Corrigé de la séance de révision nº 3

Exercice 1

- 1. (a) C'est une série de Riemann, d'après le cours elle converge si et seulement si q > 1.
- 1. (b) La décomposition en éléments simples de la fraction rationnelle $\frac{1}{X(X+1)^2}$ s'écrit

$$\frac{1}{X(X+1)^2} = \frac{a}{X} + \frac{b}{X+1} + \frac{c}{(X+1)^2}$$
 avec $(a,b,c) \in \mathbb{R}^3$.

On trouve a en multipliant par X puis en substituant 0 à X (égalité de fractions rationnelles) : a = 1. On trouve de même c = -1. Pour trouver b, on peut par exemple multiplier l'égalité par $(X + 1)^2$ puis dériver le résultat et enfin substituer -1 à X, ce qui donne b = -1.

$$\frac{1}{X(X+1)^2} = \frac{1}{X} - \frac{1}{X+1} - \frac{1}{(X+1)^2}.$$

1. (c) Montrons directement la convergence, même si c'est une conséquence du calcul qui va suivre.

On a pour tout $p \in \mathbb{N}^*$, $0 \le \frac{1}{p(p+1)^2} \le \frac{1}{p^3}$ et la série $\sum \frac{1}{p^3}$ est une série de Riemann convergente (3>1), donc la série étudiée converge d'après le théorème de comparaison. Pour le calcul de la somme, on écrit pour tout $n \in \mathbb{N}^*$:

$$\begin{split} \sum_{p=1}^n \frac{1}{p(p+1)^2} &= \sum_{p=1}^n \frac{1}{p} - \sum_{p=1}^n \frac{1}{p+1} - \sum_{p=1}^n \frac{1}{(p+1)^2} \\ &= 1 - \frac{1}{n+1} - \sum_{p=1}^n \frac{1}{(p+1)^2} \xrightarrow[n \to +\infty]{} 1 - (\zeta(2) - 1) = 2 - \frac{\pi^2}{6} \; . \end{split}$$

Exercice 2

1. Pour tout $n \ge 2$, on a

$$u_n - u_{n-1} = \frac{1}{n} - \ln n + \ln(n-1) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right),$$

donc $u_n - u_{n-1} \sim \frac{-1}{2n^2}$. Le dernier terme écrit garde un signe constant, donc le critère d'équivalence s'applique : la série $\sum (u_n - u_{n-1})$ a la même nature que la série $\sum \frac{-1}{2n^2}$, qui est une série de Riemann convergente.

On en déduit que la suite $(S_n)_{n\geqslant 2}$ des sommes partielles de la série $\sum (u_n-u_{n-1})$ est une suite convergente, or par télescopage, on a $S_n=\sum_{k=2}^n (u_k-u_{k-1})=u_n-u_1$, et finalement la suite (u_n) converge.

2. Exprimons $s_{2n} = \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$ en séparant les termes d'indice pair et ceux d'indice impair :

$$s_{2n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n} + \frac{1}{2n+1}$$

$$= \frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1} - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right)$$

$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n+1} - 2\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right)$$

Pour cette dernière égalité, on a retranché et ajouté la quantité $\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots + \frac{1}{2n}$.

Ainsi,

$$S_{2n} = \sum_{k=0}^{2n} \frac{1}{k+1} - \sum_{k=0}^{n-1} \frac{1}{k+1} = u_{2n+1} + \ln(2n+1) - (u_n + \ln n) = u_{2n+1} - u_n + \ln(2 + \frac{1}{n}).$$

Puisque les suites (u_n) et (u_{2n+1}) convergent vers la même limite, on en déduit que que $S_{2n} \xrightarrow[n \to +\infty]{} \ln 2$.

De plus, $S_{2n+1} = S_{2n} - \frac{1}{2n+2} \xrightarrow[n \to +\infty]{} \ln 2$. On en déduit classiquement que la suite $(S_n)_{n \in \mathbb{N}^*}$ converge vers $\ln 2$ ce qui signifie que la série $\sum_{n \geqslant 0} \frac{(-1)^n}{n+1}$ est convergente et que $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \ln 2$.

Exercice 3

1. Soit j un entier ≥ 2 . La fonction $t \mapsto \frac{1}{t}$ est décroissante sur $[1, +\infty[$ donc on peut écrire

$$\forall\,t\in\left[j,j+1\right],\quad\frac{1}{t}\leqslant\frac{1}{j}\qquad\text{et}\qquad\forall\,t\in\left[j-1,j\right],\quad\frac{1}{j}\leqslant\frac{1}{t}\,.$$

En intégrant la première inégalité sur [j, j+1] et la seconde sur [j-1, j], on obtient

$$\int_j^{j+1} \frac{dt}{t} \, \leqslant \, \frac{1}{j} \, \leqslant \, \int_{j-1}^j \frac{dt}{t} \, .$$

Pour $k \geqslant 3$, notons $\alpha = \frac{k}{2}$ lorsque k est pair et $\alpha = \frac{k+1}{2}$ lorsque k est impair, de sorte que dans les deux cas on a $S_k = \sum_{j=\alpha}^k \frac{1}{j}$. On somme membre-à-membre l'encadrement obtenu pour j variant de α à k:

Trement obtenu pour j variant de α a κ .

$$\sum_{j=\alpha}^{k} \int_{j}^{j+1} \frac{dt}{t} \leqslant \sum_{j=\alpha}^{k} \frac{1}{j} \leqslant \sum_{j=\alpha}^{k} \int_{j-1}^{j} \frac{dt}{t},$$

c'est-à-dire

$$\ln(k+1) - \ln(\alpha) = \int_{\alpha}^{k+1} \frac{dt}{t} \leqslant S_k \leqslant \int_{\alpha-1}^{k} \frac{dt}{t} = \ln k - \ln(\alpha-1).$$

Reste à constater que $\frac{k}{2}\leqslant \alpha\leqslant \frac{k+1}{2}$ pour tout k, et donc on a

$$\ln(k+1) - \ln(\alpha) \ge \ln(k+1) - \ln(\frac{k+1}{2}) = \ln 2$$

ainsi que

$$\ln k - \ln(\alpha - 1) \leqslant \ln k - \ln\left(\frac{k}{2} - 1\right) = \ln 2 + \ln\left(\frac{k}{k - 2}\right).$$

On a obtenu, pour tout entier $k \ge 3$,

$$\ln 2 \leqslant S_k \leqslant \ln 2 + \ln \left(\frac{k}{k-2}\right).$$

2. On a $\frac{k}{k-2} \xrightarrow[k \to +\infty]{} 1$ donc la suite (S_k) converge vers $\ln 2$ d'après le théorème des gendarmes.

De plus, pour tout $k \geqslant 3$ on a $\frac{k}{k-2} = 1 + \frac{2}{k-2} \leqslant 1 + 2 = 3$ et donc $S_k \leqslant M = \ln 2 + \ln 3$.

3. On a par définition $B_n = \sum_{k=1}^n \left(\frac{1}{k} \sum_{p=k+1}^{2k} a_p\right)$ et il s'agit d'intervertir correctement les deux sommations.

L'expression de B_n fait intervenir les réels a_2, \ldots, a_{2n} affectés d'un certain coefficient. On peut donc écrire

$$B_n = \sum_{p=2}^{2n} a_p \times c_p \,,$$

où c_p est un coefficient à déterminer. Or, dans l'expression de B_n , le terme a_p apparaît avec le coefficient $\frac{1}{k}$ à chaque fois que $k+1 \le p \le 2k$ c'est-à-dire dès que $\frac{p}{2} \le k \le p-1$. Ainsi $c_p = \sum_{k \le k \le p-1} \frac{1}{k}$, d'où

$$B_n = \sum_{p=2}^{2n} \left(a_p \times \sum_{\frac{p}{2} \leqslant k \leqslant p-1} \frac{1}{k} \right).$$

Le terme correspondant à p=1 étant nul, on retrouve l'expression de l'énoncé.

4. Avec les notations de la question précédente, on a $B_n = \sum_{p=2}^{2n} a_p \times c_p$ avec $c_p = S_p - \frac{1}{p}$. Puisque chacun des réels a_p est positif, on peut écrire

$$B_n = \sum_{p=2}^{2n} a_p \times \left(S_p - \frac{1}{p} \right) \leqslant \sum_{p=2}^{2n} a_p \times S_p \leqslant \sum_{p=2}^{2n} a_p \times M = M(A_{2n} - a_1) \leqslant MA_{2n} ,$$

et de même pour la minoration :

$$B_n = \sum_{p=2}^{2n} a_p \times \left(S_p - \frac{1}{p} \right) \ge \sum_{p=2}^{2n} a_p \times \left(S_p - \frac{1}{2} \right) \ge \sum_{p=2}^{2n} a_p \times \left(\ln 2 - \frac{1}{2} \right) = \left(\ln 2 - \frac{1}{2} \right) (A_{2n} - a_1),$$

et donc le réel $m = \ln 2 - \frac{1}{2}$ convient.

- 5. La série $\sum a_n$ (resp. $\sum b_n$) est une série à termes positifs donc sa convergence équivaut au fait que la suite de ses sommes partielles est majorée.
- Supposons $\sum a_n$ convergente. La suite (A_n) est alors majorée, et l'inégalité $B_n \leqslant MA_{2n}$ prouve que la suite croissante (B_n) est également majorée, donc convergente (TLM). Ainsi $\sum b_n$ converge.
- Supposons $\sum a_n$ divergente. Alors la suite croissante (A_n) tend vers $+\infty$ (TLM) et l'inégalité $m(A_{2n}-a_1) \leq B_n$ prouve que la suite (B_n) tend également vers $+\infty$ (car m>0). Ainsi $\sum b_n$ diverge.

Les deux séries ont donc même nature.

Exercice 4

1. Pour $n \ge 1$ on a

$$S_n = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^k \sqrt{1-t^2} \, dt = \int_0^1 \left[\sum_{k=0}^{n-1} (-1)^k t^k \right] \sqrt{1-t^2} \, dt$$

$$= \int_0^1 \frac{1-(-t)^n}{1+t} \sqrt{1-t^2} \, dt = \int_0^1 \frac{\sqrt{1-t^2}}{1+t} \, dt + (-1)^{n+1} \int_0^1 t^n \frac{\sqrt{1-t^2}}{1+t} \, dt \, .$$

Dans la première intégrale obtenue, effectuons le changement de variable défini par $t = \sin x$ de sorte que $dt = \cos x \, dx$ et

$$\int_0^1 \frac{\sqrt{1-t^2}}{1+t} dt = \int_0^{\pi/2} \frac{|\cos x|}{1+\sin x} \cos x \, dx = \int_0^{\pi/2} \frac{1-\sin^2 x}{1+\sin x} \, dx$$
$$= \int_0^{\pi/2} (1-\sin x) \, dx = \frac{\pi}{2} - 1.$$

Majorons alors la seconde intégrale. Pour $t \in [0,1]$ et $n \in \mathbb{N}^*$ on a $0 \le \sqrt{1-t^2} \le 1$ et $1+t \ge 1$ donc $0 \le t^n \frac{\sqrt{1-t^2}}{1+t} \le t^n$ et en intégrant l'encadrement sur [0,1],

$$0 \leqslant \int_0^1 t^n \frac{\sqrt{1-t^2}}{1+t} dt \leqslant \int_0^1 t^n dt = \frac{1}{n+1}$$

donc cette quantité tend vers 0 lorsque n tend vers $+\infty$.

On en déduit que S_n tend vers $\frac{\pi}{2}-1$ lorsque n tend vers $+\infty$, ce qui signifie que la série de terme général $(-1)^n a_n$ converge, et que $\sum_{n=0}^{+\infty} (-1)^n a_n = \frac{\pi}{2}-1$.

Autre rédaction : on effectue le changement de variable défini par $t = \sin x$ sur l'intégrale définissant a_n :

$$\forall n \in \mathbb{N}, \quad a_n = \int_0^{\pi/2} \sin^n t \cos^2 t \, dt = \int_0^{\pi/2} \sin^n t (1 - \sin^2 t) \, dt = w_n - w_{n+2},$$

où on a noté $w_n = \int_0^{\pi/2} \sin^n t \, dt$. On obtient alors par télescopage :

$$S_n = w_0 - w_1 + (-1)^n (w_{n+1} - w_n) = \frac{\pi}{2} - 1 + (-1)^n (w_{n+1} - w_n).$$

Enfin, la suite (w_n) est décroissante (intégrer une inégalité) et positive, donc convergente. Sans calculer sa limite ℓ , on en déduit que $w_{n+1}-w_n\xrightarrow[n\to+\infty]{}\ell-\ell=0$ et donc S_n tend vers $\frac{\pi}{2}-1$.

2. Effectuons une IPP à partir de l'expression initiale de a_n . Pour tout $n \ge 2$ on a

$$a_n = -\frac{1}{2} \int_0^1 t^{n-1} \underbrace{(-2t)\sqrt{1-t^2}}_{u'\sqrt{u}} dt$$

$$= -\frac{1}{2} \left[t^{n-1} \frac{2}{3} (1-t^2)^{3/2} \right]_0^1 + \frac{1}{2} \int_0^1 t^{n-2} \frac{2}{3} (1-t^2)^{3/2} (n-1) dt$$

$$= 0 + \frac{n-1}{3} \int_0^1 t^{n-2} (1-t^2)\sqrt{1-t^2} dt = \frac{n-1}{3} (a_{n-2} - a_n).$$

On isole a_n dans l'égalité précédente :

$$\forall n \geqslant 2, \qquad \boxed{a_n = \frac{n-1}{n+2} a_{n-2}}.$$
 (*)

La fraction rationnelle φ cherchée est $\varphi(X) = \frac{X-1}{X+2}$.

3. Pour $n \ge 1$, notons $u_n = n(n+1)(n+2) a_n a_{n-1}$. On a $u_{n+1} = (n+1)(n+2)(n+3) a_{n+1} a_n$ et d'après la question précédente $a_{n+1} = \frac{n}{(*)} a_{n+1} a_{n+1} = n(n+1)(n+2) a_n a_{n-1} = u_n$.

La suite (u_n) est constante : $\forall n \in \mathbb{N}^*$, $u_n = u_1 = 6a_1a_0 = K > 0$.

4. • Montrons d'abord que $a_{n-1} \sim a_n$. La suite (a_n) est décroissante et strictement positive, donc

$$1 = \frac{a_n}{a_n} \leqslant \frac{a_{n-1}}{a_n} \leqslant \frac{a_{n-2}}{a_n} = \frac{n+2}{n-1}$$

et donc $\frac{a_{n-1}}{a_n} \xrightarrow[n \to +\infty]{} 1$ d'après le théorème de l'étau.

- On peut donc écrire $K=n(n+1)(n+2)\,a_na_{n-1} \underset{+\infty}{\sim} n^3a_n^2$, ce qui montre que $a_n^2 \underset{+\infty}{\sim} \frac{K}{n^3}$ et donc (puissance d'équivalents) $a_n \underset{+\infty}{\sim} \frac{\sqrt{K}}{n^{3/2}}$.
- La série $\sum \frac{\sqrt{K}}{n^{3/2}}$ est convergente d'après le critère de Riemann (3/2 > 1). D'après le critère d'équivalence des séries à termes positifs, il en va de même de $\sum a_n$.
- 5. Utilisons l'expression $a_n = w_n w_{n+2}$ pour trouver la limite de $T_n = \sum_{k=0}^{n-1} a_k$. On a

$$T_n = \sum_{k=0}^{n-1} (w_k - w_{k+2}) = \sum_{k=0}^{n-1} w_k - \sum_{k=0}^{n-1} w_{k+2} = \sum_{k=0}^{n-1} w_k - \sum_{k=2}^{n+1} w_k$$
$$= w_0 + w_1 - (w_n + w_{n+1}) = \frac{\pi}{2} + 1 - (w_n + w_{n+1}).$$

Pour conclure que $\sum_{k=0}^{+\infty} a_k = \frac{\pi}{2} + 1$, il ne reste plus qu'à démontrer que la suite (w_n) tend vers 0.

Par exemple, en utilisant ce qui précède,

$$\forall n \ge 2, \quad w_n = \int_0^{\pi/2} \sin^n t \, dt = \int_0^{\pi/2} \sin t \, \sin^{n-1} t \, dt$$

$$\stackrel{=}{=} \left[-\cos t \, \sin^{n-1} t \right]_0^{\pi/2} + \int_0^{\pi/2} (n-1) \cos^2 t \sin^{n-2} t \, dt$$

$$= (n-1) \, a_{n-2} \sim \frac{n\sqrt{K}}{+\infty} = \sqrt{\frac{K}{n}} \xrightarrow[n \to +\infty]{} 0.$$

Remarque: on a obtenu les relations suivantes:

$$\forall n \in \mathbb{N}, \quad a_n = w_n - w_{n+2} = \frac{w_{n+2}}{n+1}$$

où w_n désigne la n^e intégrale de W _ _ _ _ _ .

Exercice 5

- 1. Les fonctions définies sur $]0,+\infty[$ par $f(x)=\frac{1}{x}$ ou bien $f(x)=e^{-x}$ font l'affaire, de même que la fonction nulle.
- 2. La fonction f' étant croissante on a $f'(t) \leq f'(t+1)$ pour tout réel t donc

$$f(n+1) - f(n) = \int_{n}^{n+1} f'(t) dt \le \int_{n}^{n+1} f'(t+1) dt = \int_{n+1}^{n+2} f'(u) du = f(n+2) - f(n+1)$$

et le tour est joué.

- **3.** Puisque f décroît vers 0 en $+\infty$, la suite $(f(n))_{n\in\mathbb{N}^*}$ fait de même.
- $(s_{2n})_{n \in \mathbb{N}^*}$ est décroissante car $s_{2n+2} s_{2n} = f(2n+2) f(2n+1) \le 0$;
- $(s_{2n+1})_{n\in\mathbb{N}^*}$ est croissante car $s_{2n+3}-s_{2n+1}=-f(2n+3)+f(2n+2)\geqslant 0$;
- $(s_{2n+1} s_{2n})_{n \in \mathbb{N}^*}$ tend vers 0 car $s_{2n+1} s_{2n} = -f(2n+1) \xrightarrow[n \to +\infty]{} 0$.

On en déduit que ces deux suites sont convergentes et ont même limite, donc $(s_n)_{n\in\mathbb{N}^*}$ est convergente, ce qui prouve que la série $\sum_{n\geq 1} (-1)^p f(p)$ converge.

On peut donc définir x_n , reste d'ordre n de cette série.

4. Soit $n \in \mathbb{N}$. Pour tout entier m > n on a

$$\begin{split} \sum_{p=n+1}^{m} (-1)^p \left[f(p) - f(p+1) \right] &= \sum_{p=n+1}^{m} (-1)^p f(p) + \sum_{p=n+1}^{m} (-1)^{p+1} f(p+1) \\ &= \sum_{p=n+1}^{m} (-1)^p f(p) + \sum_{p=n+2}^{m+1} (-1)^p f(p) \\ &= \sum_{p=n+1}^{m} (-1)^p f(p) + \sum_{p=n+1}^{m+1} (-1)^p f(p) - (-1)^{n+1} f(n+1) \end{split}$$

et lorsque m tend vers $+\infty$, le dernier terme écrit possède une limite finie.

On en déduit que la série $\sum_{p\geqslant n+1}(-1)^p \big[f(p)-f(p+1)\big]$ est convergente et la valeur de sa somme :

$$\sum_{p=n+1}^{+\infty} (-1)^p [f(p) - f(p+1)] = 2x_n - (-1)^{n+1} f(n+1).$$

5. • Posons, pour tout $p \in \mathbb{N}^*$, $u_p = f(p) - f(p+1)$. Alors la suite (u_p) tend vers 0 (somme) et est décroissante :

$$u_{p+1} - u_p = f(p+1) - f(p+2) - (f(p) - f(p+1)) = 2f(p+1) - f(p+2) - f(p) \le 0$$

• On en déduit que $(y_{2n})_{n\in\mathbb{N}^*}$ est croissante, et que $(y_{2n+1})_{n\in\mathbb{N}^*}$ est décroissante. Par exemple,

$$y_{2n+2} - y_{2n} = -u_{2n+3} + u_{2n+2} \geqslant 0,$$

et de même pour l'autre.

On a donc $\forall n \in \mathbb{N}^*$, $y_{2n} \leq 0 \leq y_{2n+1}$, donc

$$0 \leqslant y_{2n+1} \leqslant y_{2n+1} - y_{2n+2} = u_{2n+2}$$
 et $-u_{2n+1} = y_{2n} - y_{2n+1} \leqslant y_{2n} \leqslant 0$,

donc dans tous les cas (que n soit pair ou impair), on a

$$|y_n| \le |u_{n+1}| = |f(n+1) - f(n+2)| = f(n+1) - f(n+2),$$

car la fonction f est décroissante.

• On en déduit que la série $\sum y_n$ est absolument convergente (donc convergente). En effet, majorons les sommes partielles de la série $\sum |y_n|$:

$$S_N = \sum_{n=0}^{N} |y_n| \le \sum_{n=0}^{N} [f(n+1) - f(n+2)] = f(1) - f(N+2) \le f(1).$$

Ainsi, la suite $(S_N)_{N\in\mathbb{N}}$ est croissante (STP) et majorée, donc convergente.

6. D'après la question 4,

$$2x_n = (-1)^{n+1} f(n+1) + y_n \,,$$

or les séries $\sum (-1)^{n+1} f(n+1)$ et $\sum y_n$ sont convergentes, donc $\sum x_n$ est convergente.

7. On peut supposer que f > 0 partout sur $]0, +\infty[$ (sinon f stationne à zéro et le résultat est évident).

On a alors, d'après le résultat de la question 4, $\frac{2x_n}{(-1)^{n+1}f(n+1)} - 1 = \frac{y_n}{(-1)^{n+1}f(n+1)}$ donc

$$\left| \frac{2x_n}{(-1)^{n+1}f(n+1)} - 1 \right| = \frac{|y_n|}{f(n+1)} \leqslant \frac{f(n+1) - f(n+2)}{f(n+1)} = 1 - \frac{f(n+2)}{f(n+1)} \xrightarrow[n \to +\infty]{} 0$$

d'après l'hypothèse faite. On a prouvé que $\frac{2x_n}{(-1)^{n+1}f(n+1)}\xrightarrow[n\to+\infty]{}1$, ou encore

$$x_n \underset{+\infty}{\sim} \frac{(-1)^{n+1} f(n+1)}{2} .$$