pour = € Ker f, h(x) = pp(0) = 0 = f(z).
On a bien ainsi construit F' et ¢ tels que f =prog.

. _____________________________________________________________________________________________________________________|
Exercice 2
tfl/'
1. a. L’intégrande t — h(t) = aroe est positive et continue sur I =
10, +o00[, lexistence de f(x) équivaut a la sommabilité de h sur I. Or
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h(t) ~ t* en 0, et h(t) ~ =2 en +o0; la condition nécessaire et suffisante
est £ > —1 et z < 1, soit ’ensemble de définition:

D=]-1,1].

b. On connait I’égalité, pour ¢ > 0 et x € R:

+oo

< (xInt)* X (mt)»
(1+tp"E;nx1+tﬂ"§:nx1+tﬁx'

2. a. Pour n > 1, une intégration par parties donne

1 1
In:/ 1.(Int)"dt = [t(lnt)"](l)—/ n(Int)"~tdt = —nl, ;.
0 0

1
Ainsi, partant de Iy = 1, il vient |Vn € N, / (Int)?dt = (—1)"n!
0

b. On encadre entre 1 et 1 (pour ¢ € [0,1]).

1
(1+1¢)2

Pt "

1
L’intégrale /0 mdt est ainsi encadrée entre y | In|et |In||

3. a. Le changement de variable u = % donne facilement

L (lnt)™ _ L [T (Int)™

f, et = oo [ g
(Int)™
(1+1)2

“+o0
Remarque: on retient que / dt = 0 si n est impair, et vaut
0

1

Int)"

2/ L)th si n est pair.
o (1417)

b. On a f(z

oo +oo n n
/ Zan (z,t)dt, ou ay(z,t) = x| (ihjrt)t)Q

n +oo | Int ‘n
Regardons Z | an(z,t) | dt = Z T t)2dt)'

La parenthese peut étre majorée par 2n' d apres 2b. et 3a. On peut donc
“+oo

majorer le tout par 2 Z | |, quantité donc finie si |  |< 1. Dans ces
n=0
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conditions, le théoreme d’intégration terme a terme peut étre appliqué, et
il 1égitime 1’échange des symboles, fournissant (pour = €] — 1,1[): f(z) =

R S L _ X g 1 (Int)?"
Zﬁ(/o (1+t)2dt)_22(2n)!(/0 (1+t)2dt)'

n=0 n=0
La minoration obtenue au 2b. permet de voir que le rayon de la série

entiére obtenue est au plus 1, finalement:

Le rayon de la série entiere obtenue est 1, et sa somme coincide
avec f sur D =] —1,1].

. a. On pose t = u??, ce qui donne pour valeur de l'intégrale

“+oo 2 2p

pu . . . ..

/ —————du. On effectue une intégration par parties, en écrivant
0 (1 + u?pr)2

+oo 2p—1 +o00
2 p _— fo'e) d
/ u gy = [7u ]+ —|—/ =
0 (14 u?r)? 1+ u2p-0 o l+wu?r

+oo 1/2p +oo
t d
Finalement / —dt :/ —11 .
o (1+1t)? o 1+u?r

b. Soit Q I'ensemble des racines 2p-iemes de —1, qui sont les exp(if), ou

2k + )m ) ) ) ) -

0= ( 2—) ,—p < k < p—1. On sait qu'il existe une décomposition
p
1 Qy, 1 w w
— = ; et on calcule a, = = = .
S D Y 2puPTl T 2pu 2p
weN
: . i1

Finalement: Tra® = —3p Dowen ﬁ

c. Notons €4 les éléments de 2 de partie imaginaire strictement positive;
les éléments manquants sont tous les opposés de ces éléments. Quand on

X odu X . S
calcule / T a un facteur pres, la contribution logarithmique est
0 u

[Zwln|u—w|]§=2wln| X_—ww \:Zw1n|X—w|

weN weN weN
X —
= Z (Whn|X -—w|-wh|X+w]|)= Z WIH‘X——FZ|' Quand on
weN we

fait tendre X vers +oo, on obtient ainsi la valeur zéro.

La contribution logarithmique a 1’intégrale est nulle.
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p—1
d. On part de Z o
k=—p
rationnelles, réelles ou complexes):

—P _ P
& & ‘s .
g on dérive (au sens des fractions
-«

pf N e Lt L ik
11—« (1—a)?’

k=—p

on multiplie enfin par (1 — a)q; il reste —pa™ — pa? + — - (a™? —aP).

Quand on choisit « = exp(in/p), il reste —p(—1 —1) + 0 = 2p.
p—1

Ainsi, pour o = exp(im/p), Z ka*~! = 2p.
k=—

Quand X — +o00, une quantité comme arg (X — w) tend vers 0. Finale-
ment, l'intégrale qui nous occupe vaut seulement

1 1
> Z wiarg(—w) = > Z —wiarg(w).

weN weN

L’élément général w s’écrit exp(in/2p)a®, on calcule donc

S m  km
— exp(iﬂ'/2p)o¢ki(2— +—)
p

k=—p p

—iT

p—1 . p—1
. . ) _
(Zp)QeXp(m/Zp) E o — @exp(mﬁp) g kaf—t

k=—p k=—p
1 w/2p

1T . 1 7iz _
= O ) T = i 20) —oxp( i /2p)  sm(mj2p)

1. 7/2p

On conclut bien: pour p € N*, f(z— = W
p sin(r/2p

5. Les théorémes sur les séries entieres assurent que h(x) = mz — f(z)sinmz
coincide avec une série entiere au moins sur | — 1, 1[, puisque c’est le cas
pour 7z, f(x) et sintx. D’autre part, h(z—lp) = 0 d’apres la question 4.
On conclut alors que h est identiquement nulle sur | — 1,1[. En effet, soit
+o0o

h(z) = Z anz” le développement en série entiere de h (sur | — 1,1]).
n=0

Supposons les a,, non tous nuls, soit r le plus petit indice d’un a,, non nul:

+o0 +oo 00
alors h(z) = z” E anz" " = 2" E anir2"™. Notons g(z) = E Ay
n=r n=0 n=0

mOOrm2ca.tex - page 5



c’est une fonction bien définie sur | —1, 1] sauf peut-étre en zéro, puisqu’elle
y vaut h(z)/x", mais comme c’est une somme de série entiére elle est
définie et continue sur | — 1;1[ entier. Cette fonction ¢ vaut a, en zéro,
donc est non nulle en ce point, donc aussi sur un voisinage de zéro. Il en
résulte qu’il existe un voisinage de zéro tel que, dans ce voisinage, h ne
s’annule qu’en zéro. Cela contredit sa nullité aux points 1/2p. Finalement

tous les a,, sont nuls, donc h est identiquement nulle sur | —1,1[.
+o0 x
t
Vo €] - 1,1], / dt = =
o (L+1t)2 sinTx

Exercice 3

1. Soit P = {n € N*,3x,y,2 € Z,n = 2> +y*+ 22, va+yb+zc € DNR\{0}}.
Par hypothese, P est une partie non vide de N*. On peut donc choisir un
plus petit élément de P, qui correspond & un u = xa+yb+zc € DNR\ {0}
pour lequel 22 + y? + 22 est minimum. Puisque u € D NR, alors le sous-
groupe engendré par wu, soit Zu, est aussi inclus dans D N'R (qui est
un sous-groupe additif de E comme intersection de deux sous-groupes).
Réciproquement, tout élément de D N'R est déja un élément de D, donc
de la forme tu, t € R. Alors v = (t—[t])u € DN'R par différence (ot [¢] est
la partie entiere de t). Mais la somme des carrés de ses composantes dans
(a,b,c) vaut (t—[t])%(z2+y? + 2?2), strictement plus petit que x4+ y? + 22,
donc, par choix de u, il faut que (¢t — [t])u = 0, finalement 1’élément
considéré dans D NR est [t]u € Zu.

Il existe u € DNR,u # 0, tel que D NR = Zu.

2. a. On caleule (a | A) =2 =1, (a| B)=0= (a|C), et de méme pour
les autres. On a ainsi des relations de type (e; | f;) = 6;; (pour e; =
a,b,c, fi =A,B,C): on a construit la base duale de (a,b,c). Maintenant,

il est clair quel(xa+yb+zc|aA+ﬁB+’yC) :anry/BJrzy.l

b. Et en effet, cette base duale... est bien une base: par exemple, si
aA+ BB +~C =0, alors Vx,y,z, on a xa+yB8+ 2y =0, donc a = 3 =
v =0.

(A, B, C) est une base.

3. Prenons deux vecteurs v = pa + gb + rc,v = p'a+ ¢'b + r'c de R. Leur
produit vectoriel vaut p¢g’ AC +pr'(—AB) +qp' (—AC) +qr' AA+rp’ AB+
rq' (—AA) = A((qr’ —rd)A+ (rp’ — pr')B + (pqg’ — qp’)C’). La somme
X2 +Y?+Z? associée vaut done A% ((qr' —rq’)2+ (rp’ —pr')2+(pqd —qp')?).
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Puisque A? est constant, on la minimise en minimisant ((qr’ —rq" )2+ (rp’ —
pr') 2+ (pq’ —qp’)?), qui est un entier strictement positif quand u et v sont
indépendants dans R. On assure ainsi comme plus haut l'existence d’un
couple (u,v) de vecteurs indépendants de PNR qui minimise X2 +Y?2+ 722
quand u Av=XA+YB+ ZC.

Puisque u,v € PNR, le groupe engendré Zu + Zv est aussi inclus dans
PN7R. Tout élément de PN'R est dans le plan vectoriel engendré par u et
v (c’est P), donc s’écrit tu + sv. On considére w = (¢t — [t])u + (s — [3])v,
qui est encore dans P NR. Si par exemple ¢ — [t] # 0, on fait le produit
vectoriel avec v, on trouve (¢t — [t])(uAv) # 0, la somme de carrés associée
est (t — [t])%(X? + Y2 + Z2), strictement plus petite que celle obtenue
pour u A v, c’est absurde. De méme, s = [s], finalement I’élément est
[tlu + [s]v € Zu + Zv.

On trouve u,v indépendants dans PN'R tels que PNR = Zu + Zv.

4. a. Siw € PNR, il faut que z,y,z € Z. 1l faut de plus que w soit
dans le plan engendré par u et v, donc que [w,u,v] = 0, ce qui s’écrit
(xa + yb+ zc | u Av) = 0. Notons, comme on l'a fait plus haut, u A v =
XA+YB+ZC = A(aA+ 8B +~C), avec «, 3,7 entiers. La condition
devient z X +yY +2Z = 0 ou A(ax+PBy+~z) = 0 puis (azx+By+~z) = 0.
En divisant les trois nombres par leur pged, on se ramene a la méme
condition ou «, (3,7 sont premiers entre eux.

Réciproquement, si ax + By + vz = 0 et z,y, z entiers, d'une part w € R,
d’autre part, on a écrit qu’il est dans le plan engendré par u et v, donc
we PNTR.

xa+yb+zx e PNR < (x,y,2) € Z3ctax + By + vz = 0.

b. Il est manifeste que les Py N'R sont deux a deux disjoints et que leur
réunion reconstitue ’ensemble des éléments de R pour lesquels ax+By+vz
est un élément de Z , donc R tout entier. Il reste a voir que chacun
est non vide. Or, puisque «, 3,7 sont premiers entre eux, on sait que
aZ + BZ + vZ = Z, on peut en particulier trouver un triplet (z,y, 2)
d’entiers vérifiant ax + By + vz = k. Le point xza + yb + zc est alors dans
Pr NR.

Les Pr NR forment une partition de R.l

c. L’équation de Py, s’écrit (N | w) = k, ou encore (n | w) = ﬁ, ol
n = H%—H’ vecteur unitaire.
La distance entre Pj, et P, est alors ﬁi‘ll - ﬁ = H—IH
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