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Corrigé de la séance de révision no 7

Exercice 1

1. à 4. gα est de classe C∞ sur ] − 1, 1[ , donc de classe C2, par composition et on a

∀ x ∈ ] − 1, 1[ , g′
α(x) = −α sin

(
α Arcsin x

)

√
1 − x2

,

g′′
α(x) = −α2 cos

(
α Arcsin x

)

1 − x2
− α x sin

(
α Arcsin x

)

(1 − x2)
3

2

,

(1 − x2)g′′
α(x) = −α2gα(x) + xg′

α(x) ,

et donc gα est solution de (E ) sur ] − 1, 1[ .

5.(a) Supposons qu’une telle solution y existe. Alors y est de classe C∞ sur ] − 1, 1[ et on a par dérivation terme-à-terme

∀ x ∈ ] − 1, 1[ , y′(x) =

+∞∑

n=1

nanxn−1 et y′′(x) =

+∞∑

n=2

n(n − 1)anxn−2 =

+∞∑

n=0

(n + 2)(n + 1)an+2xn .

Puisque y est solution de (E ) sur ] − 1, 1[ , on a

∀ x ∈ ] − 1, 1[ ,

+∞∑

n=0

(n + 2)(n + 1)an+2xn −
+∞∑

n=2

n(n − 1)anxn −
+∞∑

n=1

nanxn + α2

+∞∑

n=0

anxn = 0

⇐⇒ ∀ x ∈ ] − 1, 1[ , 2a2 + α2a0 +
(
6a3 + (α2 − 1)a1

)
x +

+∞∑

n=2

[
(n + 2)(n + 1)an+2 + (α2 − n2)an

]
xn = 0

⇐⇒ ∀ x ∈ ] − 1, 1[ ,

+∞∑

n=0

[
(n + 2)(n + 1)an+2 + (α2 − n2)an

]
xn = 0

⇐⇒ ∀ n ∈ N , (n + 2)(n + 1)an+2 + (α2 − n2)an = 0 ,

d’après l’unicité d’un développement en série entière sur un voisinage de 0. On a donc

∀ n ∈ N , an+2 =
n2 − α2

(n + 2)(n + 1)
an .

On a aussi a0 = y(0) = 1 et a1 = y′(0) = 0 .

5.(b) Puisque a1 = 0, il vient par une récurrence immédiate à l’aide de la formule précédente,

∀ p ∈ N , a2p+1 = 0 .

5.(c) Pour p > 1, substituons 2p − 2 à n dans la formule de récurrence :

∀ p ∈ N
∗ , a2p =

(2p − 2)2 − α2

(2p)(2p − 1)
a2p−2 .

On en déduit en cascade, et puisque a0 = 1, que

∀ p ∈ N
∗ , a2p =

p
∏

i=1

[
(2i − 2)2 − α2

(2i)(2i − 1)

]

=
1

(2p)!

p
∏

i=1

[
(2i − 2)2 − α2

]
.

5.(d) La série entière obtenue est
∑

p>0

a2p x2p. Si il existe un entier i > 1 tel que α2 = (2i − 2)2, c’est-à-dire exactement si

α ∈ 2Z, alors la suite (a2p)p∈N stationne à zéro, et donc le rayon de convergence est infini. Dans le cas contraire, la suite
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(a2p)p∈N est une suite de réels non nuls et on peut appliquer la règle de d’Alembert pour les séries numériques : on pose
bp = a2p x2p pour tout entier p et tout x 6= 0 et on a

∣
∣
∣
∣

bp+1

bp

∣
∣
∣
∣

=

∣
∣
∣
∣

a2p+2

a2p

∣
∣
∣
∣

x2 =
4p2 − α2

(2p)(2p + 2)
x2 −−−−−→

p→+∞
x2 .

La série converge donc si |x| < 1 et diverge si |x| > 1 ce qui montre que le rayon de convergence est 1. Ainsi,

Le rayon de convergence est

{

+∞ si α ∈ 2Z ,

1 si α 6∈ 2Z .

6. Il est sous-entendu qu’on cherche une solution polynomiale de (E ) non nulle ...

Une solution polynomiale de (E ) est une solution développable en série entière de (E ) dont la suite des coefficients stationne
à zéro. Or on a de manière générale les expressions

∀ p ∈ N
∗ , a2p =

1

(2p)!

p
∏

i=1

[
(2i − 2)2 − α2

]
a0 et a2p+1 =

1

(2p + 1)!

p
∏

i=1

[
(2i − 1)2 − α2

]
a1 .

La suite (a2p)p∈N stationne à zéro si et seulement si α est un entier relatif pair ou a0 = 0. De même la suite (a2p+1)p∈N

stationne à zéro si et seulement si α est un entier relatif impair ou a1 = 0.

Puisqu’on exclut que a0 = a1 = 0, il est nécessaire et suffisant que α ∈ Z pour qu’une telle solution existe.

7. ∀ x ∈ [−1, 1] , g1(x) = cos(Arcsin x) =
√

1 − sin2(Arcsin x) =
√

1 − x2 .

8.(a) ∀ x ∈ [−1, 1] , g2(x) = cos(2 Arcsin x) = 1 − 2 sin2(Arcsin x) = 1 − 2x2 .

8.(b) Question ridicule.

Exercice 2

1. Il s’agit de déterminer le rayon de convergence de la série entière. Appliquons la règle de d’Alembert : pour x 6= 0, et

n > 1, on a

∣
∣
∣
∣

(n + 1)kxn+1

nkxn

∣
∣
∣
∣

=

(

1 +
1

n

)k

|x| −−−−−→
n→+∞

|x| et donc la série converge si |x| < 1 et diverge si |x| > 1. Ceci

caractérise un rayon de convergence égal à 1.

De plus, les séries numériques
∑

nk et
∑

nk(−1)n sont grossièrement divergentes, donc le domaine de convergence de la
série est I = ] − 1, 1 [ .

2. Sk étant la fonction somme d’une série entière de rayon 1, elle est de classe C∞ sur ] − 1, 1 [ et on a droit à la dérivation
terme à terme :

∀ x ∈ ] − 1, 1 [ , S
′

k(x) =

+∞∑

n=1

nk+1xn−1

et donc, le terme d’indice n = 0 étant nul car k + 1 > 0,

∀ x ∈ ] − 1, 1 [ , xS
′

k(x) =

+∞∑

n=1

nk+1xn = Sk+1(x) .

La relation cherchée est donc ∀ x ∈ ] − 1, 1 [ , Sk+1(x) = xS′
k(x) .

3. Pour tout x de I, on a successivement

S0(x) =

+∞∑

n=0

xn =
1

1 − x
,

S1(x) = xS
′

0 (x) =
x

(1 − x)2
,

S2(x) = xS
′

1 (x) =
x(x + 1)

(1 − x)3
.
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4. • Existence : Montrons par récurrence sur l’entier k l’énoncé

Ek : « ∃ Pk ∈ R[X ] , ∀ x ∈ I , Sk(x) =
Pk(x)

(1 − x)k+1
»

E0 est vrai : le polynôme P0 = 1 convient. Supposons que l’énoncé Ek soit vérifié, k étant arbitrairement fixé, et démontrons
qu’alors Ek+1 l’est aussi. Pour x ∈ I on a

Sk+1(x) = xS
′

k(x) = x
Pk

′(x)

(1 − x)k+1
+ (k + 1)x

Pk(x)

(1 − x)k+2
=

x(1 − x)Pk
′(x) + (k + 1)xPk(x)

(1 − x)k+2

et donc Ek+1 est vérifié avec le polynôme Pk+1 défini par Pk+1 = X(1 − X)P
′

k + (k + 1)XPk .

• Unicité : La relation Pk(x) = (1 − x)k+1Sk(x) détermine de manière unique Pk(x) sur I = ] − 1, 1[ et donc sur R tout
entier d’après le raisonnement suivant : si Qk est un autre polynôme convenable, le polynôme Pk − Qk possède une infinité
de racines (tous les éléments de I) donc il est nul, d’où Pk = Qk.

5. L’unicité permet d’identifier les polynômes obtenus grâce à la question 3 : P0 = 1 , P1 = X et P2 = X(X + 1).

6. Ça a déjà été démontré à la question 4.

7. • Pour x ∈ I on a Pk(x) = (1 − x)k+1Sk(x) et donc Pk(0) = Sk(0) ce qui vaut 0 dès que k > 1.
On pouvait aussi utiliser la relation de la question précédente.

• « Pk est unitaire et de degré k » se prouve par récurrence sur k ∈ N. P0 = 1 est unitaire et de degré 0. Supposons
l’énoncé vrai au rang k, alors la relation Pk+1 = X(1−X)P

′

k +(k +1)XPk prouve que Pk+1 est la somme de deux polynômes
de degrés au plus k + 1 et donc Pk+1 ∈ Rk+1[X ].
De plus le coefficient de Xk+1 dans Pk+1 est −k + (k + 1) = 1 ce qui achève la récurrence.

On pouvait aussi inclure ces propriétés dans la récurrence faite à la question 4.

8. • Il vient immédiatement A = S2(1/4) =
(1/4)2 + 1/4

(1 − 1/4)3
=

20

27
.

• Notons bn le terme général de la série définissant B. La présence du (−1)n nous invite à séparer les termes d’indices
pairs des termes d’indices impairs :

∀ p ∈ N , b2p =
(2p)2

22p+1
et b2p+1 =

(2p + 1)2

22p
.

On voit facilement (d’Alembert) que les deux séries
∑

b2p et
∑

b2p+1 sont convergentes et donc B existe et on a

B =

+∞∑

p=0

b2p +

+∞∑

p=0

b2p+1 =
not

C + D .

◮ 1re méthode : pour calculer C (resp. D) on élimine les termes pairs (resp. impairs) dans la série définie par S2

(
1

2

)
.

Classiquement :

S2

(
1

2

)
+ S2

(
− 1

2

)
=

+∞∑

n=0

(
1 + (−1)n

)n2

2n
=

+∞∑

p=0

2
(2p)2

22p
= 4C ,

S2

(
1

2

)
− S2

(
− 1

2

)
=

+∞∑

n=0

(
1 − (−1)n

)n2

2n
=

+∞∑

p=0

2
(2p + 1)2

22p+1
= D .

On calcule alors S2

(
1

2

)
= 6 et S2

(
− 1

2

)
= − 2

27
ce qui fournit C =

40

27
et D =

164

27
d’où B =

68

9
.

◮ 2de méthode : on a directement

C =

+∞∑

p=0

(2p)2

22p+1
= 2

+∞∑

p=0

p2

4p
= 2S2

(
1

4

)
=

40

27
,

et

D =
+∞∑

p=0

(2p + 1)2

22p
=

+∞∑

p=0

4p2 + 4p + 1

4p
= 4S2

(
1

4

)
+ 4S1

(
1

4

)
+ S0

(
1

4

)
=

164

27

d’où le résultat.
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Exercice 3

1. Le dse (centré en 0) de la fonction exponentielle s’écrit : ∀ u ∈ R , eu =

+∞∑

n=0

un

n!
.

2.(a) En substituant −x2

2
à u dans le dse précédent, on obtient l’identité suivante, valable sur R ,

∀ x ∈ R , e− x
2

2 =

+∞∑

n=0

(−1)nx2n

2n n!
,

ce qui constitue bien le développement en série entière (centrée en 0) de la fonction x 7−→ e− x
2

2 .

2.(b) La fonction proposée est la primitive nulle en zéro de la fonction précédente et d’après le cours toute primitive d’une
fonction développable en série entière est elle-même développable en série entière, avec même rayon de convergence ; ici +∞
(et son développement s’obtient par intégration terme-à-terme).

2.(c) La fonction x 7−→ e
x

2

2 est également développable en série entière sur R et son dse s’obtient comme en 2.(a).

D’après le cours, le produit (de Cauchy) de deux fonctions développables en séries entières l’est également, et son rayon de
convergence est supérieur ou égal au minimum des deux rayons. On en déduit que F est développable en série entière avec
un rayon de convergence infini.

3. L’identité demandée est immédiate, par la formule de dérivation d’un produit.

4. On a d’abord F (0) = a0 = 0 et F ′(0) = a1 = 1 d’après l’identité précédente.

Le dse de F ′ a aussi pour rayon +∞ et s’obtient par dérivation terme à terme :

∀ x ∈ R , F ′(x) =
+∞∑

n=1

nanxn−1 =
+∞∑

n=0

(n + 1)an+1xn

donc

∀ x ∈ R ,

+∞∑

n=0

(n + 1)an+1xn = 1 + xF (x) = 1 +

+∞∑

n=0

anxn+1 = 1 +

+∞∑

n=1

an−1xn .

Par unicité d’un développement en série entière de rayon non nul, on en déduit que

∀ n ∈ N
∗ , (n + 1)an+1 = an−1 .

5. Pour tout entier p on a a2p+2 =
a2p

2p + 2
et vu que a0 est nul, une récurrence immédiate montre que tous les termes a2p

sont nuls, pour p ∈ N.

Pour tout entier p > 1 on a a2p+1 =
a2p−1

2p + 1
, donc facilement,

a2p+1 =
1

2p + 1
× 1

2p − 1
× · · · × a1

3
=

(2p) × (2p − 2) × · · · × 2

(2p + 1)!
=

2pp!

(2p + 1)!
.

En résumé,

∀ p ∈ N , a2p = 0 et a2p+1 =
2pp!

(2p + 1)!
.

6. L’intégrale

∫ +∞

0

e− x
2

2 dx est convergente, par exemple d’après la domination e− x
2

2 =
+∞

◦(e−x) et la convergence de
∫ +∞

0

e−x dx . Si on note K =

∫ +∞

0

e− x
2

2 dx , on a donc

F (x) ∼
+∞

Ke
x

2

2 ,

et on peut démontrer que K =

√
π

2
, mais c’est une autre histoire.
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Exercice 4

1.(a) D’après le cours, la série entière géométrique
∑

xn a un rayon de convergence égal à 1, et a pour somme

∀ x ∈ ] − 1, 1[ ,

+∞∑

n=0

xn =
1

1 − x
.

On a droit à la dérivation terme-à-terme dans l’intervalle ouvert de convergence, donc

∀ x ∈ ] − 1, 1[ ,
+∞∑

n=1

nxn−1 =
1

(1 − x)2
,

d’où ∀ x ∈ ] − 1, 1[ ,

+∞∑

n=1

nxn =
x

(1 − x)2
.

1.(b) Si y > 1 alors
1

y
∈ ]0, 1[ de sorte qu’on peut remplacer x par

1

y
dans l’identité précédente :

∀ y > 1 ,

+∞∑

n=1

n

yn
=

1

y − 2 +
1

y

.

2.(a) • L’équation caractéristique associée à la relation de récurrence est X2 − X − 1 = 0 qui possède les deux racines réelles

distinctes λ =
1 +

√
5

2
et µ =

1 −
√

5

2
donc on a l’existence de deux réels γ et δ tels que

∀ p ∈ N , wp = γλp + δµp .

On détermine γ et δ à l’aide des valeurs de w0 et w1, ce qui donne le système

{

γ + δ = 0

λγ + µδ = 1
⇐⇒

{

δ = −γ

γ = 1

λ−µ

⇐⇒
{

δ = − 1√
5

γ = 1√
5

Finalement, ∀ p ∈ N , wp =
1√
5

(
λp − µp

)
. On aura remarqué que (wp+1) est la suite de Fibonacci.

• Le rayon de convergence des séries géométriques
∑ λn

√
5

xn et
∑ µn

√
5

xn sont respectivement
1

|λ| = −µ et
1

|µ| = λ

(on se rappelle que λµ = −1).

Comme ces deux rayons sont différents, d’après le cours le rayon de convergence de la série somme
∑

wn est

min (λ , −µ) = −µ =

√
5 − 1

2
.

2.(b) Pour x ∈ ]µ, −µ[ les séries écrites sont convergentes, et on a

(
1 − x − x2

)
+∞∑

n=0

wnxn =

+∞∑

n=0

wnxn −
+∞∑

n=0

wnxn+1 −
+∞∑

n=0

wnxn+2

=

+∞∑

n=0

wnxn −
+∞∑

n=1

wn−1xn −
+∞∑

n=2

wn−2xn

= w0 + (w1 − w0)x +

+∞∑

n=2

(
wn − wn−1 − wn−2

)

︸ ︷︷ ︸

= 0

xn

= x .

2.(c) Si y est tel que
1

y
∈ ]µ, −µ[ , c’est-à-dire si

y ∈
]

−∞,
1

µ

[

∪
]

− 1

µ
, +∞

[

= ] − ∞, −λ[ ∪ ]λ, +∞[
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alors on peut appliquer l’identité précédente à x =
1

y
et on obtient

(

1 − 1

y
− 1

y2

) +∞∑

n=0

wn

yn
=

1

y
.

De plus, x =
1

y
6∈ {−λ, −µ} car |x| < −µ, donc le facteur 1 − x − x2 n’est pas nul, d’où en divisant,

+∞∑

n=0

wn

yn
=

1

y − 1 − 1

y

.

3. Soit n un entier > 3. Comptons le nombre zn de pavages du quadrillage de dimension 2 × n par des dominos.

Il en existe deux sortes : ceux qui se « terminent » par un domino vertical, et ceux qui se terminent par deux dominos
horizontaux.

b b

bb

bb

b

b

b

b

b

b

b

b

b

bb b

bb b

Il existe autant de manière de fabriquer un pavage de la première sorte que de manière de fabriquer un pavage du quadrillage
2× (n−1), c’est-à-dire zn−1. De même, il existe autant de manière de fabriquer un pavage de la seconde sorte que de manière
de fabriquer un pavage du quadrillage 2 × (n − 2), c’est-à-dire zn−2.

Ainsi on a ∀ n > 3 , zn = zn−1 +zn−2. La suite (zn) vérifie la même relation de récurrence que la suite (wn+1) avec les mêmes
termes initiaux (puisque z1 = 1 = w2 et z2 = 2 = w3). On en conclut que ces deux suites sont égales :

∀ n ∈ N
∗ , zn = wn+1 =

1√
5

(
λn+1 − µn+1

)
.
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