ENSI-MP

Mathématiques 1

François Saint Pierre

I. convergence uniforme dans $C([0,1], \mathbf{R})$

- 1. Pour tout x de [0,1] $(f_n(x))_{n\in\mathbb{N}}$ est une une suite de cauchy donc convergente car \mathbf{R} est complet. $(f_n)_{n\in\mathbb{N}}$ a donc une limite simple.
- 2. Soit $\varepsilon > 0$ pour $n \ge N(\varepsilon)$ et $p \ge N(\varepsilon)$ on a $|f_n(x) f_p(x)| \le \varepsilon$ pour tout x de [0,1]. par continuité de || on obtient par passage à la limite pour $p: |f_n(x) f(x)| \le \varepsilon$.

Donc $|f(x)| \le \varepsilon + f_n(x) \le \varepsilon + N_\infty(f_n)$. $N_\infty(f_n)$ existe car f_n est continue sur le compact [0,1].

$$|f_n(x) - f(x)| \le \varepsilon$$
 justifie $N_\infty(f_n - f) \underset{n \to \infty}{\to} 0$.

- 3. Une limite uniforme d'application continues est continue donc $f \in C([0,1], \mathbf{R})$. Toute suite de cauchy dans $(C([0,1],\mathbf{R}),N_{\infty})$ est convergente donc c'est un espace de Banach.
 - 4. $(u_n)_{n \in \mathbb{N}}$ converge vers u

$$u(x) = 1 \quad x \in [0,1[$$

$$u(1) = e$$

u n'est pas continue donc $(u_n)_{n\in\mathbb{N}}$ ne peut être de Cauchy (cf 3).

- 5. $(v_n)_{n \in \mathbb{N}}$ converge simplement vers $\int_0^x 1 dt$. (la valeur en 1 ne modifie pas l'intégrale).
 - $N_{\infty}\left(\int_{0}^{x}(e^{t^{n}}-1)dt\right)$. tend vers 0 avec n donc on a la convergence uniforme.

(On peut aussi utiliser le théorème de convergence dominée pour montrer que l'on a une suite de Cauchy en utilisant la convergence simple vers u .)

II. Théorème du point fixe de Banach.

- 1. $||T(x) T(y)|| = ||x y|| \le \alpha ||x y||$. Donc $(1 \alpha) ||x y|| \le 0$ avec $1 \alpha > 0$. donc ||x y|| = 0 et x = y.
 - 2.1 Dans tous les livres....
- $2.2 \ \alpha \in [0, 1[$ on obtient donc une série géométrique convergente: $||a_{n+p} a_n|| \le \frac{\alpha^n}{1-\alpha} ||a_1 a_0||$ qui prouve que $(a_n)_{n \in \mathbb{N}}$ est de Cauchy donc convergente vers l dans E (Banach) et l est dans \overline{A} .

m00pm1c.tex - page 1

De plus A est fermé $\overline{A} = A$ donc la limite est dans A.

- 2.3 T continue donc, $T(a_n) \to T(l), T(a_n) = a_{n+1} \quad (a_{n+1})_{n \in \mathbb{N}}$ est une sous suite de $(a_n)_{n \in \mathbb{N}}$ donc converge aussi vers l. On a donc en passant à la limite: T(l) = l. Cette limite est unique d'après 2.1.
- $3.1\ U=I+T$ est continue comme somme de fonctions continues (T est lipchitzienne).

Soit $y \in E$ U(x) = y ssi x = y - T(x). Or T_y définie par $T_y(x) = y - T(x)$ est contractante car $||T_y(x) - T_y(z)|| = ||T(z) - T(x)|| \le ||x - z||$ donc d'après II;2 T_y possède un point fixe unique donc U est bijective. (remarque directement l'injectivité est triviale mais pas la surjectivité....).

$$3.2 \text{ On pose } \left(U^{-1}\left(x\right), U^{-1}\left(y\right) \right) = (a,b) \text{ , } a + T(a) = x \text{ } b + T(b) = y.$$

$$x - y = a - b - (T(b) - T(a)) \text{ donc } \|x - y\| = \|a - b - (T(b) - T(a))\| \ge \|a - b\| - \|T(a) - T(b)\| \le \alpha \|a - b\| \text{ comme } \alpha \in [0,1[$$

$$\|x - y\| \ge \|a - b\| - \|T(a) - T(b)\| \ge (1 - \alpha) \|a - b\|$$

$$\text{Donc } \|U^{-1}\left(x\right) - U^{-1}\left(y\right)\| \le (1 - \alpha)^{-1} \|x - y\|$$

 $4.1 \ \|V(x-y)\| = \|V(x)-V(y)\| \leq \|V\| \,.\, \|x-y\|$ Par linéarité de V et par propriété des normes subordonnées. Donc comme $\|V\| \in [0,1[,\ V \text{ est contractante.}]$

$$4.2 \ y = (I + V_n)(x_n) = (I + V)(x) \quad \text{donc} \ x_n - x = V(x) - V_n(x_n) = V(x) - V_n(x) + V_n(x - x_n).$$
On a donc $(I + V_n)(x_n - x) = (V - V_n)(x)$ et $(x_n - x) = (I + V_n)^{-1}(V - V_n)(x)$.
$$\|x_n - x\| = \|(I + V_n)^{-1}(V - V_n)(x)\| \le (I - \|V_n\|)^{-1} \|V - V_n\| \|x\|. \quad \text{(II.3.2 II.4.1)}$$
Comme $\|V - V_n\| \to 0$ et $(I - \|n\|)^{-1}$ est borné $((I - \|V_n\|)^{-1} \to (I - \|V\|)^{-1}$ et $\|V_n\| < 1$).
Bilan $\|x_n - x\| \to 0$ et $x_n \to x$.

III. Etude d'une transformation de l'ensemble $C([0,1], \mathbf{R})$.

- 1. découle directement du théorème des accroissements finis.
- $2.1y \to (x,y,u(y))$ est continue car ses composantes le sont et φ est continue donc l'application composée est continue.
- $2.2\ y \to \varphi(x,y,u(y))$ est continue sur [0,1] ce qui permet de définir T_{φ} $(x,y) \to \varphi(x,y,u(y))$ est aussi continue sur $[0,1]^2$ (même démarche qu'au 2.1) on peut donc utiliser le théorème de continuité sous le signe \int .
 - 2.3 Pour $(u_1, u_2) \in (C([0, 1], \mathbf{R}))^2$ et pour tout $x \in [0, 1]$:

$$\begin{split} &|\left(T_{\varphi}(u_{1})\right)(x)-\left(T_{\varphi}(u_{2})\right)(x)|=\left|\int_{0}^{1}\left(\varphi(x,y,u_{1}(y))-\varphi(x,y,u_{2}(y))\right)dy\right|\\ &|T_{\varphi}(u_{1})-\left(T_{\varphi}(u_{2})\right)(x)|\leq \int_{0}^{1}\left|\left(\varphi(x,y,u_{1}(y))-\varphi(x,y,u_{2}(y))\right)\right|dy\leq \int_{0}^{1}r\left|u_{1}(y)-u_{2}(y)\right|dy\\ &\text{Donc pour tout }\mathbf{x}\left|\left(T_{\varphi}(u_{1})-\left(T_{\varphi}(u_{2})\right)(x)\right|\leq \int_{0}^{1}rN_{\infty}\left(u_{1}-u_{2}\right)dy=rN_{\infty}\left(u_{1}-u_{2}\right)\\ &\text{D'où pour tout }\left(u_{1},u_{2}\right)\in \left(C([0,1],\mathbf{R})\right)^{2}:N_{\infty}\left(T_{\varphi}(u_{1})-T_{\varphi}(u_{2})\right)\leq rN_{\infty}\left(u_{1}-u_{2}\right) \end{split}$$

 $2.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ pour } \lambda \in \mathbf{R} N_{\infty} (\lambda T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) = |\lambda| N_{\infty} (T_{\omega}(u_1) - \lambda T_{\omega}(u_2)) \le 1.4 \text{ D'après } 2.3 \text{ D'apr$

 $\begin{array}{l} |\lambda|\,N_{\infty}\,(u_1-u_2) \\ \text{Pour }\lambda\in\left]-\frac{1}{r},\frac{1}{r}\right[\text{ on a }|\lambda|\,r<1\text{ et }\lambda T_{\varphi}\text{ est une contraction du Banach}\\ (C([0,1]\,,\mathbf{R}),N_{\infty})\,.\text{ donc d'après II.3}\,S_{(\varphi,\lambda)}\text{ est un homéomorphisme de }(C([0,1]\,,\mathbf{R}),N_{\infty}) \end{array}$ dans lui même.

 $3.1\ (x,y,z)\to \mu(x,y)z$ est continue. Sur le compact $\left[0,1\right]^2\ \mu$ est continue donc on peut poser $r=N_{\infty}\left(\mu\right)$. On a $|\varphi(x,y,z)-\varphi(x,y,z')|=|\mu(x,y)|\,|z-z'|\leq$ r|z-z'| μ est donc de type U.

La linéarité de \int justifie celle de T_{φ} donc d'après 2.4 pour $\lambda \in \left] - \frac{1}{N_{\infty}(\mu)}, \frac{1}{N_{\infty}(\mu)} \right[$ on a $S_{(\varphi,\lambda)}$ est un isomorphisme de $(C([0,1],\mathbf{R}),N_{\infty})$ dans lui même.

3.2 Soit $u \in C(\left[0,1\right], \mathbf{R})$ telle que $N_{\infty}\left(u\right) \leq 1$. Pour $x \in \left[0,1\right]$: $\left| \left(T_{\varphi_n}(u) - \left(T_{\varphi}(u) \right)(x) \right| = \left| \int_0^1 \left(\mu_n(x, y) - \mu(x, y) \right) u(y) dy \right| \le \left| \int_0^1 \left| \left(\mu_n - \mu \right)(x, y) \right| \left| u(y) \right| dy \right|$ $\left|\left(T_{\varphi_n}(u)-\left(T_{\varphi}(u)\right)(x)\right| \leq \int_0^1 N_{\infty}(\mu_n-\mu)N_{\infty}\left(u\right)dy \leq N_{\infty}(\mu_n-\mu)N_{\infty}\left(u\right)$ Avec $N_{\infty}\left(u\right) \leq 1$ on obtient $N_{\infty}\left(T_{\varphi_n}(u)-T_{\varphi}(u)\right) \leq N_{\infty}(\mu_n-\mu)$ donc on $\|T_{\varphi_n} - T_{\varphi}\|_{\infty} \le N_{\infty}(\mu_n - \mu) \text{ et } \|T_{\varphi_n} - T_{\varphi}\|_{\infty} \to 0$

IV Etude d'une application

1. On prend $\mu(x,y)=\sin(x,y) \ \ \varphi(x,y,z)=\mu(x,y).z \ \ r==N_{\infty} \ (\mu)=\sin 1.$ Or $-1\in \left]-\frac{1}{\sin 1},\frac{1}{\sin 1}\right[$ donc on peut appliquer l'étude précédente $S_{(\varphi,-1)}$ est un isomorphisme. Donc il existe un unique $w\in C([0,1]\,,\mathbf{R})$ tel que pour tout $x \text{ de } [0,1] \quad x = w(x) - \int_0^1 \sin(x,y)w(y)dy$

 $2.1 \cdot w_1(x) = x(1+\int_0^1 yw_1(y)dy)$ Donc si des solutions existent elles sont de

avec $a=1+\int_0^1yw_1(y)dy$ d'où $a=1+\int_0^1ay^2dy$ qui donne necessairement $a=\frac32$. On vérifie que $w_1(x)=1,5.x$ est bien solution. D'où l'existence et l'unicité.

2.2 On pose pour $x \in [0,1]$ $e_i(x) = x^i$. $\{e_1, e_3...e_{2i+1}....e_{2n-1}\}$ est une famille libre de $C([0,1], \mathbf{R})$. w_n est une solution de (E_n) ssi :

$$w_n(x) = e_1(x) + \sum_{i=1}^n \left[\frac{(-1)^{i+1}}{(2i-1)!} \int_0^1 y^{2i-1} w_n(y) dy \right] e_{2i-1}(x)$$

m00pm1c.tex - page 3

En raison de la liberté de la famille on a en posant

$$w_n = \sum_{i=1}^n a_{2i-1,n} e_{2i-1}$$

l'équivalence avec le système linéaire:

$$a_{1,n} = 1 + \int_0^1 \sum_{j=1}^n a_{2j-1,n} y^{2j} . dy$$

$$a_{2i-1,n} = \frac{(-1)^{i+1}}{(2i-1)!} \int_0^1 \sum_{j=1}^n a_{2j-1,n} y^{2i+2j-2} . dy$$

$$\dots$$

$$a_{2n-1,n} = \frac{(-1)^{n+1}}{(2n-1)!} \int_0^1 \sum_{j=1}^n a_{2j-1,n} y^{2n+2j-2} . dy$$

qui donne le système:

2.3 On pose $\varphi_n(x, y, z) = v_n(x, y).z$ $r_n = N_{\infty}(v_n).$

On a la convergence uniforme de la série entière de terme général $\frac{(-1)^{n+1}}{(2n-1)!}t^{2n-1}$ nrs $t \to \sin t$ sur [0,1]. Pour t fixé la série numérique associée est alternée et la valeur absolue de son terme général tend vers zéro en décroissant. La valeur absolue du reste d'ordre p est donc inférieure à $\frac{1}{2p+1}$ $\left(t^{2p-1} \le 1\right)$. Pour $p \ge 2$ on a $N_{\infty}\left(v_p-v\right) \le \frac{1}{5!}$ donc ce qui garantie que $N_{\infty}\left(v_p\right) \in \left[\sin 1 - \frac{1}{5!}, \sin 1 + \frac{1}{5!}\right] \subset \left]0,1\right[$ et que l'on peut conclure avec II3 car alors pour $n \ge 2 - 1 \in \left[-\frac{1}{N_{\infty}(v_n)}, \frac{1}{N_{\infty}(v_n)}\right]$ et (E_n) admet une solution unique.

2.4 Dans 2.3 on a vu que N_{∞} $(v_n-v)\underset{n\to\infty}{\longrightarrow}0$ avec III.3 on a $\left\|T_{\varphi_n}-T_{\varphi}\right\|_{\infty}\underset{n\to\infty}{\longrightarrow}0$. On a donc le résultat avec II.4.2.