CONCOURS COMMUN INP 2020 CORRIGÉ DE MATHÉMATIQUES 2 FILIÈRE MP MUSTAPHA LAAMOUM

m.laamoum@gmail.com

EXERCICE 1.

- **Q. 1** A est une matrice symétrique réelle donc elle est diagonalisable dans une base orthonormée : ils existent une matrice D diagonale réelle et une matrice $P \in O_3(\mathbb{R})$ telles que $A = P D^{-t}P$.
 - Polynôme caractéristique :

$$\chi_A(X) = \begin{vmatrix}
X - 2 & -1 & -1 \\
-1 & X - 2 & -1 \\
-1 & -1 & X - 2
\end{vmatrix}$$

$$C_1 \leftarrow C_1 + C_2 + C_3 = \begin{vmatrix}
X - 4 & -1 & -1 \\
X - 4 & X - 2 & -1 \\
X - 4 & -1 & X - 2
\end{vmatrix}$$

$$L_2 \leftarrow L_2 - L_1$$

$$L_3 \leftarrow L_3 - L_1$$

$$= \begin{vmatrix}
X - 4 & -1 & -1 \\
0 & X - 1 & 0 \\
0 & 0 & X - 1
\end{vmatrix}$$

Donc $\chi_A(X) = (X - 4)(X - 1)^2$ et $Sp_{\mathbb{R}}(A) = \{1, 4\}$.

• Base orthonormée de vecteurs propres :

On a
$$E_4(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, soit $V_1 = \frac{\sqrt{3}}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

On sait que $E_1(A) = E_4(A)^{\perp}$ donc dim $E_1(A) = 2$, soit (V_2, V_3) une base orthonormée de $E_1(A)$, on prend

$$V_2 = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, V_3 \text{ est orthogonal à } V_2 \text{ et à } V_3 \text{ donc } V_1 = V_2 \wedge V_3 = \frac{\sqrt{6}}{6} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

$$\bullet \quad A = P \ D^{\ t}P \text{ avec } D = \left(\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \quad P = \left(\begin{array}{ccc} \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & 0 & -\frac{\sqrt{6}}{3} \end{array} \right),$$
 et $P^{-1} = {}^{t}P$

Q. 2 Soit
$$B = P \Delta^{t} P$$
 avec $\Delta = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, on trouve $B = \begin{pmatrix} \frac{4}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{4}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{4}{3} \end{pmatrix}$

Q. 3 On a par récurrence
$$A^n = P D^{n-t} P$$
 avec $D = \begin{pmatrix} 4^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

On trouve
$$P\ D^n = \begin{pmatrix} \frac{1}{3}2^{2n}\sqrt{3} & \frac{1}{2}\sqrt{2} & \frac{1}{6}\sqrt{6} \\ \frac{1}{3}2^{2n}\sqrt{3} & -\frac{1}{2}\sqrt{2} & \frac{1}{6}\sqrt{6} \\ \frac{1}{3}2^{2n}\sqrt{3} & 0 & -\frac{1}{3}\sqrt{2}\sqrt{3} \end{pmatrix}$$
 et $A^n = \begin{pmatrix} \frac{1}{3}2^{2n} + \frac{2}{3} & \frac{1}{3}2^{2n} - \frac{1}{3} & \frac{1}{3}2^{2n} - \frac{1}{3} \\ \frac{1}{3}2^{2n} - \frac{1}{3} & \frac{1}{3}2^{2n} + \frac{2}{3} & \frac{1}{3}2^{2n} - \frac{1}{3} \\ \frac{1}{3}2^{2n} - \frac{1}{3} & \frac{1}{3}2^{2n} - \frac{1}{3} & \frac{1}{3}2^{2n} + \frac{2}{3} \end{pmatrix}$

- **Q.** 4 A est diagonalisable donc son polynôme minimal, π_A , est scindé à racines simples, les racines de π_A sont les valeurs propres de A donc $\pi_A(X) = (X-1)(X-4)$.
 - Division euclidienne de X^n par $\pi_A(X): \exists Q$, $R \in \mathbb{R}[X]$, vérifiant : $X^n = Q(X)\pi_A(X) + R(X)$ avec $\deg(\mathbb{R}) < 2$ (R(X) = aX + b).

On a alors
$$A^n = Q(A)\pi_A(A) + R(A) = R(A)$$
, $4^n = R(4)$ et $1 = R(1)$, ce qui donne :
$$\begin{cases} a+b=1\\ 4a+b=4^n \end{cases}$$
, ce qui donne $a = \frac{4^n-1}{3}$ et $b = \frac{4-4^n}{3}$ et $A^n = \frac{4^n-1}{3}A + \frac{4-4^n}{3}I_3$

EXERCICE 2.

- **Q.** 5 $GL_n(\mathbb{R})$ n'est pas fermé : soit la suite de matrice $M_k = \frac{1}{k}I_n$ on a $M_k \in GL_n(\mathbb{R})$ et $M_k \underset{k \to +\infty}{\to} O_n$, $O_n \notin GL_n(\mathbb{R})$.
- Q. 6 On a $GL_n(\mathbb{R}) = \{M \in \mathcal{M}_n(\mathbb{R}) \ / \ \det(M) \neq 0\}$, soit $\varphi : M_n(\mathbb{R}) \to \mathbb{R}$ et $\varphi(M) = \det(M)$, on a φ continue (car c'est une fonction polynomiale des coefficients de M) et $GL_n(\mathbb{R}) = \{M \in \mathcal{M}_n(\mathbb{R}) \ / \ \varphi(M) \in \mathbb{R}^*\} = \varphi^{-1}(\mathbb{R}^*)$. De plus \mathbb{R}^* est le complémentaire $\{0\}$ qui est un fermé donc \mathbb{R}^* est un ouvert par suite $GL_n(\mathbb{R})$ est un ouvert comme image réciproque d'un ouvert par une application continue.
- **Q.** 7 On a $M \lambda I_n \in GL_n(\mathbb{R})$ si et seulement $\lambda \notin Sp_{\mathbb{R}}(M)$.
 - Si $Sp_{\mathbb{R}}(M) = \emptyset$ ou $Sp_{\mathbb{R}}(M) = \{0\}$ on peut prendre $\rho = 1$. Si $Sp_{\mathbb{R}}(M) \neq \emptyset$ ou $Sp_{\mathbb{R}}(M) \neq \{0\}$ soit $\rho = \min\{|\lambda|/\lambda \in Sp_{\mathbb{R}}(M), \lambda \neq 0\}$. On a $\rho > 0$ car $Sp_{\mathbb{R}}(M)$ est fini. Finalement $\forall \lambda \in]0, \rho[\ , \lambda \notin Sp_{\mathbb{R}}(M)$ donc $M - \lambda I_n \in GL_n(\mathbb{R})$.
 - Soit $M \in M_n(\mathbb{R})$, soit $N \in \mathbb{N}$ tel que $k > N \Rightarrow \frac{1}{k} < \rho$ (car $\frac{1}{k} \xrightarrow{k \to +\infty} 0$), donc si k > N alors $M \frac{1}{k}I_n \in GL_n(\mathbb{R})$ et $M \frac{1}{k}I_n \xrightarrow{k \to +\infty} M$ d'où $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$.
- **Q.** 8 Soit A, B dans $M_n(\mathbb{R})$.
 - Si $B \in GL_n(\mathbb{R})$: alors $A.B = B^{-1}(B.A).B$ donc A.B est semblable à B.A donc $\chi_{A.B} = \chi_{B.A}$. On a le même résultat si $A \in GL_n(\mathbb{R})$.
 - Si $A \notin GL_n(\mathbb{R})$ et $B \notin GL_n(\mathbb{R})$: Soit $\rho > 0$ tel que $\forall t \in]0, \rho[$, $B - tI_n \in GL_n(\mathbb{R})$. Donc si $t \in]0, \rho[$ alors $\chi_{A.(B - tI_n)} = \chi_{(B - tI_n).A}$. Soit $\lambda \in \mathbb{R}$ on a donc $\det(\lambda I_n - A.(B - tI_n)) = \det(\lambda I_n - (B - tI_n).A)$ qui s'écrit : $\det(\lambda I_n - A.B - tA) = \det(\lambda I_n - BA - tA)$, l'application $M \to \det(M)$ est continue, on fait tendre t vers 0 on obtient alors $\det(\lambda I_n - A.B) = \det(\lambda I_n - BA)$. On a alors $\chi_{A.B}(\lambda) = \chi_{B.A}(\lambda) \quad \forall \lambda \in \mathbb{R}$, d'où $\chi_{A.B} = \chi_{B.A}$.
 - Soit $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ on a $A.B = O_2$ et B.A = B donc $\pi_{A.B}(X) = X$, $\pi_{B.A}(X) = X^2$.
- **Q.** 9 On a $\varphi: M_n(\mathbb{R}) \to \mathbb{R}$, $\varphi(M) = \det(M)$ est continue et $\varphi(GL_n(\mathbb{R})) = \mathbb{R}^*$ qui n'est pas connexe par arcs car les parties connexes par arcs de \mathbb{R} sont les intervalles donc $GL_n(\mathbb{R})$ n'est pas connexe par arcs.

PROBLEME

Partie I - Exemples, propriétés

Q. 10
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
 soit $x = \begin{pmatrix} a \\ b \end{pmatrix}$ on a $u(x) = A.x = \begin{pmatrix} a+2b \\ -2a+b \end{pmatrix}$ donc
$$\|u(x)\|^2 = (a+2b)^2 + (-2a+b)^2$$
$$= 5(a^2+b^2)$$
$$= 5 \|x\|^2$$

donc u est une similitude de rapport $\sqrt{5}$.

Q. 11 On a M'(4, -3), N'(6, -7), P'(8, -6)

On remarque les triangles MNP et M'N'P' sont rectangle en N et N', $\langle \overrightarrow{NM}, \overrightarrow{NP} \rangle = \langle \overrightarrow{N'M'}, \overrightarrow{N'P'} \rangle = 0$ Donc $S(MNP) = \frac{1}{2} \left\| \overrightarrow{NM} \right\| \left\| \overrightarrow{NP} \right\| = \frac{1}{2} \sqrt{4} \sqrt{1} = 1$ et $S(M'N'P') = \frac{1}{2} \left\| \overrightarrow{N'M'} \right\| \left\| \overrightarrow{N'P'} \right\| = \frac{1}{2} \sqrt{4 + 16} \sqrt{4 + 1} = 5$. On a S(M'N'P') = 5.S(MNP).

- Q. 12 Soit $u \in Sim(E)$ de rapport k > 0, et $x \in \ker(u)$, on a ||u(x)|| = k ||x|| = 0, donc $\ker(u) = \{0\}$, u est un endomorphisme bijectif donc il est bijectif. De plus on a $u^{-1} \in Sim(E)$ de rapport $\frac{1}{h}$.
 - On a $Sim(E) \subset GL(E)$, (GL(E), o) le groupe linéaire, $Sim(E) \neq \emptyset$ car $id_E \in Sim(E)$. Prenons u et v deux éléments de Sim(E) de rapport $k_u > 0$ et $k_v > 0$, pour $x \in E$ on a :

$$||uov^{-1}(x)|| = ||u(v^{-1}(x))||$$

= $k_u ||v^{-1}(x)||$
= $\frac{k_u}{k_v} ||x||$

donc $uov^{-1} \in Sim(E)$, qui est donc un sous groupe de GL(E).

Q. 13 •
$$u \in \mathcal{L}(E)$$
, $B = (e_1, ..., e_n)$ b.o.n de E , si $x = \sum_{1 \le i \le n} x_i e_i$ et $y = \sum_{1 \le i \le n} y_i e_i$ alors
$$\langle x, y \rangle = \sum_{1 \le i \le n} x_i y_i = {}^t X.Y \text{ avec } X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = mat_{\mathcal{B}}(x) \text{ et } Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = mat_{\mathcal{B}}(y) .$$

Posons $M = mat_{\mathcal{B}}(u)$.

• Si ${}^tM.M = I_n$ et $x \in E$ on a : $mat_{\mathcal{B}}(u(x)) = M.X$ donc

$$\begin{aligned} \left\| u(x) \right\|^2 &= & < u(x), u(x) > \\ &= & ^t(M.X).M.X \\ &= & ^tX.^tM.M.X \\ &= & ^tXX \\ &= & < x, x > \\ &= & \left\| x \right\|^2 \end{aligned}$$

Donc $u \in O(E)$.

• Si $u \in O(E)$.alors pour tout $x \in E$ on a ||u(x)|| = ||x|| donc ${}^tX.{}^tM.M.X = {}^tXX$, on obtient alors ${}^tX.({}^tM.M - I_n).X = 0 \ \forall X \in \mathbb{R}^n$.

On remarque que la matrice $A = {}^t M.M - I_n$ est symertique et réelle donc diagonalisable , si λ est une valeur propre de A et V un vecteur propre associé à λ alors :

$${}^{t}V.A.V = \lambda^{t}VV = 0$$

 $V \neq 0$ donc $\lambda = 0$, ce qui donne $Sp(A) = \{0\}$ donc A = 0, d'où ${}^tM.M = I_n.$

• Si $u \in Sim(E)$.de rapport k, alors pour tout $x \in E$ on a ||u(x)|| = k ||x|| soit $\left\|\frac{1}{k}u(x)\right\| = ||x||$ donc $\frac{1}{k}u \in O(E)$, on en déduit :

$$u \in Sim(E)$$
 de rapport $k > 0 \Leftrightarrow \frac{1}{k}u \in O(E)$

Donc $u \in Sim(E)$ de rapport k > 0 si et seulement si $\exists B$ b.o.n de E, $M = mat_{\mathcal{B}}(u)$ vérifie ${}^tM.M = k^2I_n$.

- **Q. 14** On vérifie que ${}^tA.A = 9I_3$, donc A est la matrice dans la base canonique de R^3 d'une similitude u de rapport 3.
 - La matrice de la similitude u^{-1} est $\frac{1}{9}^t A$.
 - Soit f de $O(E), u \in Sim(E)$ de raport 3 donc $u^{-1} \in Sim(E)$ de rapport $\frac{1}{3}$ et $\frac{1}{3}u \in O(E)$, $3u^{-1} \in O(E)$ par suite $u^{-1} \circ f \circ u = (3u^{-1}) \circ f \circ (\frac{1}{3}u) \in O(E)$ car $(O(E), \circ)$ est un groupe.
- **Q. 15** \Rightarrow)Soit $u \in Sim(E)$ de rapport k > 0 et S(0,r) la sphère de centre 0 et de rayon r > 0. Soit $x \in S(0,r)$ on a ||u(x)|| = k ||x|| = kr donc $u(x) \in S(0,kr)$ et $u(S(0,r)) \subset S(0,kr)$ (1) On a de même $u^{-1}(S(0,r)) \subset S(0,\frac{r}{k})$, donc $u^{-1}(S(0,kr)) \subset S(0,r)$ ce qui donne : $S(0,kr) = u(u^{-1}(S(0,kr))) \subset u(S(0,r))$ (2).

Finalement de (1) et (2) on a :

$$u \in Sim(E) \Rightarrow u(S(0,r)) = S(0,kr)$$

• \Leftarrow) Supposons que $u \in L(E)$ transforme toute sphère de E en une sphère de E, donc $\exists r > 0$ tel que u(S(0,1)) = S(0,r).

Soit $x \in E$, $x \neq 0$ posons $y = \frac{x}{\|x\|}$, on a $y \in S(0,1)$ donc $u(y) \in S(0,r)$, c.a.d $\|u(y)\| = r$ ce qui donne $\|u(x)\| = r\|x\|$, cette relation est verifiée pour x = 0, donc $u \in Sim(E)$.

Partie II - Assertions équivalentes

- **Q. 16** \Rightarrow) $u \in Sim(E)$ de rapport $k > 0 \Rightarrow \frac{1}{k}u \in O(E)$ donc $u = (kid_E) o\left(\frac{1}{k}u\right)$.
 - \Leftarrow) Si $u = (\alpha i d_E) \circ (v)$ et $v \in O(E)$ $\alpha \neq 0$, alors $||u(x)|| = |\alpha| ||v(x)|| = |\alpha| ||x||$ donc $u \in Sim(E)$.
- **Q. 17** On a ${}^tAA = 5I_2$, A est la matrice d'une similitude de rapport $\sqrt{5}$, on ecrit $A = \sqrt{5}I_2.\frac{\sqrt{5}}{5}A$ avec $\frac{\sqrt{5}}{5}A \in O_2(\mathbb{R})$.

On a $det(\frac{\sqrt{5}}{5}A)=1$ donc $\frac{\sqrt{5}}{5}A$ est la matrice d'une rotation .

Q. 18 • On a $||x + y||^2 = ||x||^2 + 2\langle x | y \rangle + ||y||^2$ donc $||x + y||^2 - ||x - y||^2 = 4\langle x | y \rangle$.

• \Rightarrow) u est une similitude de rapport k, donc pour $(x,y) \in E^2$

$$\langle u(x) | u(y) \rangle = \frac{1}{4} \left(||u(x+y)||^2 - ||u(x-y)||^2 \right)$$

$$= \frac{k}{4} \left(||x+y||^2 - ||x-y||^2 \right)$$

$$= k^2 \langle x | y \rangle$$

 \Leftarrow) On a pour $(x,y) \in E^2 \langle u(x) \mid u(y) \rangle = k^2 \langle x \mid y \rangle$, en particulier pour x=y ce qui donne u est une similitude de rapport k.

- **Q. 19** Si $\langle x \mid y \rangle = 0$ et $\langle u(x) \mid u(y) \rangle = k^2 \langle x \mid y \rangle$ donc $\langle u(x) \mid u(y) \rangle = 0$.
 - Soit u un endomorphisme de E conservant l'orthogonalité et (e_1, e_2, \dots, e_n) une base orthonormée de E. Soit $(i,j) \in [[1,n]]^2$, on a $\langle e_i + e_j \mid e_i e_j \rangle = \|e_i\|^2 \langle e_i \mid e_j \rangle + \langle e_j \mid e_i \rangle \|e_j\|^2 = 0$. Soit $(i,j) \in [[1,n]]^2$, $\langle e_i + e_j \mid e_i e_j \rangle = 0$ donc $\langle u(e_i + e_j) \mid u(e_i e_j) \rangle = 0$, ce qui donne $\|u(e_i)\|^2 \langle u(e_i), u(e_j) \rangle + \langle u(e_j), u(e_i) \rangle \|e_j\|^2 = 0$ d'où $\|u(e_j)\| = \|u(e_i)\|$.
 - Soit k la valeur commune prise par tous les $||u(e_i)||$. Pour $i \in [[1, n]], ||u(e_i)|| = k$ et $||e_i|| = 1$ donc $||u(e_i)|| = k ||e_i||$.

Soit $x = \sum_{i=1}^{n} x_i e_i$ donc $u(x) = \sum_{i=1}^{n} x_i u(e_i)$ et

$$||u(x)||^2 = \left\langle \sum_{i=1}^n x_i u(e_i), \sum_{j=1}^n x_j u(e_j) \right\rangle$$

= $\sum_{i=1}^n \sum_{j=1}^n x_i x_j \langle u(e_i), u(e_j) \rangle$

si $i \neq j$ alors $\langle u(e_i), u(e_j) \rangle = 0$ donc

$$||u(x)||^{2} = \sum_{i=1}^{n} x_{i}^{2} ||u(e_{i})||^{2}$$
$$= k^{2} \sum_{i=1}^{n} x_{i}^{2}$$
$$= k^{2} ||x||^{2}$$

Ce qui démontrer que u est une similitude de rapport k .

Q. 20 • Soit $u: E \to E$ et pour tout $(x,y) \in E^2$, $\langle u(x) \mid u(y) \rangle = k^2 \langle x \mid y \rangle$

$$\langle u(\alpha x + \beta y) - \alpha u(x) - \beta u(y)u(z) \rangle = \langle u(\alpha x + \beta y) \mid u(z) \rangle - \alpha \langle u(x) \mid u(z) \rangle - \beta \langle u(y) \mid u(z) \rangle$$

$$= \langle \alpha x + \beta y \mid z \rangle - \alpha \langle x \mid z \rangle - \beta \langle y \mid z \rangle$$

donc c'est vrai pour $z = \alpha x + \beta y$, z = x et z = y ce qui donne $||u(\alpha x + \beta y) - \alpha u(x) - \beta u(y)|| = 0$ d'où $u(\alpha x + \beta y) = \alpha u(x) + \beta u(y)$ et $u \in L(E)$.

• $u \in L(E)$ et $\forall (x,y) \in E^2$, $\langle u(x) \mid u(y) \rangle = k^2 \langle x \mid y \rangle$ donc $u \in Sim(E)$ d'apres Q18.