CCP - Maths 1

Proposition de corrigé $Taoufiki\ said$

EXERCICE 1

Q1. f est la composée d'une focntion polynomiale et de la fonction sinus donc elle de classe C^{∞} sur \mathbb{R}^2 . g l'est aussi car ses composantes sont polynomiales. En particulier les deux fonctions sont différentiables sur \mathbb{R}^2 .

Pour les matrices Jacobiennes :

$$Jac\ f(x,y) = 2\cos(x^2 - y^2)(x, -y)$$
 , $Jac\ g(x,y) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Q2. Soient $(x,y) \in \mathbb{R}^2$ et $(u,v) \in \mathbb{R}^2$.

1. On a : $f \circ g(x,y) = f(x+y,x-y) = \sin(4xy)$ donc

$$d(f \circ g)(x,y).(u,v) = \frac{\partial f \circ g}{\partial x}(x,y).u + \frac{\partial f \circ g}{\partial y}(x,y).v = 4\cos(4xy)(uy + vx)$$

2. On a : $Jac(f \circ g)(x,y) = Jac(f(a,b).Jac(g(x,y)))$ où (a,b) = g(x,y)donc $Jac (f \circ g)(x, y) = 4\cos(4xy)(y, x)$ puis

$$d(f \circ g)(x,y).(u,v) = Jac\ (f \circ g)(x,y).\left(\begin{array}{c} u \\ v \end{array}\right) = 4\cos(4xy)(uy + vx)$$

Q3. Pour tout $p \in \mathbb{N}^*$, $\sum_{q \in \mathbb{N}^*} \frac{1}{p^2 q^2}$ converge de somme $\frac{\pi}{6p^2}$

et la série $\sum_{n \in \mathbb{N}^*} \sum_{q=1}^{\infty} \frac{1}{p^2 q^2}$ est convergente de somme $\frac{\pi^2}{36}$

alors la famille $(\frac{1}{p^2q^2})_{(p,q)\in A}$ est sommable de somme $\frac{\pi^2}{36}$.

Q4. Pour tout $(p,q) \in A$, $0 \le \frac{1}{(p+q)^2} \le \frac{1}{p^2+q^2}$, il suffit de montrer la non-sommabilité de

la famille $(\frac{1}{(p+q)^2})_{(p,q)\in A}$:
Considérons la partition suivante de $A: J_n=\{(p,q)\in A \ / \ p+q=n\} \ , \ n\geq 2.$ Pour tout $n\geq 2$, $card(J_n)=n-1$ donc $\sum_{(p,q)\in J_n}\frac{1}{(p+q)^2}=\frac{n-1}{n^2}$

La divergence de la série $\sum_{n\geq 2} \frac{n-1}{n^2}$ entraı̂ne la non-sommabilité de la famille $(\frac{1}{(p+q)^2})_{(p,q)\in A}$, d'où le résultat cherché.

PROBLÈME

Partie I - Exemples

- **Q5.** $\forall n \in \mathbb{N}^*$, $\forall x \in \mathbb{R}$, $\left| \frac{1}{2^n} \cos(nx) + \frac{1}{3^n} \sin(nx) \right| \leq \frac{1}{2^n} + \frac{1}{3^n} \leq \frac{1}{2^{n-1}}$ comme $\sum \frac{1}{2^n}$ est convergente alors notre série trigonométrique est normalement convergente
- •• La série géométrique $\sum \left(\frac{e^{ix}}{p}\right)^n$ est convergente car $\left|\frac{e^{ix}}{p}\right| = \frac{1}{p} < 1$, sa somme est $\frac{p}{p e^{ix}}$

••• On a:
$$\sum_{n=0}^{\infty} \frac{\cos nx}{2^n} = Re(\sum_{n=0}^{\infty} \left(\frac{e^{ix}}{2}\right)^n) = Re(\frac{2}{2 - e^{ix}}) = \frac{4 - 2\cos x}{5 - 4\cos x}$$

et
$$\sum_{n=0}^{\infty} \frac{\sin nx}{3^n} = Im(\sum_{n=0}^{\infty} \left(\frac{e^{ix}}{3}\right)^n) = Im(\frac{3}{3 - e^{ix}}) = \frac{3\sin x}{10 - 6\cos x}$$

$$\frac{1}{n=0} 3^{n} = \frac{1}{n=0} 3^{n} = \frac{1}{n=0} 3^{n} = \frac{1}{n} =$$

Q 6. On rappelle que
$$\forall z \in \mathbb{C}$$
, $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

On a donc
$$\forall x \in \mathbb{R}$$
, $\exp(e^{ix}) = \sum_{n=0}^{\infty} \frac{e^{inx}}{n!}$

Par la formule de Moivre , on a

$$e^{inx} = \cos(nx) + i\sin(ix)$$
. Puisque les deux séries $\sum_{n\geq 0} \frac{\cos(nx)}{n!}$, $\sum_{n\geq 0} \frac{\sin(nx)}{n!}$ sont absolument

convergente (car
$$\left| \frac{\cos(nx)}{n!} \right| = o\left(\frac{1}{n^2}\right)$$
 , $\left| \frac{\cos(nx)}{n!} \right| = o\left(\frac{1}{n^2}\right)$)

convergente (car
$$\left| \frac{\cos(nx)}{n!} \right| = o\left(\frac{1}{n^2}\right)$$
, $\left| \frac{\cos(nx)}{n!} \right| = o\left(\frac{1}{n^2}\right)$)

alors $\forall x \in \mathbb{R}$, $\exp(e^{ix}) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!} + i \sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}$

D'autre part : $\exp(e^{ix}) = \exp(\cos x) \exp(i \sin x) = \exp(\cos x) (\cos(\sin x) + i \sin(\sin x))$

Par identification,
$$\exp(\cos x)\cos(\sin x) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!}$$
.

Q7. Pour $n \in \mathbb{N}$, on pose $a_n = \frac{1}{n+1}$. La suite (a_n) converge vers 0 et la série $\sum a_n \cos nx$ ne converge pas simplement sur \mathbb{R} (pour $x = 2k\pi$, $k \in \mathbb{Z}$, la somme est infinie).

Q8. Posons
$$f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$$
, $n \in \mathbb{N}^*$, $x \in \mathbb{R}$.

On a : $\sup_{x \in \mathbb{R}} |f_n(x)| = |f_n(\frac{\pi}{2n})| = \frac{1}{\sqrt{n}}$ et la série $\sum \frac{1}{\sqrt{n}}$ diverge alors la série $\sum f_n$ ne converge pas normalement sur \mathbb{R} .

Partie II - Propriétés

Q9. La série $\sum (|a_n| + |b_n|)$ converge car $\sum a_n$, $\sum b_n$ sont absolument convergentes et $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $|a_n \cos(nx) + \sin(nx)b_n| \le |a_n| + |b_n|$

donc la série $\sum (a_n \cos(nx) + \sin(nx)b_n)$ converge normalement sur \mathbb{R} .

Q10. Posons $f(x) = a \cos x + b \sin x$. Si a = b = 0 le résultat est trivial

sinon, on prend $z = a + ib = re^{i\theta}$. On a: $f(x) = Re(ze^{ix}) = Re(re^{i(x+\theta)}) = r\cos(x+\theta)$

Pour tout $x \in \mathbb{R}$, $|f(x)| \le r = |f(-\theta)|$ donc $\sup_{x \in \mathbb{R}} |f(x)| = r = \sqrt{a^2 + b^2}$.

Q11. De la même manière, on obtient $\sup |a_n \cos(nx) + b_n \sin(nx)| = \sqrt{a_n^2 + b_n^2}$

La convergence normale de la série trigonométrique est équivaut à la convergence de la série numérique $\sum \sqrt{a_n^2 + b_n^2}$

Comme $\forall n, |a_n| \leq \sqrt{a_n^2 + b_n^2}$ et $|b_n| \leq \sqrt{a_n^2 + b_n^2}$ alors les deux Séries $\sum a_n$, $\sum b_n$ convergent absolument puis les termes généraux ont la limite nulle.

Q12. Pour tout n, $f_n: x \mapsto a_n \cos(nx) + b_n \sin(nx)$ est continue sur \mathbb{R} et $\sum f_n$ converge uniformément sur \mathbb{R} car (converge normalement) donc sa somme est continue sur \mathbb{R} .

uniformément sur
$$\mathbb{R}$$
 car (converge normalement) donc sa somme est converge $f(x+2\pi)=\sum_{n=0}^{\infty}f_n(x+2\pi)=\sum_{n=0}^{\infty}f_n(x)=f(x)$, d'où $f\in C_{2\pi}$.

Q13. Pour $f(x)=\int_{0}^{\pi}f(x)dx=\int_{0}^{\pi}\frac{\cos(2nx)+1}{2}dx=\left[\frac{\sin(2nx)}{2}+\frac{x}{2}\right]^{\pi}=\pi$

$$\int_{-\pi}^{\pi} \cos^2(nx) dx = \int_{-\pi}^{\pi} \frac{\cos(2nx) + 1}{2} dx = \left[\frac{\sin(2nx)}{4n} + \frac{x}{2} \right]_{-\pi}^{\pi} = \pi.$$

Pour
$$(n,k) \in \mathbb{N}^2$$
 tel que $n \neq k$. On a:
$$\int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx = \int_{-\pi}^{\pi} \frac{\sin((k+n)x) + \sin(k-n)x}{2} dx = \left[\frac{-\cos((k+n)x)}{2(k+n)} + \frac{-\cos((k-n)x)}{2(k-n)} \right]_{-\pi}^{\pi} = 0.$$
Q14. On pose: $f_k(x) = a_k \cos kx + b_k \sin kx$.

Soit
$$n \in \mathbb{N}^*$$
. On a: $\alpha_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{k=0}^{\infty} f_k(x) \cos(nx) dx$

comme $\forall x \in [-\pi, \pi]$, $\forall k \in \mathbb{N}$, $|f_k(x) \cos nx| \leq ||f_k||_{\infty}$ et $\sum_{k=0}^{\kappa-0} f_k$ converge normalement sur \mathbb{R} donc $\sum_{k=0}^{\kappa} f_k(x) \cos nx$ converge normalement puis uniformément sur $[-\pi, \pi]$, ce qui permet l'in-

tervertion série-intégrale , soit
$$\alpha_n(f) = \frac{1}{\pi} \sum_{k=0}^{\infty} \int_{-\pi}^{\pi} f_k(x) \cos(nx) dx$$

pour $k \neq n$, $\int_{-\pi}^{\pi} f_k(x) \cos(nx) dx = a_k \int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx + b_k \int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx = 0$ et $\int_{-\pi}^{\pi} f_n(x) \cos(nx) dx = a_n \int_{-\pi}^{\pi} \cos^2(nx) dx + b_n \int_{-\pi}^{\pi} \sin(nx) \cos(nx) dx = \pi$ (car **Q13.** et $x \mapsto \sin(nx) \cos(nx)$ est impaire), d'où $\alpha_n(f) = a_n$. $\alpha_0(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{k=0}^{\infty} f_k(x) dx = \frac{1}{\pi} \sum_{k=0}^{\infty} \int_{-\pi}^{\pi} f_k(x) dx$ (Convergence uniforme de

$$\alpha_0(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{k=0}^{\infty} f_k(x) dx = \frac{1}{\pi} \sum_{k=0}^{\infty} \int_{-\pi}^{\pi} f_k(x) dx$$
 (Convergence uniforme definitions)

 $\sum_{k=0}^{\infty} f_k \text{ sur } [-\pi, \pi])$ Pour tout $k \in \mathbb{N}$, $\int_{-\pi}^{\pi} \sin(kx) dx = 0$ (La fonction est impaire)

et pour tout $k \in \mathbb{N}^*$, $\int_{-\pi}^{\pi} \cos(kx) dx = 0$ (pour k = 0 la valeur est 2π)

donc $\forall k \in \mathbb{N}^*$, $\int_{-\pi}^{\pi} f_k(x) dx = 0$ et $\int_{-\pi}^{\pi} f_0(x) dx = 2\pi a_0$ d'où $\alpha_0(f) = 2a_0$.

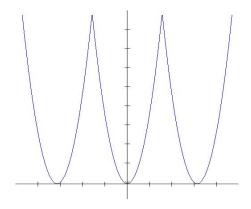
Q15 On pose
$$a_0 = \frac{\alpha_0(f)}{2}$$
, $b_0 = 0$ et pour $n \in \mathbb{N}^*$, $a_n = \alpha_n(f)$, $b_n = \beta_n(f)$

par hypothèse , la série $\sum [a_n \cos nx + b_n \sin nx]$ converge normalement sur $\mathbb R$, de somme g

par **Q14.**, $\alpha_0(g) = 2a_0 = \alpha_0(f)$ et pour $n \in \mathbb{N}^*$, $\alpha_n(g) = a_n = \alpha_n(f)$ et $\beta_n(g) = b_n = \beta_n(f)$.

Q16. D'après **Q12.** $g \in C_{2\pi}$, on pose : $h = f - g \in C_{2\pi}$ (car c'est un espace vectoriel).

Par linéarité de l'intégrale et **Q15.**, on a $\forall n \in \mathbb{N}$, $\alpha_n(h) = \alpha_n(f) - \alpha_n(g) = 0 = \beta_n(f) - \beta_n(g) = 0$ $\beta_n(h)$



Le résultat admis permet de conclure que : f-g=h=0 sur \mathbb{R} .

Q17 La fonction $x \mapsto f(x)\sin(nx)$ est impaire, son intégrale sur un intervalle centré sera nulle donc $\beta_n(f) = 0$ pour tout $n \in \mathbb{N}$.

La fonction $x \mapsto f(x)\cos(nx)$ est paire, donc $\int_0^\pi f(x)\cos(nx)dx = \int_{-\pi}^0 f(x)\cos(nx)dx$ puis $\alpha_n(f) = 2 \int_0^{\pi} f(x) \cos(nx) dx$ pour tout $n \in \mathbb{N}$.

Q18

La fonction f est paire donc $\beta_n(f) = 0$ pour tout $n \in \mathbb{N}$.

$$\alpha_0(f) = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{2}$$

On pose:
$$u_0(x) = \frac{2\pi^2}{3}$$
 et pour $n \neq 0$, $u_n(x) = \frac{4(-1)^n \cos(nx)}{n^2}$.

Da fonction f est paire donc $\beta_n(f)=0$ pour tout $n\in\mathbb{N}$. $\alpha_0(f)=\frac{2}{\pi}\int_0^\pi x^2dx=\frac{2\pi^2}{3}$ Pour $n\in\mathbb{N}^*$, $\alpha_0(f)=\frac{2}{\pi}\int_0^\pi x^2\cos(nx)dx=\frac{4(-1)^n}{n^2}$ (Intégration par parties deux fois). On pose : $u_0(x)=\frac{2\pi^2}{3}$ et pour $n\neq 0$, $u_n(x)=\frac{4(-1)^n\cos(nx)}{n^2}$. on a : $\sum_{n\geq 0}u_n$ converge normalement sur \mathbb{R} (pour tout $n\in\mathbb{N}^*$, $|u_n(x)|\leq \frac{4}{n^2}$), de somme f (

voir le résumé après $\mathbf{Q16}$) .

Q19 • On a
$$\forall x \in \mathbb{R}$$
, $f(x) = \sum_{n=0}^{\infty} u_n(x) = \frac{2\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos(nx)}{n^2}$.

Comme
$$f(0) = 0$$
 alors $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$

Et
$$f(\pi) = \pi^2$$
 entraı̂ne $\sum_{n=1}^{n-1} \frac{1}{n^2} = \frac{\pi^2}{6}$

•• On pose
$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $T_n = \sum_{k=1}^n \frac{1}{(2k+1)^2}$.

On a : $\forall n \in \mathbb{N}^*$, $S_{2n+2} = T_n + \frac{1}{4}S_{n+1}$, le passage à la limite lorsque $n \to +\infty$ nous donne : $\pi^2 6 = \lim T_n + \pi^2 12$ (les T_n sont les sommes partielles d'une série convergente) d'où $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$

d'où
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$

Q20. On pose :
$$f(x) = \begin{cases} \frac{\ln(x+1)}{x} & \text{si } 0 < x \le 1 \\ 1 & \text{si } x = 0 \end{cases}$$

La fonction f est continue sur [0,1] donc sa restriction sur [0,1] y est intégrable. En utilisant le développement en série entière de $x \mapsto \ln(x+1)$, on écrit :

$$\forall x \in]0,1]$$
 , $f(x) = \sum_{n=1}^{\infty} \frac{(-x)^{n-1}}{n}$

Posons , pour $x \in [0,1]$, $n \in \mathbb{N}^*$, $f_n(x) = \frac{(-x)^{n-1}}{n}$. On a $\sum_{n \geq 1} f_n$ converge simplement vers fcette convergence est normale puis uniforme, en effet

$$\forall x \in]0,1]$$
, $|f(x) - \sum_{k=1}^{n} f_k(x)| = |\sum_{k=n+1}^{\infty} f_k(x)| \le \frac{x^{n+1}}{n+1} \le \frac{1}{n+1}$ (T.S.S.A)

(ceci reste vrai pour
$$x = 0$$
 : $|R_n(0)| = 0 \le \frac{1}{n+1}$)
donc $\int_0^1 \frac{\ln(x+1)}{x} = \int_0^1 f(x) dx = \sum_{k=1}^\infty \int_0^1 f_k(x) dx = \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k^2} = \frac{\pi^2}{12}$.

 $\mathbf{Q21.} \bullet \mathbf{La}$ fonction f définie en $\mathbf{Q18.}$ est la somme d'une série trigonométrique qui converge normalement sur \mathbb{R} , mais elle n'est pas dérivable aux points $(2k+1)\pi$, $k \in \mathbb{Z}$.

•• Posons $u_n(x) = a_n \cos nx + b_n \sin nx$.

Si $\sum u_n'$ converge uniformément sur $\mathbb R$ alors la somme sera dérivable (Dérivation terme à terme

Supposons que les deux séries numériques $\sum na_n$ et $\sum nb_n$ sont convergentes, on aura donc

$$|u_n'(x)| = |-na_n \sin nx + nb_n \cos nx| \le |na_n| + |nb_n|$$

ce qui assure la convergence normale de
$$\sum u_n'$$
 sur $\mathbb R$ puis la dérivabilité de la somme.
 Q22. On pose $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{3^n} = \frac{3\sin x}{10-6\cos x}$ (voir **Q5.**).

La condition proposée en **Q21.** est vérifiée : $\sum \frac{n}{3^n}$ est convergente (règle de D'Alembert)

La somme f est donc dérivable sur \mathbb{R} avec $f'(x) = \sum_{n=0}^{\infty} \frac{n \cos nx}{3^n}$

d'où

$$\sum_{n=1}^{\infty} \frac{n \cos nx}{3^n} = \frac{30 \cos x - 18}{(10 - 6 \cos x)^2}$$

Pour vos remarques, merci de me contacter sur "taoufiki-maths@hotmail.fr"