– Devoir Maison n°9 –

Exercice 1

Soit $\mathcal C$ la courbe paramétrée par :

$$f:t\in\mathbb{R}\mapsto\left(\frac{1}{1-t^2},\frac{t^3}{1-t^2}\right).$$

- 1. Étude de C:
 - a. Montrer que $\mathcal C$ admet un axe de symétrie.
 - **b.** Dresser le tableau de variations de x et de y.
 - c. Déterminer le(s) point(s) stationnaire(s) ainsi que leur(s) nature(s).
 - d. Donner les équations des asymptotes.
 - e. Calculer les coordonnées où les tangentes sont verticales ou horizontales.
- **2.** Tracer la courbe \mathcal{C} .

Exercice 2

Soit \mathcal{C} la courbe paramétrée par :

$$f: t \in \mathbb{R} \mapsto (\cos t - 2t, \sin t)$$
.

- 1. Montrer que la courbe paramétrée est régulière.
- 2. Montrer que la courbe est invariante par des translations que l'on déterminera.
- 3. Montrer que la courbe est symétrique par rapport à la droite d'équation $x=-\pi$. En déduire que l'on peut réduire l'intervalle d'étude à $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Comment se déduit alors le reste de la courbe à partir de cette restriction?
- **4.** Dresser le tableau de variations pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- **5.** Tracer la courbe C pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} + 3\pi \right]$.
- **6.** Déterminer les points biréguliers de C.
- 7. Déterminer la développée de la courbe \mathcal{C} .