SESSION 2014 MP

CONCOURS COMMUNS POLYTECHNIQUES

$\frac{\text{EPREUVE SPECIFIQUE - FILIERE MP}}{\text{MATHEMATIQUES 2}}$

Durée : 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et la concision de la rédaction. Si un candidat est amené à repérer ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'i a été amené à prendre.

Les calculatrices sont autorisées

I. EXERCICE I

Soit les suites réelles $(u_n),(v_n)$ et (w_n) définies par :

$$\forall n \in \mathbb{N} \quad \begin{cases} u_{n+1} &= u_n + 3v_n \\ v_{n+1} &= 3u_n + v_n + 4w_n & \text{et } (u_0, v_0, w_0) = (1, 0, 1) \\ w_{n+1} &= 4v_n + w_n \end{cases}$$

I.1.

I.1.a Justifier sans calcul que la matrice
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 4 \\ 0 & 4 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
 est diagonalisable.

I.1.b Diagonaliser la matrice $A \in \mathcal{M}_3(\mathbb{R})$.

I.1.c Déterminer la matrice A^n pour tout $n \in \mathbb{N}$. On pourra utiliser la calculatrice.

I.2. Expliciter les termes u_n, v_n, w_n en fonction de n.

II. EXERCICE II

Soit n un entier supérieur à 2 et E un espace vectoriel sur \mathbb{R} de dimension n. On appelle projecteur de E, tout endomorphisme p de E vérifiant $p \circ p = p$.

II.1. Soit p un projecteur de E.

II.1.a Démontrer que les sous-espaces vectoriels ker(p) et Im(p) sont supplémentaires dans E.

II.1.b En déduire que la trace de p (notée Tr(p)) est égale au rang de p (noté rg(p)).

II.1.c Un endomorphisme u de E vérifiant Tr(u) = rg(u) est il nécessairement un projecteur de E?

II.2. Donner un exemple de deux matrices A et B de $\mathcal{M}_3(\mathbb{R})$ de rang 1 telles que A soit diagonalisable et B ne soit pas diagonalisable. Justifier la réponse.

II.3. Soit u un endomorphisme de E de rang 1.

II.3.a Démontrer qu'il existe une base $\beta = (e_1, \dots, e_n)$ de E telle que la matrice $\operatorname{Mat}_{\beta}(u)$ de u dans β soit de la forme :

$$\operatorname{Mat}_{\beta}(u) = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ 0 & \cdots & 0 & a_2 \\ \vdots & \cdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

où a_1, \dots, a_n sont n nombres réels.

 ${\bf II.3.b}$ Démontrer que u est diagonalisable si, et seulement si, la trace de u est non nulle.

II.3.c On suppose que Tr(u) = rg(u) = 1. Démontrer que u est un projecteur.

II.3.d Soit la matrice : $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Démontrer que A est la matrice d'un

projecteur de \mathbb{R}^3 dont on déterminera l'image et le noyau.

III. PROBLÈME

Notations et rappels

Soit n un entier supérieur ou égal à 1. On désigne par $\operatorname{diag}(\alpha_1, \dots, \alpha_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont les réels $\alpha_1, \dots, \alpha_n$ dans cet ordre. Si $M \in \mathcal{M}_n(\mathbb{R})$,

on note ${}^{t}M$ sa transposée.

On munit l'espace vectoriel $E = \mathbb{R}^n$ du produit scalaire canonique noté $\langle \, | \, \rangle$ et de la norme euclidienne $\| . \|$ associée, on note $\mathcal{S}(E)$ le sous-espace des endomorphismes symétriques de E, c'est-à-dire l'ensemble des endomorphismes s de E vérifiant :

$$\forall (x,y) \in E^2, \langle s(x)|y\rangle = \langle x|s(y)\rangle.$$

Un endomorphisme symétrique s de E est dit symétrique positif (respectivement symétrique défini positif) si :

 $\forall x \in E, \langle s(x)|x \rangle \ge 0 \text{ (respectivement } \forall x \in E \setminus \{0\}, \langle s(x)|x \rangle > 0).$

Une matrice symétrique S de $\mathcal{M}_n(\mathbb{R})$ est dite symétrique positive (respectivement symétrique définie positive) si :

 $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^tXSX \geq 0 \ \text{(respectivement } \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ ^tXSX > 0 \ \text{)}.$

On note $\mathcal{S}_n^+(\mathbb{R})$ (respectivement $\mathcal{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (respectivement symétriques définies positives) de $\mathcal{M}_n(\mathbb{R})$.

On rappelle qu'un endomorphisme s de E est symétrique (respectivement symétrique positif, symétrique défini positif) si, et seulement si, sa matrice dans toute base orthonormée de E est symétrique (respectivement symétrique positive, symétrique définie positive).

On admet que, pour tous réels positifs a_1, \dots, a_n ,

$$\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i} \quad \text{(inégalité arithmético-géométrique)}.$$

Objectif du problème

On se donne une matrice S de $\mathcal{S}_n^+(\mathbb{R})$ (ou $\mathcal{S}_n^{++}(\mathbb{R})$) et on étudie le maximum (ou minimum) de la forme linéaire $A \mapsto \operatorname{Tr}(AS)$ sur des ensembles de matrices.)

Questions préliminaires

III.1.

III.1.a Enoncer(sans démonstration) le théorème de réduction des endomorphismes symétriques de l'espace euclidien E et sa version relatives aux matrices symétriques réelles.

III.1.b Toute matrice symétrique à coefficients à coefficients complexes est-elle nécessairement diagonalisable? On pourra par exemple considerer la matrice de $\mathcal{M}_2(\mathbb{C})$:

$$S = \left(\begin{array}{cc} i & 1\\ 1 & -i \end{array}\right)$$

III.2. Soit $s \in \mathcal{S}(E)$, de valeurs propres (réelles) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
.

Soit $\beta = (\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E telle que, pour tout $\in \{1, \dots, n\}$, ε_i est un vecteur propre associée à la valeur propres α_i . Pour tout vecteur $x \in E$, on pose :

$$R_s(x) = \langle s(x)|x\rangle.$$

III.2.a Exprimer $R_s(x)$ à l'aide des λ_i et des coordonnées de x dans la base β .

III.2.b En déduire l'inclusion : $R_s(S(0,1)) \subset [\lambda_1, \lambda_n]$ où S(0,1) désigne la sphère unité de E. III.3.

III.3.a On suppose dans cette question que s est symétrique positif (respectivement symétrique défini positif). Démontrer que les valeurs propres de s sont toutes positives (respectivement strictement positives).

III.3.b Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$0 \le \lambda_1 \le \lambda_2 \cdots \ldots \le \lambda_n$$
.

On note s l'endomorphisme de E représenté par S dans la base canonique $\mathcal{B}=(e_1,\cdots,e_n)$. Exprimer le terme général $s_{i,j}$ de S comme un produit scalaire et démontrer que :

$$\forall i \in \{1, \dots, n\} \quad \lambda_1 \le s_{i,i} \le \lambda_n.$$

Un maximum sur $\mathcal{O}_n(\mathbb{R})$

On note I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{O}_n(\mathbb{R})$ le groupe des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

III.4. Démontrer que l'application $M \mapsto^t MM - I_n$ est continue dans $\mathcal{M}_n(\mathbb{R})$.

III.5. Justifier que, si $A = (a_{i,j})$ est une matrice orthogonale, alors :

$$\forall (i,j) \in \{1, \dots, n\}^2 \quad |a_{i,j}| \le 1.$$

III.6. En déduire que le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

III.7. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (positives) $\lambda_1, \dots, \lambda_n$. On pose $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Si A est une matrice orthogonale, on note T(A) le nombre réel $T(A) = \operatorname{Tr}(AS)$.

III.7.a Soit $A \in \mathcal{O}_n(\mathbb{R})$. Démontrer qu'il existe une matrice orthogonale B telle que :

$$T(A) = \text{Tr}(B\Delta).$$

III.7.b Démontrer que l'application T de $\mathcal{O}_n(\mathbb{R})$ dans \mathbb{R} admet un maximum sur $\mathcal{O}_n(\mathbb{R})$, que l'on notera t.

III.7.c Démontrer que, pour toute matrice orthogonale A de $\mathcal{O}_n(\mathbb{R})$, $T(A) \leq \text{Tr}(S)$, puis déterminer le réel t.

Inégalité d'Hadamard

Soit $S=(s_{i,j})\in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (réelles positives) $\lambda_1,\cdots,\lambda_n$ rangées dans l'ordre croissant :

$$0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$
.

III.8. Démontrera'inégalité valable pour tout $S \in \mathcal{S}_n^+(\mathbb{R})$:

$$\det(S) \le \left(\frac{1}{n}\operatorname{Tr}(S)\right)^n \quad (*).$$

III.9. Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ et $S_{\alpha} =^t DSD$. Démontrer que $S_{\alpha} \in \mathcal{S}_n^+(\mathbb{R})$ et calculer $\operatorname{Tr}(S_{\alpha})$.

III.10. Dans cette question, on suppose que les coefficients diagonaux $s_{i,i}$ de S sont strictement positifs et, pour $1 \le i \le n$, on pose $\alpha_i = \frac{1}{\sqrt{s_{i,i}}}$. En utilisant (*), démontrer que :

$$\det(S) \le \prod_{i=1}^{n} s_{i,i}.$$

III.11. Pour tout réel $\varepsilon > 0$, on pose $S_{\varepsilon} = S + \varepsilon I_n$. Démontrer que $\det(S_{\varepsilon}) \leq \prod_{i=1}^{n} (S_{i,i} + \varepsilon)$, puis conclure que :

$$\prod_{i=1}^{n} \lambda_{i} \leq \prod_{i=1}^{n} s_{i,i} \quad \text{(inégalité d'Hadamard)}$$

Application de l'inégalité d'Hadamard : détermination d'un minimum

Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$, de valeurs propres $0 < \lambda_1 \leq \cdots \leq \lambda_n$, et $\Delta = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$. Soit $\Omega \in \mathcal{O}_n(\mathbb{R})$ tel que $S = \Omega \Delta^t \Omega$. On désigne par \mathcal{U} l'ensemble des matrices de $\mathcal{S}_n^{++}(\mathbb{R})$ de déterminant égal à 1. **III.12.** Démontrer que, pour tout $A \in \mathcal{U}$, la matrice $B = {}^t \Omega A \Omega$ est une matrice de \mathcal{U} vérifiant :

$$Tr(AS) = Tr(B\Delta)$$

III.13. Démontrer que $\{\operatorname{Tr}(AS)/A \in \mathcal{U}\}=\{\operatorname{Tr}(B\Delta)/B \in \mathcal{U}\}$, puis que ces ensembles admettent une borne inférieur que l'on notera m.

III.14. Démontrer que, si $B = (b_{i,j}) \in \mathcal{U}$:

$$\operatorname{Tr}(B\Delta) \ge n(\lambda_1 \cdots \lambda_n)^{\frac{1}{n}} (b_{1,1} \cdots b_{n,n})^{\frac{1}{n}}.$$

III.15. En déduire que, pour $B = (b_{i,j}) \in \mathcal{U}$, $\operatorname{Tr}(B\Delta) \geq n(\det(S))^{\frac{1}{n}}$.

III.16. Pour tout entier k tel que $1 \le k \le n$, on pose $\mu_k = \frac{1}{\lambda_k} (\det(S))^{\frac{1}{n}}$ et $D = \operatorname{diag}(\mu_1, \dots, \mu_n)$. Déterminer le réel m.

Fin de l'énoncé