Devoir Maison n°2 Correction

Exercice 1

- 1. Attention, ici il y a un problème à la fois en 0 et en $+\infty$. Comme l'intégrale converge en 0 si et seulement si $\alpha < 1$ et qu'elle converge en $+\infty$ si et seulement si $\alpha > 1$, on en déduit que l'intégrale n'est jamais convergente.
- 2. Remarquons d'abord que la fonction se prolonge par continuité en 0, puisque $t \ln t \to 0$ lorsque t tend vers 0. De plus, au voisinage de $+\infty$, la fonction est équivalente à $\frac{t \ln t}{t^{2\alpha}} = \frac{\ln t}{t^{2\alpha-1}}$. On distingue alors deux cas :
 - Si $\alpha \le 1$, alors $2\alpha 1 \le 1$, et donc $\frac{\ln t}{t^{2\alpha 1}} \ge \frac{1}{t}$ pour t assez grand. Puisque $\int_{1}^{+\infty} \frac{dt}{t}$ est divergente, on en déduit que l'intégrale est divergente.
 - Si $\alpha > 1$, alors $2\alpha 1 > 1$. L'idée est que le terme le plus important est le dénominateur, $\frac{1}{t^{2\alpha 1}}$. Le logarithme au numérateur nous ennuie un peu, mais on va le traiter en réduisant un peu l'exposant du dénominateur. Précisément, soit $\gamma \in \mathbb{R}$ tel que $1 < \gamma < 2\alpha 1$.

Alors on a:

$$t^{\gamma} \frac{\ln t}{t^{2\alpha} - 1} = t^{-\delta} \ln t \to 0$$

avec $-\delta = \gamma - (2\alpha - 1) < 0$.

On en déduit que :

$$\frac{\ln t}{t^{2\alpha - 1}} =_{+\infty} o\left(\frac{1}{t^{\gamma}}\right).$$

Puisque l'intégrale $\int_{1}^{+\infty} \frac{dt}{t^{\gamma}}$ converge, il en est de même de $\int_{1}^{+\infty} \frac{\ln t}{t^{2\alpha-1}} dt$ et par suite de $\int_{0}^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} dt$.

En conclusion, l'intégrale est convergente si, et seulement si, $\alpha > 1$.

3. Il y a deux problèmes, à la fois en 0 et en $+\infty$.

En $+\infty$, la fonction est équivalente à $\frac{\pi}{2t^{\alpha}}$, il y a donc convergence si, et seulement si, $\alpha > 1$.

En 0, puisque $\arctan t \sim_0 t$, la fonction est équivalente à $\frac{1}{t^{\alpha-1}}$, il y a donc convergence si, et seulement si, $\alpha - 1 < 1$, c'est-à-dire ssi $\alpha < 2$.

L'intégrale impropre $\int_0^{+\infty} \frac{\arctan t}{t^{\alpha}} dt$ est donc convergente ssi $\alpha \in]1,2[$.

Exercice 2

1. Au voisinage de 0, la fonction à intégrer est équivalente à $\ln t$, qui est une fonction intégrable en 0. Au voisinage de 1, on a

$$\frac{\ln t}{\sqrt{1-t}} \sim_1 \frac{t-1}{\sqrt{1-t}} = -\sqrt{1-t}.$$

La fonction se prolonge donc par continuité en 1, ce qui achève de prouver la convergence de l'intégrale entre 0 et 1.

2. Pour calculer sa valeur, on réalise le changement de variables $u = \sqrt{1-t}$. On trouve :

$$\begin{split} \int_0^1 \frac{\ln t}{\sqrt{1-t}} dt &= 2 \int_0^1 \ln(1-u^2) du \\ &= 2 \int_0^1 \ln(1-u) du + 2 \int_0^1 \ln(1+u) du \\ &= 2 \int_0^1 \ln(x) dx + 2 \int_1^2 \ln(x) dx \\ &= 2 \int_0^2 \ln(x) dx \\ &= 2 \left[x \ln x - x \right]_0^2 \\ &= 4 \ln 2 - 4. \end{split}$$