SÉANCE DE RÉVISION Nº 8

Calcul différentiel

Exercice 1

Soit h la fonction définie sur \mathbb{R}^2 par $h(x,y) = \sqrt{x^2 + y^2} + y^2 - 1$.

- 1. (a) Justifier que h est continue sur \mathbb{R}^2
 - (b) Montrer que h est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et calculer ses dérivées partielles premières en tout point de cet ensemble.
 - (c) h possède-t-elle des dérivées partielles premières en (0,0)?
- 2. (a) Montrer que $\mathcal{U} = \{(x,y) \in \mathbb{R}^2 ; 0 < \sqrt{x^2 + y^2} < 2\}$ est un ouvert de \mathbb{R}^2 .
 - (b) h a-t-elle des points critiques dans \mathcal{U} ?
 - (c) Montrer que h est bornée sur $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$ et qu'elle y atteint ses bornes, puis déterminer les points de D en lesquels ces bornes sont atteintes.

Exercice 2

Dans le plan euclidien \mathbb{R}^2 muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , on considère le demi-plan ouvert \mathcal{P} d'équation y > 0. Si $f: (x, y) \longmapsto f(x, y)$ est une fonction définie sur un ouvert U de \mathbb{R}^2 et à valeurs dans \mathbb{R} , on appelle laplacien de f et on

Si $f:(x,y)\longmapsto f(x,y)$ est une fonction définie sur un ouvert U de \mathbb{R}^2 et à valeurs dans \mathbb{R} , on appelle laplacien de f et on note Δf l'opérateur différentiel défini, quand il existe, par

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

On appelle fonction harmonique sur un ouvert U de \mathbb{R}^2 toute fonction de classe \mathcal{C}^{∞} définie sur U et à valeurs dans \mathbb{R} telle que $\Delta f = 0$ en tout point de U.

Partie I

On définit la fonction G de \mathcal{P} dans \mathbb{R} par $G(x,y) = \arctan\left(\frac{x}{y}\right)$.

- 1. Montrer que G est une fonction harmonique sur \mathcal{P} .
- 2. Déterminer toutes les applications φ de classe C^{∞} de \mathbb{R} dans \mathbb{R} telles que l'application F définie par $F(x,y) = \varphi\left(\frac{x}{y}\right)$ soit harmonique sur \mathcal{P} .
- 3. Pour tout réel non nul t, démontrer l'égalité

$$\arctan t + \arctan \frac{1}{t} = \varepsilon(t) \frac{\pi}{2}$$

où $\varepsilon(t)$ désigne 1 si t > 0 et -1 si t < 0.

4. On définit, pour tout complexe non nul, la fonction Arg de telle sorte que

$$\left\{ \begin{array}{l} \operatorname{Arg}(z) \text{ soit un argument du nombre complexe } z\,, \\ \operatorname{Arg}(z) \in \,] - \pi, \pi]\,. \end{array} \right.$$

Exprimer G(x, y) à l'aide de Arg(x + iy) pour tout (x, y) de \mathcal{P} .

5. Soit $x \in \mathbb{R}$. Calculer $\lim_{\substack{y \to 0 \\ y > 0}} G(x,y)$. On discutera suivant x et on notera g(x) cette limite.

Montrer que pour tout $(x,y) \in \mathcal{P}$, l'intégrale $\int_{-\infty}^{+\infty} \frac{yg(t)}{(x-t)^2 + y^2} dt$ existe et l'exprimer à l'aide de G(x,y).

Partie II

1. On considère dans le plan la famille $\mathcal{F} = (\mathcal{F}_{\alpha})$ de coniques d'équation cartésienne

$$\mathcal{F}_{\alpha} : \frac{x^2}{\alpha} + \frac{y^2}{\alpha - 1} = 1.$$

Étudier, selon le paramètre α , la nature de ces coniques. Montrer qu'elles ont mêmes foyers.

2. Soit $M_0(x_0, y_0)$ un point de \mathcal{P} .

Si $x_0 \neq 0$, étudier la fonction Ψ définie par $\Psi(\alpha) = \frac{x_0^2}{\alpha} + \frac{y_0^2}{\alpha - 1} - 1$. En déduire que par tout point (x_0, y_0) de \mathcal{P} tel que $x_0 \neq 0$, il passe exactement deux coniques de la famille \mathcal{F} . Montrer qu'elles sont de natures différentes.

Soient α_1 et α_2 les paramètres correspondants. Exprimer $\alpha_1\alpha_2$ et $\alpha_1 + \alpha_2$.

Que se passe-t-il pour les points où $x_0 = 0$?

- 3. Si $M_0(x_0, y_0)$ est un point de \mathcal{P} avec $x_0 \neq 0$, montrer que les deux droites passant par M_0 et tangentes respectivement à chacune des deux coniques de la famille $\mathcal F$ passant par M_0 sont orthogonales.
- 4. On donne les fonctions x et y définies de \mathbb{R}^2 dans \mathbb{R} par

$$x(u, v) = \operatorname{ch} u \cos v$$
; $y(u, v) = \operatorname{sh} u \sin v$.

Montrer qu'elles sont harmoniques.

- 5. (a) Montrer que les images par H des droites d'équation $u=u_0$ et $v=v_0$, où u_0 et v_0 sont réels, appartiennent à la famille \mathcal{F} ou sont contenues dans les axes x'Ox ou y'Oy. Examiner les cas particuliers.
 - (b) Étudier la réciproque.
 - (c) En déduire que H induit une bijection de $]0, +\infty[\times]0, \pi[$ sur \mathcal{P} .
- 6. Pour $f \in C^{\infty}(\mathcal{P}, \mathbb{R})$, calculer $\Delta(f \circ H)$ à l'aide de Δf .

Si f est harmonique sur \mathcal{P} , en déduire que $f \circ H$ est harmonique sur $]0, +\infty[\times]0, \pi[$.

Exercice 3

Soit l'équation aux dérivées partielles (E), de fonction inconnue f

(E)
$$\frac{\partial^2 f}{\partial x^2} - \frac{1}{x} \frac{\partial f}{\partial x} - 4x^2 \frac{\partial^2 f}{\partial y^2} = 0.$$

- 1. Montrer que l'application $\varphi:(x,y)\longmapsto(u,v)$ où $u=x^2-y$ et $v=x^2+y$ établit une bijection de classe C^2 de l'ensemble $\mathcal{U} = \mathbb{R}_+^* \times \mathbb{R}$ sur un ouvert \mathcal{V} de \mathbb{R}^2 à préciser.
- 2. En utilisant le changement de variables défini par φ , déterminer la solution générale de (E) sur \mathcal{U} .