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CORRIGE DE LA SEANCE DE REVISION N° 7

Exercice 1

1. 4 4. g, est de classe C* sur | — 1, 1[, donc de classe C?, par composition et on a
« sin(a Arcsin :C)
Vee]-1,1], ‘(x) = — ,
- 1,1 g,(a) —
") o? cos(a Arcsin :C) ax sin(a Arcsin x)
go\T) = — - 3 )
1—a? (1—22)2
(1 -2%)ga(z) = —a’ga() +xg4(),
et donc g, est solution de (&) sur | —1,1].
5.(a) Supposons qu’une telle solution y existe. Alors y est de classe C™ sur | — 1,1[ et on a par dérivation terme-a-terme
(a) Supp qa y y , P
—+o0 —+oo —+oo
Vee|-1,1], ¢'(z) = Z na,z" ' et y'(z) = Z n(n —Daya™? = Z(n +2)(n + Daptoz™.
n=1 n=2 n=0
Puisque y est solution de (&) sur | —1,1[, on a
+oo —+oo
T e|— n + n+1l)apox™ — n(n —1a,x™ napx" + a apT =
Veel-1,1[, > (n+2)(n+ Danpoz" =Y n(n—1) Z QZ
n=0 n=2
—+oo
= Vze]-11[, 2as+a’a+ (6az+ (o’ —1)ai)z+ Z [(n+2)(n+ L)ans2 + (a® —n?)ay|z™ = 0
n=2
+oo
e=Vrel-11, > [(n+2)(n+ Dans + (@° = n’)an]z" = 0
n=0

< VneN, (n+2)(n+1ans2+ (0> —n?a, =0,

d’aprés I'unicité d’un développement en série entiere sur un voisinage de 0. On a donc

TLQ—OLQ

VREN, an+2:m

ay |-

On a aussi ag = y(0) =1 et a; =7/'(0) =0.
5.(b) Puisque a; = 0, il vient par une récurrence immédiate & l'aide de la formule précédente,
V]DEN, a2p+1=O.

5.(c) Pour p > 1, substituons 2p — 2 & n dans la formule de récurrence :

(2p —2)° -

v N* = a2p-2.
PET T e

On en déduit en cascade, et puisque ag = 1, que

\ B(2i—2)2 — a? 1
wens o = 11| Sa] = g L2 o)

i=1 i=1

5.(d) La série entiére obtenue est E agp 2°P. Si il existe un entier i > 1 tel que a? = (2i — 2)?, c’est-a-dire exactement si
p=0
o € 27, alors la suite (agp)pen stationne a zéro, et donc le rayon de convergence est infini. Dans le cas contraire, la suite



(a2p)pen est une suite de réels non nuls et on peut appliquer la regle de d’Alembert pour les séries numériques : on pose
by, = azp x?P pour tout entier p et tout x # 0 et on a

2 2
2 47—« 2 2

a2p+2 _ r T
(2p)(2p + 2) p—+00 '

bpi1
bp

a2p
La série converge donc si |z| < 1 et diverge si |z| > 1 ce qui montre que le rayon de convergence est 1. Ainsi,

sia€e27,

+o0
Le rayon de convergence est )
1 siag27Z.

6. Il est sous-entendu qu’on cherche une solution polynomiale de (&) non nulle ...

Une solution polynomiale de (&) est une solution développable en série entiére de (&) dont la suite des coefficients stationne
a zéro. Or on a de maniere générale les expressions

1 2 1 P
Vpe N, ag, = — 21—2 a?lay et a = — 2i—1)2-a?la
P 2p ) 1;[ ] ao 2p+1 1) };[1[( ) Jaa

La suite (agp)pen stationne & zéro si et seulement si « est un entier relatif pair ou ap = 0. De méme la suite (a2pt1)pen

stationne a zéro si et seulement si a est un entier relatif impair ou a; = 0.

Puisqu’on exclut que ag = a1 = 0, il est nécessaire et suffisant que pour qu’une telle solution existe.

7. Vo € [-1,1], gi(z) = cos(Arcsinz) = /1 — sin?(Arcsinz) = /1 — 22.
8.(a) V€ [-1,1], ga(x) = cos(2 Arcsinz) = 1 — 2sin?(Arcsinz) = 1 — 222,
8.(b) Question ridicule.

Exercice 2

1. Il s’agit de déterminer le rayon de convergence de la série entiére. Appliquons la regle de d’Alembert : pour z # 0, et
(n + 1)kgntt

n > 1, on a
’ nkgn

k
1
= <1+ —) |x] ——— |z| et donc la série converge si |z| < 1 et diverge si |z| > 1. Ceci
n n—-+oo

caractérise un rayon de convergence égal a 1.

De plus, les séries numériques Y. n* et S nF(—1)" sont grossiérement divergentes, donc le domaine de convergence de la
sérieest [ =]—1,1].

2. Sj étant la fonction somme d’une série entiere de rayon 1, elle est de classe C™ sur | — 1,1 et on a droit a la dérivation
terme a terme :

Vee]l-1,1], an+1"1

et dong, le terme d’indice n = 0 étant nul car k£ + 1 > 0,

Vee]-1,1[, zS.(z anJrl" Sk+1(z) .

(x) = xS, (z) ‘

La relation cherchée est donc Vo €] — 1,11,

3. Pour tout x de I, on a successivement

+oo 1
So(x)zzgcnz T
n=0
Si@) = 253() = =7
Sa(a) =8 (0) = )



4. e Existence : Montrons par récurrence sur I’entier k£ I’énoncé

Py (x)

Ekl« ElPkER[ ]VIGI Sk() m

»

Ey est vrai : le polynéme Py = 1 convient. Supposons que I'énoncé Ej, soit vérifié, k étant arbitrairement fixé, et démontrons
qu’alors Ejy1 V'est aussi. Pour z € I on a

P/ (z) Py.(x) z(1 —x2)B/(x) + (k+ 1)z Py (x)

S (z) = 28.(z) = xm+(k+1)x(l_x)k+2 = (1 —z)F2

et donc Ej41 est vérifié avec le polynéme Py défini par | Py = X (1 — X)Pk/ +(k+1)X Py |.

e Unicité : La relation Py(z) = (1 — z)**1S,(x) détermine de maniére unique Py (x) sur I =] — 1, 1] et donc sur R tout
entier d’apres le raisonnement suivant : si Qi est un autre polynéme convenable, le polynéme P, — Qi possede une infinité
de racines (tous les éléments de I) donc il est nul, d’ou P, = Q.

5. L’unicité permet d’identifier les polyndmes obtenus grace a la question 3: Py =1, Py = X et P, = X(X 4+ 1).
6. Ca a déja été démontré a la question 4.

7. e Pour v € I on a Py(z) = (1 — )18y (z) et donc Py (0) = Sk(0) ce qui vaut 0 dés que k > 1
On pouvait aussi utiliser la relation de la question précédente.

® « P est unitaire et de degré k » se prouve par récurrence sur k € N. Py = 1 est unitaire et de degré 0. Supposons
Iénoncé vrai au rang k, alors la relation Py = X (1 —X )Pk/ + (k+1)X Py, prouve que Pyy1 est la somme de deux polyndémes
de degrés au plus k + 1 et donc Pyi1 € Rip1[X].
De plus le coefficient de X**! dans Py est —k + (k + 1) = 1 ce qui achéve la récurrence.

On pouvait aussi inclure ces propriétés dans la récurrence faite a la question 4.
/4 +1/4 20
8. o Il vient immédiatement A = So(1/4) = % =5

e Notons b, le terme général de la série définissant B. La présence du (—1)
pairs des termes d’indices impairs :

" nous invite a séparer les termes d’indices

(2p)?

(2p+1)°
22p+1 :

VpeN, bgp: 220

et b2p+1 =

On voit facilement (d’Alembert) que les deux séries > bap et Y bapr1 sont convergentes et donc B existe et on a

+oo +oo
B=3 byt bas = C4D.
p=0 p=0

> [ méthode : pour calculer C' (resp. D) on élimine les termes pairs (resp. impairs) dans la série définie par S (%)
Classiquement :

+o0 2
N

S2(3)+S2(-3) = D> (1+(-1 Jor = Zz S 40,

n=0
1 1 - . (2p+1)?

52(5)_52(_5) = Z(l_(_l) )2_n = 22 92p+1 = D

n=0
On calcule alors S5 (%) =6 et Sy (—%) = —% ce qui fournit C' = g et D= 12—674 d’ou | B = %

> 24¢ méthode : on a directement

et

=Xep+1)? Wap?iapra 164
D=y BIU WAL s () s () 450 (3) = o

d’ou le résultat.



Exercice 3

oo
1. Le DSE (centré en 0) de la fonction exponentielle s’écrit : Vu € R, e* = E — -
n
n=0

2
x
2.(a) En substituant -y a u dans le DSE précédent, on obtient I'identité suivante, valable sur R,

n

too 22
VreR, e_T Z 2"n' ,

22

ce qui constitue bien le développement en série entiére (centrée en 0) de la fonction x — e~ 7.

2.(b) La fonction proposée est la primitive nulle en zéro de la fonction précédente et d’aprés le cours toute primitive d’une
fonction développable en série entiere est elle-méme développable en série entiére, avec méme rayon de convergence; ici +00
(et son développement s’obtient par intégration terme-a-terme).

L
2

2.(c) La fonction z — e’z est également développable en série entiére sur R et son DSE s’obtient comme en 2.(a).

D’apres le cours, le produit (de Cauchy) de deux fonctions développables en séries entieres Iest également, et son rayon de
convergence est supérieur ou égal au minimum des deux rayons. On en déduit que F' est développable en série entiere avec
un rayon de convergence infini.

3. L’identité demandée est immédiate, par la formule de dérivation d’un produit.

4. On a d’abord F(0) = et F'(0) = d’aprés lidentité précédente.

Le DSE de F a aussi pour rayon +oo et s’obtient par dérivation terme & terme :

“+oo
VeeR, F'(z Z na,x" " = Z(n + Dapyra™
n=0
donc
400
Ve eR, Z(n+1)an+1x =1+aF(x —l—l—Zanx zl—l—Zan,lx"
n=0

Par unicité d’un développement en série entiere de rayon non nul, on en dedult que

¥neN, [(n+ Danp =an 1]

a
5. Pour tout entier p on a agpy2 = 5 ?_)2 et vu que ag est nul, une récurrence immédiate montre que tous les termes ay,

p
sont nuls, pour p € N.

gy
Pour tout entier p > 1 on a agpy1 = 2p-1 , donc facilement,

2p+1

1 1 a 2p) X (2p—2) X +++ X 2 2Pp!
Gop1 = —— x v (2p)x(2p—2) __
2p+1 2p-—1 3 (2p+1)! 2p+1)!
En résumé,
2Pp!
VpeN, |az =0 et a = —
P 2 P+ T (op 1 1)
+oo 22 22
6. L’intégrale / e 2 dx est convergente, par exemple d’apres la domination e~ = = o(e™*) et la convergence de
o0
+o0 0
/ e *dx . Sion note K = / -7 d:v on a donc
0

22
F(x) ol Ke= |

, ™ . . .
et on peut démontrer que K = 4/ 5 mais c’est une autre histoire.



Exercice 4

1.(a) D’apres le cours, la série entiére géométrique > =™ a un rayon de convergence égal a 1, et a pour somme

Vee]—1,1] Z:z: =

On a droit a la dérivation terme-a-terme dans I'intervalle ouvert de convergence, donc

1

d’ou Vwe]—l,l[, ZTL.’L’ :1—73;)2

1 1
1.(b) Siy > 1 alors — €]0,1[ de sorte qu'on peut remplacer z par — dans l'identité précédente :
Y Y

Vy>1, Z— = 71.

y—2+ -
Y

2.(a) e L’équation caractéristique associée a la relation de récurrence est X2 — X —1 = 0 qui posséde les deux racines réelles

1+5 1-5
5 th=ET

distinctes A = donc on a 'existence de deux réels 7 et § tels que
VpeN, w, =7\ 4ouP.

On détermine v et ¢ a 'aide des valeurs de wg et wy, ce qui donne le systeme
0=0 0=— =-—=+
{ Z+ §=1 { = | { _
Y+ po = 7= Y=
1

Finalement, Vpe N, |w, = — ()\p — P ) . On aura remarqué que (wpy1) est la suite de Fibonacci.

V5

n

1
e Le rayon de convergence des séries géométriques > 7 " et E \/_ x™ sont respectivement B =
on se rappelle que Ay = —1).
=

Comme ces deux rayons sont différents, d’aprés le cours le rayon de convergence de la série somme > w,, est

Vb —1
|

min (A, —p) = —p =

2.(b) Pour x € Ju, —u[ les séries écrites sont convergentes, et on a
—+oo —+oo —+oo —+oo
(1 —x— x2) Z wpr" = Z wpx" — Z wpr" T — Z w2
n=0 n=0 n=0 n=0
—+oo —+o0 —+o0
= Z wpx" — Z Wp_12" — Z Wp_ox"
n=0 n=1 n=2

+oo
= wp+ (w1 —wp)x + Z (wn — Wp—1 — wy_2) "
n=2

=0

= .

1
2.(c) Siy est tel que — € Ju, —p[, c’est-a-dire si
Y

y € }—oo,i[ U ]—1,4—00{ = ] =00, =A[U]\, +o0|

—u et

1
|l

=



. A ie s s \ 1 .
alors on peut appliquer I'identité précédente & x = — et on obtient

<1 1 1)+O°wn1
y v )=y oy

2

1
De plus, x = — &€ {—\, —pu} car |z| < —p, donc le facteur 1 — x — 22 n’est pas nul, d’olt en divisant,
Y

+
Oown 1

e
=0 Y y—1-—-—
y

3. Soit n un entier > 3. Comptons le nombre z, de pavages du quadrillage de dimension 2 x n par des dominos.

Il en existe deux sortes : ceux qui se « terminent » par un domino vertical, et ceux qui se terminent par deux dominos
horizontaux.

r N
L]
o
L]
L] L]
L] L]
\ y,
r - N
L] .:
L] L]
L] LI
\ : <
s : 3
...: L]
...:.
\ : ),

Il existe autant de maniere de fabriquer un pavage de la premiére sorte que de maniére de fabriquer un pavage du quadrillage
2x (n—1), c’est-a-dire z,,—1. De méme, il existe autant de maniere de fabriquer un pavage de la seconde sorte que de maniére
de fabriquer un pavage du quadrillage 2 x (n — 2), c’est-a-dire z,_s.

AinsionaVn > 3, z, = 2,1+ 2,—2. La suite (z,,) vérifie la méme relation de récurrence que la suite (w,41) avec les mémes
termes initiaux (puisque z3 = 1 = wq et z0 = 2 = w3). On en conclut que ces deux suites sont égales :

VneN* |z, =wpy1 = ()\"+1 — ,u"'H) .

Sl




