Chapitre 6 Séries numériques

Dans tout le chapitre, on désigne par \mathbb{K} le corps \mathbb{R} ou le corps \mathbb{C} .

Comparaison avec une série de Riemann

Le règle suivante ne fait pas partie du programme, mais elle est très utile en pratique. Il faut donc rédiger **entièrement** la démonstration à chaque fois.

Règle de Riemann

Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$ une suit et soit $a \in \mathbb{R}$ avec a > 1.

Si $\lim_{n\to+\infty} n^a u_n = 0$, alors pour tout entier $n \geqslant 0$ suffisamment grand, on a

$$0 \leqslant n^a |u_n| \leqslant 1 \quad \Leftrightarrow \quad 0 \leqslant |u_n| \leqslant \frac{1}{n^a}.$$

Or $\sum \frac{1}{n^a}$ est une série de Riemann convergente, donc la série $\sum u_n$ converge absolument par comparaison, donc elle converge.

Exemple 1

Montrons que la série $\sum e^{-\sqrt{n}}$ est convergente. Par croissance comparée, on a $\lim_{n\to +\infty} n^2 e^{-\sqrt{n}} = 0$, donc pour tout entier $n\geqslant 0$ suffisamment grand, on a

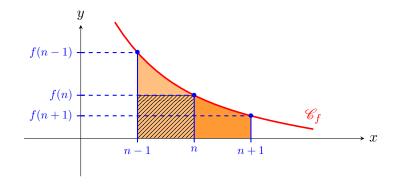
$$0 \leqslant n^2 e^{-\sqrt{n}} \leqslant 1 \quad \Leftrightarrow \quad 0 \leqslant e^{-\sqrt{n}} \leqslant \frac{1}{n^2}.$$

Or $\sum \frac{1}{n^2}$ est une série de Riemann convergente, donc la série $\sum e^{-\sqrt{n}}$ converge absolument par comparaison, donc elle converge.

Encadrement d'une somme avec des intégrales

Cas d'une fonction décroissante

Si $f:[0,+\infty[\to\mathbb{R}$ est continue, positive et décroissante, on peut étudier la suite des sommes partielles ou la suite des restes de $\sum f(n)$ en les encadrant avec des intégrales. On peut représenter la situation avec le graphique suivant.



On en déduit pour tout $n \in \mathbb{N}^*$ l'inégalité

$$\int_{n}^{n+1} f(t)dt \leqslant f(n) \leqslant \int_{n-1}^{n} f(t)dt.$$

En sommant ces inégalités pour $1 \leq n \leq N$, on obtient en utilisant la relations de Chasles un encadrement de la suite des sommes partielles par des intégrales

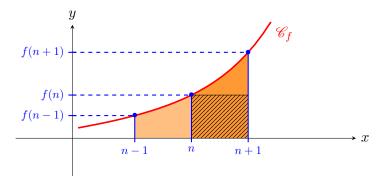
$$\int_{1}^{N+1} f(t)dt \leqslant \sum_{n=1}^{N} f(n) \leqslant \int_{0}^{N} f(t)dt.$$

Si la série $\sum f(n)$ est convergente, on peut de même encadrer le reste

$$\int_{N+1}^{+\infty} f(t)dt \leqslant \sum_{n=N+1}^{+\infty} f(n) \leqslant \int_{N}^{+\infty} f(t)dt.$$

Cas d'une fonction croissante

Si la fonction $f:[0,+\infty[\to\mathbb{R}$ est continue, positive et croissante, les inégalités sont inversées. En effet, on peut représenter la situation par le graphique suivant.



On en déduit pour tout $n \in \mathbb{N}^*$ l'inégalité

$$\int_{n-1}^{n} f(t)dt \leqslant f(n) \leqslant \int_{n}^{n+1} f(t)dt.$$

Exemple 2

On souhaite déterminer un équivalent de la suite (H_N) définie par $H_N = \sum_{n=1}^N \frac{1}{n}$.

La fonction $t\mapsto 1/t$ est continue et décroissante, donc on obtient l'encadrement

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \quad \int_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n} \leqslant \int_{n-1}^{n} \frac{dt}{t}.$$

En sommant ces inégalités pour $2 \leq n \leq N$, on obtient

$$\int_{2}^{N+1} \frac{dt}{t} = \sum_{n=2}^{N} \int_{n}^{n+1} \frac{dt}{t} \leqslant \sum_{n=2}^{N} \frac{1}{n} \leqslant \sum_{n=2}^{N} \int_{n-1}^{n} \frac{dt}{t} = \int_{1}^{N} \frac{dt}{t}.$$

En ajoutant 1 à chaque membre de cette inégalité, on en déduit

$$1 + \int_{2}^{N+1} \frac{dt}{t} \leqslant H_N \leqslant 1 + \int_{1}^{N} \frac{dt}{t},$$

puis en calculant les intégrales

$$ln(N+1) + 1 - ln(2) \le H_N \le 1 + ln(N)$$

On en déduit en divisant par ln(N) l'inégalité

$$\frac{\ln(N+1) + 1 - \ln(2)}{\ln(N)} \leqslant \frac{H_N}{\ln(N)} \leqslant 1 + \frac{1}{\ln(N)}.$$

Le membre de gauche et le membre de droite de l'inégalité converge vers 1. On en déduit avec le théorème d'encadrement que la suite $(H_N/\ln(N))$ converge vers 1, donc $H_N \underset{+\infty}{\sim} \ln(N)$.

Exemple 3

On souhaite déterminer un équivalent de (R_N) définie par $R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^3}$. La

fonction $t \mapsto 1/t^3$ est continue et décroissante, donc on obtient l'encadrement

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \quad \int_n^{n+1} \frac{dt}{t^3} \leqslant \frac{1}{n^3} \leqslant \int_{n-1}^n \frac{dt}{t^3}.$$

La série $\sum \frac{1}{n^3}$ étant convergente, on peut sommer ces inégalités pour $n \ge N+1$, ce qui nous permet d'obtenir

$$\int_{N+1}^{+\infty} \frac{dt}{t^3} = \sum_{n=N+1}^{+\infty} \int_n^{n+1} \frac{dt}{t^3} \leqslant \sum_{n=N+1}^{+\infty} \frac{1}{n^3} \leqslant \sum_{n=N+1}^{+\infty} \int_{n-1}^n \frac{dt}{t^3} = \int_N^{+\infty} \frac{dt}{t^3}.$$

On calcule les intégrales. Pour tout $\beta > 0$, on a

$$\int_{N}^{\beta} \frac{dt}{t^3} = \left[-\frac{1}{2t^2} \right]_{N}^{\beta} = \frac{1}{2N^2} - \frac{1}{2\beta^2} \underset{\beta \to +\infty}{\longrightarrow} \frac{1}{2N^2}.$$

On en déduit l'inégalité

$$\frac{1}{2(N+1)^2} \leqslant R_N \leqslant \frac{1}{2N^2}.$$

On en déduit en multipliant par $2N^2$ que

$$\frac{N^2}{(N+1)^2} \leqslant 2N^2 R_N \leqslant 1.$$

Le membre de gauche et le membre de droite de l'inégalité converge vers 1. On en déduit avec le théorème d'encadrement que la suite $(2N^2R_N)$ converge vers le réel 1, donc $R_N \sim \frac{1}{2N^2}$.

Étudier la convergence d'une série

On souhaite étudier le convergence d'une série $\sum u_n$ où $(u_n) \in \mathbb{K}^{\mathbb{N}}$.

Méthode : Convergence d'une série

On essaye d'utiliser les différents résultats du cours dans l'ordre suivant.

- 1) On vérifie que (u_n) converge vers 0. Si ce n'est pas le cas, la série diverge grossièrement.
- 2) Un équivalent $|u_n| \underset{+\infty}{\sim} |v_n|$,
- 3) Une inégalité $0 \leq |u_n| \leq v_n$,
- 4) La règle de d'Alembert avec $|u_n|$,
- 5) La règle de Riemann,
- 6) Une comparaison série intégrale.

Exemple 4

Nous allons étudier la convergence de la série $\sum e^{1/n}$. On a $\lim_{n\to+\infty}e^{1/n}=1$, donc la série $\sum e^{1/n}$ diverge grossièrement.

Exemple 5

Nous allons étudier la convergence de la série $\sum \frac{(-1)^n}{n^2+1}$. On a

$$\left| \frac{(-1)^n}{n^2 + 1} \right| \underset{+\infty}{\sim} \frac{1}{n^2},$$

or $\sum \frac{1}{n^2}$ est une série de Riemann convergente, donc la série $\sum \frac{(-1)^n}{n^2+1}$ converge absolument par comparaison, donc converge.

Exemple 6

Nous allons étudier la convergence de la série $\sum \sin(n)e^{-n}$. On a

$$\forall n \in \mathbb{N}, \quad 0 \leqslant \left| \sin(n)e^{-n} \right| \leqslant e^{-n},$$

or $\sum e^{-n}$ est une série géométrique convergente, donc la série $\sum \sin(n)e^{-n}$ converge absolument par comparaison, donc converge.

Exemple 7

Nous allons étudier la convergence de la série $\sum \frac{\ln(n)}{n}$. On a

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \quad 0 \leqslant \frac{1}{n} \leqslant \frac{\ln(n)}{n},$$

or $\sum \frac{1}{n}$ est une série de Riemann divergente, donc la série $\sum \frac{\ln(n)}{n}$ diverge par comparaison.

Exemple 8

Nous allons étudier la convergence de la série $\sum \frac{n^2-1}{2^n}$. Si l'on note u_n le terme général de la série, on a $u_n > 0$ pour tout $n \ge 2$ et

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^2 - 1}{2^{n+1}} \cdot \frac{2^n}{n^2 - 1} \sim \frac{2^n}{2^{n+1}} \xrightarrow[n \to +\infty]{} \frac{1}{2} < 1,$$

donc $\sum \frac{n^2-1}{2^n}$ par la règle de d'Alembert.

Exemple 9

Nous allons étudier la convergence de la série $\sum \frac{1}{n \ln(n)}$. La fonction

$$f: [2, +\infty[\to \mathbb{R}, \quad f(t) = \frac{1}{t \ln(t)}]$$

est continue, décroissante et positive. (On peut par exemple étudier le signe de la dérivée pour vérifier la décroissance). D'après le théorème de comparaison série - intégrale, on en déduit que

$$\sum \frac{1}{n \ln(n)}$$
 converge \Leftrightarrow $I = \int_2^{+\infty} \frac{dt}{t \ln(t)}$ converge.

Or pour tout réel $\beta > 2$, on a

$$\int_2^\beta \frac{dt}{t \ln(t)} = \left[\ln(\ln(t))\right]_2^\beta = \ln(\ln(\beta)) - \ln(\ln(2)) \underset{\beta \to +\infty}{\longrightarrow} +\infty.$$

Ainsi l'intégrale I est divergente, donc la série $\sum \frac{1}{n \ln(n)}$ est divergente.