Chapitre 14

Variables aléatoires

Trés souvent, on peut associer a chaque issue d’une expérience aléatoire un résultat, notam-
ment numérique, qui correspond a 1’observation d’un des aspects de ’expérience. Par exemple, si
on lance deux dés, un rouge et un vert, on peut s’intéresser au résultat du dé rouge, a celui du dé
vert, & la somme des deux, a la couleur de celui (ou ceux) qui donne(nt) le plus grand résultat.
Si 'on observe le déplacement aléatoire d’une particule dans ’espace, on peut s’intéresser a la
position, & chaque seconde, de la particule, mais aussi a sa vitesse, au temps nécessaire pour que
la particule atteigne, éventuellement, une position fixée, etc...

Dans tout le chapitre, (€2, <7, P) est un espace probabilisé.

I. Définitions, premiéres propriétés

f—(Déﬁnition — Variable aléatoire] \

Une variable aléatoire discréte sur (2, .47) est une application définie sur €2, et
vérifiant les conditions suivantes :

e L’'image X () de X est finie ou dénombrable,

e Pour tout € X (), X 1({z}) € &.
Pour tout x € X(9), I'événement X ~!({z}) est noté {X =z} ou (X = z).
Lorsque X est a valeurs dans R, on dit que X est une variable aléatoire réelle.

Remarques

e On parle aussi souvent de variable aléatoire sur (£2,.o7, P), mais la définition d’une variable
aléatoire n’utilise pas la probabilité P.

e Dans ce cours, toutes les variables aléatoires seront implicitement supposées discrétes.

e On rappelle que X 1({z}) = {w € Q; X(w) = x}. Plus généralement, si U est un sous-
ensemble de X(Q), X 1(U) = {w € Q; X(w) € U}. Le fait d’employer cette notation ne signifie
absolument pas que X est bijective!

e Si X est une variable aléatoire sur (£2,.27), X(Q2) est fini ou dénombrable, donc on peut le
décrire en extension sous la forme X (Q) = {z,; n € I}, ou I est une partie de N.

Alors la famille ((X = x,)),,c; est un systéme complet d’événements.

e Lorsque  est fini, si X est une application définie sur €2, X () est également fini. Sachant
de plus que & = Z£(Q), la deuxiéme condition de la définition ci-dessus est aussi remplie. Une
variable aléatoire est donc tout simplement, dans ce cadre, une application définie sur 2. On
parle de variable aléatoire sur 2, au lieu de (2,22(92)).



Propriété

Soit X une variable aléatoire sur (2, .%7) et U un sous-ensemble de X (Q2) : U C X ().
Alors X 1(U) € &. L’événement X ~1(U) est noté {X € U} ou (X € U).

Démonstration — L’ensemble U est fini ou dénombrable en tant que sous-ensemble de X (2), on
peut le décrire en extension sous la forme U = {x,; n € I}, ou I est une partie de N. Alors

XU) = U X ({wad);

nel
c’est un élément de & en tant que réunion finie ou dénombrable d’éléments de <. O

Notation — Soit X une variable aléatoire réelle sur (€2, /) et z € R. Lorsque U = |—o00,z]NX (12),
I'événement (X € U) est noté plus simplement (X < ). On définit de fagon analogue les
événements (X < z), (X > x) et (X > ).

Exemple — On modélise le lancer de deux dés, un rouge et un vert, par le choix de Q = [[1,6]]2,
muni de la probabilité uniforme. Pour tout (i,5) € Q, i est le résultat du dé rouge, j celui du dé
vert. La fonction X qui a (4,j) associe i + j est une variable aléatoire sur 2. Elle prend toutes
les valeurs de [2,12]. Par exemple,

(X =2)={11} avec P(X =2) = %7
(X = 4) = {(1’3)’(2’2)’(3’1)} avec P(X = 4) = 33_6 = 1—12’
(X =7) = {(16).25).34), (43, (52,6} avee P(X =7) = 2= ¢

Propriété/ Déﬁnition}

Soit X une variable aléatoire sur (£2,.27) et f une fonction définie sur X (12).

Alors f o X est une variable aléatoire sur (2, %7), plus souvent notée f(X).

Démonstration — L’image de X est finie ou dénombrable, donc celle de f(X) également. De plus,
soit a un élément de f(X(Q2)) (image de f(X)); alors

(foX)™'({a}) = (X € 7' ({a})).

Or f~'({a}) € X (), donc d’aprés la propriété précédente, (f o X)~'({a}) € o7, ce qui prouve
le résultat. O

Exemple — Si X est une variable aléatoire réelle, X2 est une variable aléatoire. Si X est a valeurs
strictement positives, In(X) est une variable aléatoire.

II. Loi d’une variable aléatoire

1. Généralités

r—[Déﬁnition — Loi d’une variable aléatoire] N

Soit X une variable aléatoire sur (§2,.27, P).
On appelle loi de la variable aléatoire X la fonction définie sur X (2) par :

Vz € X(Q), Px(z)=P(X = z).
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Remarque — La loi de X permet de définir une probabilité sur (X (2),2(X(Q2))).




,—‘ Propriété \
Soit X une variable aléatoire sur (2,.e7, P). On décrit X (£2) en extension sous la forme
X(Q) = {zn; n €I} ou I est une partie de N.

Alors, pour tout U C X(Q2), on a

PXeU)= Y P(X =z,
rnelU
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Rappel — Lorsque X () est dénombrable et décrit en extension sous la forme {z,; n € N}, U
est fini ou dénombrable, et peut-étre décrit en extension sous la forme {%;(1)7 . ,xq,(m)} (on
m = card(U)) ou {z,); k € N} (ot ¢ est une bijection de N sur N). Alors >, P(X = z,)
s’exprime comme une somme finie, ou une somme de série convergente :

m +oo
Y P(X =) =) P(X =w,m) ou > PX=un)=) P(X=u,p)
k= k=0

znelU 1 zn€U
Par exemple, si X () = Net U = 2N = {2k; k € N}, alors P(X € U) = ;20 P(X = 2k).

Démonstration de la propriété — L’événement (X € U) est la réunion des événements deux a
deux disjoints (X = x,) pour les x, de U, d’ou le résultat par définition d’une probabilité (et
notamment, la somme précédente ne dépend pas de la fagon de décrire U en extension). O

Remarque — Dans le cas dénombrable, la série zn20 P(X = x,,) converge et a pour somme 1. De
plus, pour tout événement A € &7, on a d’aprés la formule des probabilités totales,

+oo

P(A) =Y P(A|X =2,)P(X = z).
n=0
,—[Déﬁnition — Fonction de répartition} \

Soit X une variable aléatoire réelle sur (€2, <7, P).

On appelle fonction de répartition de X la fonction F'x définie sur R par :

Ve eR, Fx(z)=PX <x).
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— Propriété \

Soit X une variable aléatoire réelle sur (2,27 ,P) et Fx sa fonction de répartition. Alors :

e [’y est croissante sur R.

o Fx(z) — Oet Fx(x) — 1.
r——00 r—+00
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Démonstration
e Soit (x,9) € R? tel que z < y; alors (X < z) C (X <), et donc P(X < x) < P(X <), i.e.,
Fx(x) < Fx(y) : la fonction Fx est croissante.

e D’aprés le premier point, F'x a une limite £ en +oo, et donc Fx(n) — £. Or on remarque
n—-roo
+oo

220(X < n) =€, donc par propriété de continuité croissante,

que

Fx(n)=P(X<n) — P(Q)=1.

n—-4o0o

On a donc ¢ = 1.

On procéde de méme pour la limite en —oo en utilisant la propriété de continuité décroissante
et le fait que 24(X < —n) = @ avec P(@) = 0. O



Remarques

e La fonction de répartition d’une variable aléatoire réelle X est une fonction « en escalier » (pas
tout a fait au sens mathématique), chaque « marche » correspondant au passage en abscisse d'une
valeur prise par X. Ci-dessous, on donne la fonction de répartition correspondant au résultat du
lancer d’un dé équilibré.
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e Les fonctions Fy et Px sont liées : si X(2) = N par exemple, on a, pour tout n € N,

Fx(n) = iP(X = k) = f:PX(k:)
k=0 k=0

et pour n > 1,
Px(n)=P(X<n)—P(X<n-1)=Fx(n)— Fx(n-1).

Les valeurs de Px correspondent aux hauteurs des « marches », sur le dessin précédent, Px(n)
est la hauteur de la marche au point d’abscisse n.

Comme on ’a vu plus haut, si X est une variable aléatoire sur (£2,.27), la donnée d’une
probabilité sur (€2, .o7) définit la loi de X, qui s’identifie a la donnée des P(X = z) pour z € X (2).
Inversement, il est en fait possible de choisir des lois, ce qui peut étre trés utile lors de 1’étape
de modélisation :

,—[Propriété (admise : démonstration hors programme)} \

Soit X une variable aléatoire sur (€2,47). On décrit X (€2) en extension sous la forme
X(Q) = {zn; n € I}, ou I est une partie de N.
Soit (pn)ner une famille ou une suite de réels positifs vérifiant

Z Dr, cOnvVerge
n>0
an =1 (si X(2) est fini) ou

“+00
nel an =1
n=0

Alors il existe une probabilité P sur (€2, &) telle que, pour tout n € I, P(X = x,) = py.

(si X(£2) est dénombrable)
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Remarque — En pratique, trés souvent, une expérience aléatoire est en fait décrite par des données
sur une ou plusieurs variables aléatoires. La modélisation par le choix de (2, 47) vient aprés, et
elle n’est parfois pas nécessaire, ou admise. Par exemple :

e L’évolution d’un arbre généalogique peut étre décrite par le nombre aléatoire de descendants
directs de chaque individu, mais un choix de (£2,.27) n’est pas du tout évident.

e Imaginons un systéme dont les états a différentes dates sont repérés par les entiers naturels ou
relatifs (on pourra penser & la position d’une particule, & un stock de marchandises). L’évolution
du systéme est décrite par les probabilités de transition de I’état ¢ a ’état j. Supposons que les



transitions se font entre états voisins dans Z (de k & k 4+ 1 ou k — 1), et notons X,, I’état du
systéme au rang n. La description du systéme se fait en donnant, pour tout (n,k) € N x Z, la
probabilité
P(Xpr1=k+1|X,=k).
On peut choisir
Q = {(un)nen € ZN; V1 €N, g1 — up| = 1},

mais ce n’est pas nécessairement utile de le préciser pour étudier le systéme.

2. Lois usuelles

La propriété précédente permet de définir des lois par la simple vérification qu’une série est
a termes positifs, convergente et de somme 1 (ou qu’'une famille finie de nombres positifs a pour
somme 1). Ceci permet de définir les lois fondamentales suivantes; pour chaque exemple, on
donne un exemple de situation ainsi modélisée.

a. Loi uniforme

Définition

On dit qu’une variable aléatoire X sur (§2,.o7, P) suit la loi uniforme si X (2) est fini
et si les événements (X = z) pour x € X () sont équiprobables.

Exemples
e La loi uniforme modélise par exemple le résultat d’un lancer de dé équilibré.

e Dans la modélisation du jeu de pile ou face infini faite dans le chapitre Espaces probabilisés,
la variable aléatoire X qui donne le résultat des n premiers lancers suit la loi uniforme : pour
tout (ug,...,u,) € {0,1}" (qui est de cardinal 2"),

HX:@M”MD:%.

b. Loi de Bernoulli
— Définition N

Soit p € [0,1]. On dit qu’une variable aléatoire X sur (2, o7, P) suit la loi de Bernoulli
de parameétre p si X(Q) = {0,1} et si

Ceci se note X — HA(p).
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Remarque — On note trés souvent ¢ = 1 — p.

Exemples

e La loi de Bernoulli modélise un lancer de piéce, p représentant par exemple la probabilité
d’obtenir « pile ».

e Plus généralement, la loi de Bernoulli modélise toutes les épreuves de Bernoulli, c¢’est-a-dire
ayant deux résultats possibles; celui de probabilité p est souvent interprété comme succés.

En Python, on peut simuler ainsi une expérience de Bernoulli de paramétre p (on supposera
importé le module random) :

1 |def sim_bernoulli(p):

2 x = random.random ()
3 if x < p:

4 return 1

5 else:

6 return O



,—[Propriété — Lien avec les fonctions indicatrices} \

e Soit A un événement de probabilité p, avec A # @ et A # Q. Alors 14 est une
variable aléatoire sur (2, <7, P) qui suit la loi de Bernoulli de paramétre p.

e Inversement, soit X une variable aléatoire sur (2, 7, P) qui suit la loi de Bernoulli
de parameétre p. Alors X = 14, avec A = (X = 1) de probabilité p.
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Démonstration
e La fonction 14 prend les valeurs O et 1, et P(14=1) = P(A) =p

e Les deux fonctions X et 1 x_;) prennent la valeur 1 sur (X = 1) et 0 sur (X = 0), avec
(X =0)U(X =1)=Q, donc ces fonctions sont égales. On a P(X = 1) = p par définition. [

c. Loi binomiale

— Définition N

Soient n € N* et p € [0,1]. On dit qu’une variable aléatoire X sur (Q,.o7, P) suit la loi
binomiale de paramétres n et p si X(Q2) = [0,n] et si

Vke[on], P(X=k)= (Z) PP (1 —p)n k.

Ceci se note X — #(n,p).

\ J

Remarque — On définit bien ainsi une loi, car d’aprés la formule du binéme de Newton,

Zn: (Z) PrA-p)" " =p+1-p"=1

k=0

Interprétation — Le nombre S de succés lors d’une succession de n épreuves de Bernoulli de
paramétre p mutuellement indépendantes suit la loi binomiale de paramétres n et p. En effet,
la variable aléatoire S est a valeurs dans [0,n] et, pour k € [0,n], 'événement (S = k) est la
réunion des événements consistants & fixer k succés et n — k échecs. Ces événements sont deux
a deux incompatibles, sont au nombre de (Z), et chacun est de probabilité p* (1 — p)»~* par
indépendance mutuelle. On a donc

P(S=k) = (’;) P (1= )t

Exemples

e Le nombre de « pile » obtenus lors de n lancers successifs mutuellement indépendants d’une
piéce suit la loi binomiale de paramétres n et p, ol p est la probabilité d’obtenir « pile » & un
lancer donné.

e On effectue n tirages avec remise dans une urne contenant des boules indiscernables, rouges
en proportion p et vertes en proportion ¢ = 1 — p. La variable aléatoire donnant le nombre de
boules rouges tirées suit la loi binomiale de paramétres n et p.

En Python, on peut simuler ainsi une suite de n épreuves de Bernoulli de paramétre p :

1 |def sim_tirages(n,p):

2 L =[]

3 for i in range(n):

4 x = random.random()
5 if x < p:

6 L.append (1)

7 else:

8 L.append (0)

9 return L




On peut simuler la variable aléatoire S de la fagon suivante :

S += 1
return S

1 |def sim_nb_succes(n,p):

2 S =0

3 for i in range(n):

4 x = random.random()
5 if x < p:

6

7

On peut alors simuler la loi #(n,p) de la fagon suivante : on répéte N fois la simulation ci-dessus,
et on calcule, pour tout k € [0,n] la fréquence relative du résultat k lors de ces N expériences :

L.append (S)
return [L.count(k)/float(N) for k in range(n+1)]

1 |def loi_binomiale(n,p,N):

2 L =[]

3 for i in range(N):

4 S = sim_nb_succes(n,p)
5

6

d. Loi géométrique

— Définition N

Soit p €]0,1[. On dit qu’une variable aléatoire X sur (€2, <7, P) suit la loi géométrique
de parameétre p si X (2) D N* et si

VkeN', P(X=k =p(-p*t

Ceci se note X — ¥(p).

\ J

Remarques
e C’est le premier exemple que 'on rencontre de variable aléatoire prenant un nombre infini de
valeurs.

e On définit bien une loi car la série géométrique de raison (1 — p) €]0,1[ est & termes positifs,
elle converge, et

+o0o +o0
;p(l p) pl;)(l P =y =t

Exemples

e Considérons le jeu de pile ou face infini, avec p la probabilité d’obtenir « pile ». Pour k € N*,
I'événement « pile apparait pour la premiére fois au rang k » a pour probabilité p (1 — p)F—1
(k — 1 échecs suivis d'un succes).

e Plus généralement, la loi géométrique peut étre interprétée comme loi du rang du premier
succeés dans une suite illimitée d’épreuves de Bernoulli mutuellement indépendantes et de méme
paramétre p.

Il est parfois utile d’autoriser que X prenne d’autres valeurs que celles de N*, avec probabilité
nulle, notamment, en lien avec 'interprétation précédente, si aucun succés ne survient.

e La loi géométrique est aussi souvent utilisée pour modéliser des durées de fonctionnement de
composants, machines, etc...

Remarque — On peut remplacer X (2) = N* par X (Q2) = N avec :
VkeN, P(X=k) =p(l—p)P*

Dans ce cas, cette loi s’interpréte comme loi du nombre d’échecs avant le premier succeés.



e. Loi de Poisson

— Définition N

Soit A € R%. On dit qu'une variable aléatoire X sur (€2, <7, P) suit la loi de Poisson
de parametre A si X(Q2) = N et si

k
Vk €N, P(X:k:):e_’\%.

Ceci se note X — Z(\).
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Remarque — On définit bien ainsi une loi, car on reconnait la série exponentielle de A, qui est a
termes positifs, convergente, avec

Le théoréme suivant établit un lien asymptotique entre loi binomiale et loi de Poisson :

,—[Théoréme — Approximation de la loi binomiale par la loi de Poisson]—

Soient (pn)nen une suite d’éléments de [0,1], (X, )nen une suite de variables aléatoires
sur (Q,.47, P) et A € R%.. On fait les hypothéses suivantes :
e Pour tout n € N, X, suit la loi binomiale de paramétres n et p,,

Gl P

Alors, pour tout k € N,

\ J

Démonstration — Soit k£ € N. Alors, pour n > k assez grand, p, €]0,1] et on a

PO, = 1) = () b (1 =yt = PR 1t

k
n
~ Fpﬁ(l—pn

n—~k
n—+o0o ) ’

Tout d’abord, (np,)* — A*. De plus, np, — A, donc p, — 0F et, lorsque n — +oo,

n—+o0o
(1—pn)"* =exp((n—k)In(1—pn)) = exp ((n — k)(—pn + 0(pn))) -

Or
(n - k)(_pn + 0(pn)) =-—npp+ O(npn) n;\jr -np, — —\.

0 n—-4o0o

Par continuité de I’exponentielle et d’aprés ce qui précéde, on a bien

A )‘k
P(X, =k) W € 3T O
Remarques
e Dans les calculs, on peut donc approcher )P (1 —p)" " par e " T

Cela permet d’éviter des calculs de coefficients du bindme, qui font intervenir des quotients de
grands nombres.

e On considére que 'approximation est intéressante lorsque p < 0,1, n > 30 et np < 15.



Exemple — On lance 100 fois un dé équilibré & 20 faces et on compte le nombre N de 20 obtenus.
Ce nombre suit une loi binomiale %(100,1/20), on a donc, pour tout k € [0,100],

100\ 1 /190
P<N:k>:<k>ﬁ<z—o>

On est dans les conditions de Iapproximation avec np = 100/20 = 5, on peut donc approcher
P(N = k) par e7®5%/k!. Pour k = 2 par exemple, on a

100\ 1 [19\% 5 5°

Le programme suivant permet d’utiliser cette approximation :

from math import exp, factorial

1

2

3 |def approx_poisson(n,p):

4 return [exp(-n*p)*(n*p)**k/factorial(k) for k in range(n+1)]

On peut alors tester par exemple 'approximation de %(30,0.1) par Z?(3) (listes B et A), ainsi
qu'une simulation de cette approximation (liste L); dans ce qui suit, on n’affiche que les 10
premiéres valeurs, en arrondissant & 4 décimales pour B et A :

from scipy.special import binom

# Loi binomiale B(30,0.1)
B = [ binom(30,k)*(0.1**xk)*(0.9%*(30-k)) for k in range (31) ]
[ float("%.4f" % x) for x in B ]

# Approximation par P (3)
A = approx_poisson(30,0.1)
A = [ float("%.4f" % x) for x in A ]

© 00 J O U i W N
(os}
]

10

11 |# Simulation de B(30,0.1)

12 |L = loi_binomiale(30,0.1,10000)

13

14 |for k in range (10):

15 print "P( X =",k,") :",B[k],",",A[k],",",L[k]

Voici un résultat possible :

P( X =0) 0.0424 , 0.0498 , 0.0424
P( X =1) 0.1413 , 0.1494 , 0.139
P( X =2) 0.2277 , 0.224 , 0.2332
P( X =3) 0.2361 , 0.224 , 0.2358
P( X =14) 0.1771 , 0.168 , 0.1743
P( X =5 ) 0.1023 , 0.1008 , 0.1014
P( X =6) 0.0474 , 0.0504 , 0.047
P( X =7) 0.018 , 0.0216 , 0.0187
P( X =8 ) 0.0058 , 0.0081 , 0.006
P( X =29) 0.0016 , 0.0027 , 0.0019

Remarque — On s’intéresse a la loi du nombre d’occurrences d’un phénomeéne dans un intervalle
de temps [0,7]. On fait les hypotheéses suivantes :

e il existe a € R tel que la probabilité que le phénomeéne se produise une fois dans un intervalle
de temps de petite longueur h est ah;

e la probabilité qu’il se produise plus d’une fois est négligeable (en fait, un o(h));

e les nombres d’occurrences du phénoméne dans des intervalles disjoints sont mutuellement
indépendants.



On subdivise [0,7] en intervalles de longueur 7'/n. D’aprés les hypothéses précédentes, on
peut considérer que le nombre d’occurrences du phénoméne dans l'intervalle [0,77] suit la loi
binomiale #(n,aT/n). D’aprés le résultat d’approximation précédent, pour n grand, on peut
approcher cette loi par la loi de Poisson &?(aT') (le paramétre \ s’identifie donc a aT').

Pour cette raison, la loi de Poisson est dite loi des événements rares; elle est souvent
utilisée pour modéliser le nombre d’occurrences d’un phénoméne dans un intervalle de temps
fixé, ce phénoméne étant « rare » dans un court intervalle de temps, mais observé sur un grand
nombre de tels intervalles. Par exemple, on peut modéliser ainsi le nombre de véhicules passant
devant un point d’observation, de clients entrant dans un magasin, de catastrophes naturelles,
de désintégrations de noyaux radioactifs (lorsque la source est éloignée, les mesures faites par un
compteur Geiger font effectivement apparaitre une loi de Poisson).

ITI. Familles de variables aléatoires

1. Couple de variables aléatoires

Propriété/ Déﬁnition}

Soient X et Y deux variables aléatoires sur (€2,.7).

L’application w — (X (w), Y (w)) est une variable aléatoire sur (2, &), appelée couple
(X,Y).

Démonstration — Les ensembles X (£2) et Y (2) sont finis ou dénombrables, donc X (2) x Y ()
est fini ou dénombrable. L’image de (X,Y") est contenue dans X () x Y (), elle est donc aussi
finie ou dénombrable. Notons Z = (X,Y"). Pour tout (z,y) de Z(Q),

Z7{(z,y)}) = {w € Y (X(),Y () = (z,9)} = X (@) NY " (y);

c’est un événement en tant qu’intersection de deux événements. O

Notation

o L’événement ((X,Y) = (z,y)) = (X =z) N (Y =y) est plus souvent noté¢ (X =z,Y =y).
eSiAC X(Q) et BCY(Q),'événement ((X,Y) € A x B), c’est-a-dire (X € A)N(Y € B), est
plus souvent noté (X € A,Y € B).

Corollaire

L’ensemble des variables aléatoires sur (£2,.27) a valeurs dans K (K = R ou C) est un
K-espace vectoriel (pour les lois d’addition et de multiplication par un scalaire).

Démonstration — C’est un sous-ensemble de ’espace vectoriel des applications de €2 dans K, qui
est non vide (la fonction nulle est une variable aléatoire) Enfin, soient X et Y deux variables
aléatoires sur (2, .47) a valeurs dans K et soit A € K. On définit la fonction f : (z,y) — Az +y
sur K2, Alors AX +Y = f(X,Y), qui est une variable aléatoire car le couple (X,Y) est une
variable aléatoire. O

Définition

Soit (X,Y’) un couple de variables aléatoires sur (£2,.27, P). On appelle :
e loi conjointe de X et Y la loi du couple (X,Y).
e lois marginales du couple (X,Y) les lois de X et de Y.




,—‘ Propriété \
Soit (X,Y’) un couple de variables aléatoires sur (§2,.27, P).

La loi du couple (X,Y) détermine entiérement ses lois marginales par les relations

YeY (Q)
VyeY(@), PY=y) = Y PX=uzY=y)
zeX(Q)

En revanche, les lois marginales du couple (X,Y) ne déterminent pas la loi conjointe
de X et Y.

\. J

Démonstration — La premiére égalité est immédiate en remarquant que ((Y = y))yey (o) est un
systéme complet dénombrable d’événements; de méme pour la seconde, avec ((X = z)),ex ()

En revanche, considérons I'exemple suivant, ot 'on définit les lois de deux couples (X1, Y7)
et (X27Y2) :

(z,9) (0,0) | (0,1) | (1,0) | (1,1)
P(X;=a2,Y1=y)] 025 | 0,25 | 0,25 | 0,25
P(X;=a2,Y2=y)] 03 | 02 | 02 | 0,3

Dans les deux cas, les lois marginales sont les mémes, car pour i € {1,2},

mais les lois conjointes ne sont pas les mémes (car P(X; =0,Y; =0) # P(X2 =0,Y, = 0) par
exemple).

Les lois marginales du couple (X,Y") ne déterminent donc pas la loi conjointe de X et Y. [

2. Conditionnement et indépendance

r—(Déﬁnition — Loi conditionnelle] N
Soient X et Y deux variables aléatoires sur (2, o7, P) ety € Y (Q) tel que P(Y = y) > 0.

On appelle loi conditionnelle de X sachant (Y = y) la fonction

{X(Q) — [0,1]
x — PX=z|Y=y)

C’est la loi de X en tant que variable aléatoire sur I'espace probabilisé (2, &7, Py —y)).
On rappelle que pour tout z € X (2),

PX=z|Y=y) =

\ J

Exemple — Dans I'exemple de la propriété précédente, on a
PYa=0)=P(X2=0,Y2=0)+P(X2=1,Y2=0)=0,3+0,2=0,5> 0.
La loi de X3 sachant (Y3 = 0) est caractérisée par les deux nombres

0,3 0,2
: :0,6 et P(X2:1|Y2:0): : :0,4

P(Xy=0]Yy=0) =
(X2 = 0], )0,5 0,5




,—[Déﬁnition — Indépendance de variables aléatoires}

e Soient X et Y deux variables aléatoires sur (2, o7, P).

On dit que X et Y sont indépendantes si pour tout (z,y) € X(2) x Y (), les
événements (X = x) et (Y = y) sont indépendants, i.e.

P(X=2zY=y)=PX=2)PY =y).

e Soit I un ensemble d’indices. Pour tout 7 € I, soit X; une variable aléatoire sur
(Q, o, P).

On dit que les variables aléatoires X;, pour ¢ € I, sont mutuellement indépendantes
si, pour toute famille (x;);cs telle que pour tout i € I, x; € X;(2), les événements
(X; = z;) pour i € I sont mutuellement indépendants, i.e. : pour toute partie finie
JcClI,

Pl (X == | =] P(X; ==)).

Jj€J JjeJ

)

,—[Propriété (admise : démonstration hors programme) )

e Soient X et Y deux variables aléatoires indépendantes sur (2,27, P), A un sous-
ensemble de X () et B un sous-ensemble de Y ().

Alors les événements (X € A) et (Y € B) sont indépendants, i.e.
P(Xe€A YeB)=P(XecAPY e€B).

e Soit (X;)icr une famille de variables aléatoires mutuellement indépendantes sur
(Q, o, P).

Alors, pour toute famille (4;);cs telle que pour tout i € I, A; C X;(Q2), les événements
(X; € A;) pour i € I sont mutuellement indépendants, i.e. : pour toute partie finie
JcClI,

P& €4 | =]]PEX; € 4.
jeJ jeJ

Propriété

Soient X et Y deux variables aléatoires indépendantes sur (2,.e7, P).
Soient f et g des fonctions définies respectivement sur X (Q2) et Y ().
Alors les variables aléatoires f(X) et g(Y) sont indépendantes.

Démonstration — Soit a € f(X(2)) et b € g(Y(2)). Alors
P(f(X)=a,9(Y)=0b) = P(X € f~({a}),Y € g~ ({0})).
Par indépendance de X et Y, et d’aprés la propriété précédente,
P(f(X) =a,g(Y)=b) = P(X € f~'({a})) P(Y € g~ ({b})) = P(f(X) = a) P(g(Y) =

d’ou le résultat.



3. Quelques propriétés des lois usuelles

Propriété — Somme de variables de Bernoulli}

Soient Xi,...,X, des variables aléatoires mutuellement indépendantes sur (2, .o/, P),
suivant chacune la loi de Bernoulli #(p).

Alors la variable aléatoire X; + - -+ + X, suit la loi binomiale Z(n,p).

Démonstration — La démonstration est identique & celle donnée plus haut en interprétation de la

loi A(n,p). O

Remarque — Des sommes de variables de Bernoulli, comme dans la propriété précédente, sont trés
utiles pour compter le nombre de succés dans une succession d’épreuves de Bernoulli. On rappelle
de plus que de telles variables de Bernoulli peuvent étre vues comme des fonctions indicatrices.

,—[Propriété — Caractérisation des lois géométriques comme lois sans mémoire]ﬂ

Soit X une variable aléatoire sur (9, o7, P) telle que X (Q2) = N*.
Les propriétés suivantes sont équivalentes :

1. Il existe p € ]0,1] tel que X — ¥(p).

2. P(X=1)>0, P(X >n) >0 pour tout n € N et

V(nk) eN? P(X>n+k|X >n)=PX > k).

La loi d’une variable aléatoire vérifiant 2 est dite loi sans mémoire (ou sans vieillise-
ment).

Ainsi, les lois géométriques sont exactement les lois sans mémoire.
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Démonstration
1 = 2 : supposons que X — ¥(p) avec p €10,1[. Alors P(X =1) =p > 0 et, pour tout n € N,

+o00 ‘ +o0o - (1 . p)n
P(X>n)= > PX=j= > pl-p) =ijﬁjf—=(1—M“

En particulier, P(X > n) > 0 pour tout n € N. Soit (n,k) € N2. Alors

P(X X
PX>ntk|X>n)= X >nthX>n)

P(X >n)
n _ o \n+k
:Pg;>;@:%L2W:4LmV:HX>m

2= 1:posonsp=P(X =1)>0.Onaaussip=1—P(X > 1) < 1. Soit, pour tout n € N,
x, = P(X > n). D’aprés la propriété d’absence de mémoire,

Tpp1=PX>n+1)=PX>n+1|X>n)P(X >n)=P(X >1)P(X >n)=(1—p)z,.

La suite (2, )nen est donc géométrique de raison 1 — p et de premier terme xg = P(X > 0) = 1,
donc pour tout n € N, z,, = (1 — p)™. Alors, pour tout n € N*,
PX=n)=PX>n—-1)—P(X>n)=1-p)" ' —(1-p)"
=(1-p)" (1~ (1-p)

n—1

=p(l-p)

Finalement, p €]0,1] et X — ¥(p). O



Remarque — Comme on ’a dit plus haut, la loi 4(p) modélise souvent une durée de fonctionne-
ment, ou plus généralement un temps d’attente avant qu’un phénomeéne se produise. La propriété
d’absence de mémoire signifie que ce temps d’attente est indépendant de I’étape & laquelle on
commence a attendre.

4. Indépendance et modélisation

Comme nous l'avons déja vu, la modélisation d’une expérience aléatoire par le choix de
(Q, 7, P) n’est pas toujours évidente. En fait, elle n’est parfois pas utile, le fait de préciser les
conditions de 'expérience, ce qui est plus intuitif, étant souvent suffisant. C’est ce que permet
de faire le résultat suivant :

,—[Théoréme (admis : démonstration hors programme)} N

Soit I un ensemble d’indices fini ou dénombrable. Pour tout ¢ € I, on se donne une loi
discréte & (ce qui revient a se donner une famille ou une suite de nombres positifs de
somme 1).

Alors il existe un espace probabilisé (€2, 7, P) et une famille (X;);c; de variables aléa-
toires sur (2,7, P), mutuellement indépendantes, tels que pour tout i € I, X; suit la
loi .%;.

\ J

Il est ainsi possible de modéliser une succession, finie ou infinie, d’expériences aléatoires
mutuellement indépendantes, par le choix des lois de variables aléatoires, sans avoir & préciser
(Q, o, P).

Exemples

e Un jeu de pile ou face, fini ou infini, avec indépendance mutuelle des différents lancers, pourra
étre modélisé par le choix d’une suite (X;);es, finie ou infinie, de variables de Bernoulli mutuel-
lement indépendantes de méme paramétre p. Pour tout ¢ € I, X; représente le résultat du i-iéme
lancer (1 pour « pile », de probabilité p, 0 pour « face », par exemple).

e On considére la situation suivante : une urne contient des jetons rouges en proportion p, et
blancs en proportion 1 —p; N personnes tirent successivement, avec remise, n jetons dans I'urne,
le gain de chaque personne étant lié au nombre de jetons rouges tirés.

On pourra modéliser cette situation par une famille (X1,...,Xy) de N variables aléatoires
mutuellement indépendantes, suivant chacune la loi binomiale #(n,p). Pour tout i € [1,N], X;
représente le nombre de jetons rouges tirés par le i-iéme participant.

IV. Espérance

,—[Déﬁnition — Espérance} \

Soit X une variable aléatoire réelle sur (2,.27, P), avec X (€2) dénombrable; on décrit
X () en extension sous la forme {z,; n € N}.

On dit que X est d’espérance finie si la série
Z T P(X = x,)
n>0

est absolument convergente.

Dans ce cas, la somme de cette série est appelée espérance de X, et notée E(X),
c’est-a-dire,

+o0
B(X)=> 2, P(X = xy).
n=0




Remarques

e L’espérance de X est & interpréter comme moyenne pondérée des valeurs de X. Par exemple
en physique, elle représente ’énergie moyenne de systémes a spectre discret (comme un atome
confiné dans une boite).

e La notion d’espérance de X dépend de X uniquement & travers sa loi.

e La définition précédente semble dépendre du choix des z,, (c’est-a-dire de I'ordre d’énumération
des éléments de X(€2)). On admettra que lorsque X est d’espérance finie, la somme définissant
E(X) ne dépend pas de 'ordre d’énumération.

e Si X (Q) est fini avec X () = {x1,...,xm}, alors X est d’espérance finie, et E(X) est simple-
ment définie par :

B(X)=> 2, P(X =),

e S’il existe a € R tel que P(X = a) = 1, alors X est d’espérance finie égale a a.

e Si Q est fini, on a la relation E(X) = Z X(w) P({w}).
we

,—[Propriété — Espérance correspondant aux lois usuelles} N

Soit X une variable aléatoire sur (€2, <7, P).

e Si X suit la loi uniforme avec X () = {z1,...,2n}, alors X est d’espérance finie
avec
1 m
E(X) = — Z: Tn
n=

e Si X — HA(p), alors X est d’espérance finie et E(X) = p.
e Si X — HAB(n,p), alors X est d’espérance finie et E(X)
e Si X — ¥(p), alors X est d’espérance finie et E(X) =

np.

1
e
e Si X — (), alors X est d’espérance finie et E(X) = \.

\. J

Démonstration

e Pour tout n € [1,m], P(X = x,) = 1/m, d’ou le résultat.
eSi X —AB(p),onaEX)=0x(1—-p)+1xp=np.

e Si X — AB(n,p),

R A _ kN n—=1\ k. \nk
E(X)—Zk<k>p(1 p)"t = n<k_1>p(1 p)"
k=0 k=1
Avec le changement d’indice j = k — 1, on obtient

E(X)=n nil (n B 1> P = p) D

=0~ 7
n—1
=np ) (n i 1) PA=p) " =np(p+(1-p)"" =np.
=0

n—1

e Supposons que X — ¢(p). La série (& termes positifs) >, -, np(l — p) est convergente :
on reconnait la dérivée de la série géométrique évaluée en 1 — p avec |1 — p| < 1. Donc X est

d’espérance finie et

1 1
B )



e Supposons que X — Z(\). Pour tout n € N*,

n )\n
67,\)\_ DY

e T (n—1)V

terme général (positif) d’une série convergente (série exponentielle). Donc X est d’espérance finie
et avec un changement d’indice, on obtient

+oo
_ A" _
E(X)=Xe E H:)\e At =\
n=0

— Propriété \

Soit X une variable aléatoire sur (§2,.27, P) a valeurs dans N.

La variable aléatoire X est d’espérance finie si et seulement si la série ) <, P(X > n)
=
converge, et dans ce cas on a

E(X) = f P(X >n).
n=1

\ J

Démonstration — Pour tout n € N, on a

Alors, pour tout p € N*,

> nP(X =n) )= P(X >n+1))
n=0

Y (n—1)P(X >n)

n=1

P
Z n(P(X>n
n=0
P p+1
> nP(X >=n)
n=0
aprés séparation des sommes et changement d’indice dans la deuxiéme somme. Finalement,

f:np(X:n) - (ip(x >n)> —pP(X >p+1). (14.1)
n=0 n=1

Si X est d’espérance finie, alors on peut écrire

+oo +oo
ngP(X>p+1):pZP(X:n)< ZnP(X:n) — 0
n=p+1 n=p+1 p—teo

en tant que reste d’une série convergente. On en déduit que zn21 P(X > n) converge ainsi que
I’égalité souhaitée en faisant tendre p vers 4oo.

Par positivité des termes, et d’aprés (14.1), si >, 5, P(X > n) converge, alors
Z nP(X =n)
n>1

converge (la suite de ses sommes partielles est majorée) donc X est d’espérance finie. On conclut
comme précédemment. U



)

,—[Théoréme de transfert (admis : démonstration hors-programme) ) \

Soit X une variable aléatoire sur (Q2,.e7, P) avec X (§2) dénombrable; on décrit X (€2)
en extension sous la forme {x,; n € N}. Soit f: X(©2) — R une fonction.

La variable aléatoire f(X) est d’espérance finie si et seulement si la série
> n>0f (@) P(X = z,,) converge absolument, et dans ce cas, on a

+o0
n=0

J

Remarque — Si I'on appliquait la définition de 'espérance pour f(X), on devrait déterminer la loi
de f(X) : on devrait décrire f(X(2)) en extension sous la forme {y,; n € I} (I fini ou I = N)
puis considérer la somme finie ou la série Yy, P(f(X) = yn).

L’immense avantage du théoréme de transfert est de montrer qu’il suffit en fait de considérer la
loi de X. On a transféré le calcul de E(f(X)) sur la variable aléatoire X . Ceci est particuliérement
intéressant lorsque f n’est pas injective.

Exemple — Soit X une variable aléatoire suivant la loi géométrique de paramétre p. D’apreés le
théoréme de transfert, si la série
S (=1)rpa—p)n?

n>1

converge absolument, alors (—1)% est d’espérance finie et la somme de cette série est E((—1)%).
On reconnait (& un facteur —p preés) la série géométrique de raison p — 1 avec |p — 1| < 1, donc
absolument convergente. On en déduit que (—1)% est d’espérance finie avec

+oo 1

_ p
(=) = 1" (- LT "3
,—[Théoréme — Quelques propriétés de l’espérance} \

Soient X et Y deux variables aléatoires d’espérance finie sur (€2, &7, P) et A € R. Alors :
e Linéarité : A\X + Y est d’espérance finie et E(AX +Y) = AE(X) + E(Y).

e Positivité : si P(X > 0) =1, alors E(X) > 0.

e Croissance : si P(X <Y) =1, alors E(X) < E(Y).

\

Démonstration

e La démonstration de la linéarité de I'espérance n’est pas exigible.

Considérons le couple (X, Y) et lorsque X (€2) x Y (€2) est dénombrable, décrivons-le en extension
sous la forme {(x,,yn)}; n € N}. Soit f une fonction définie sur X (2) x Y (2), a valeurs dans
R; d’aprés le théoreme de transfert, la série D, —q f(@n.yn) P(X = 25,Y = yp) est absolument
convergente si et seulement si f(X,Y) est d’espérance finie, et dans ce cas

400
E(f(X7Y)) = Zf(xnayn) P(X =1x,,Y = yn)
n=0

Nous allons utiliser ce résultat avec f : (z,y) — =z, f: (x,y) — y et f: (z,y) — Az + y. Les
séries
anP(X =x,Y =y, et ZynP(X =x,,Y =1y,)
n=>0 n=>0
sont absolument convergentes car X et Y sont d’espérance finie. Par combinaison linéaire, la
série
n>=0



est absolument convergente, donc AX + Y est d’espérance finie; on a alors

+oo +oo
EQAX+Y) =AY 2, P(X =20, Y =yn) + > _yn P(X = 2,,Y =y,) = AE(X) + E(Y).
n=0 =

On adapte la démonstration avec des sommes finies si X (2) x Y () est fini.

e On décrit X () en extension sous la forme {z,; n € I'}. On a P(X < 0) = 0, donc pour tout
n tel que x, < 0, z,, P(X = x,) = 0. Donc on peut écrire E(X) comme somme d’une série (ou
somme finie) & termes positifs, d’ou E(X) > 0.

e Cela résulte des deux points précédents. O

Application — On retrouve facilement l'espérance d’une variable aléatoire suivant la loi % (n,p)
en utilisant la linéarité de ’espérance : soient X7, ...,X,, des variables aléatoires mutuellement
indépendantes suivant la méme loi Z(p) (on sait qu'’il existe un espace probabilisé portant de
telles lois). Alors on sait que S = X + -+ + X, suit la loi #(n,p). Par linéarité de l'espérance,
on a donc

= Z E(Xy) =np

car E(X})) = p pour tout k. L’espérance ne dépendant que de la loi, on obtient ainsi I’espérance
de toutes les variables aléatoires suivant la loi Z(n,p).

— Propriété \

Soient X et Y deux variables aléatoires indépendantes sur (2, o7, P), d’espérance finie.
Alors XY est d’espérance finie et

E(XY) = E(X)E(Y).

La réciproque est fausse en général.
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La démonstration est hors-programme dans le cas général. Dans le cas des univers finis, elle
a été donnée en premiére année. O
Exemple — Marche aléatoire

Reprenons un exemple décrit plus haut : une particule peut occuper différentes positions repérées
par les entiers relatifs. A intervalle régulier, la particule peut passer de la position i & la position
i+ 1 avec probabilité p €]0,1], ou a la position i — 1 avec probabilité ¢ = 1 —p. On suppose qu’un
mouvement ne dépend que de la position & partir de laquelle il est fait. Pour n > 1, on note
X, la variable aléatoire représentant la position de la particule aprés n mouvements; X est la
variable aléatoire nulle (la position initiale est 0). On admet l’existence d’un espace probabilisé
(Q, o7, P) modélisant cette expérience.

On cherche & étudier différents aspects de cette marche aléatoire.
e Loi de X; et X5 : X; prend les valeurs 1 et —1, avec P(X; =1) =p, P(X; = —-1) =¢. On
en déduit que Xo prend les valeurs —2, 0 et 2. D’aprés la formule des probabilités totales,
P(X2 = 2) = P(X2 = Q‘Xl = 1)P(X1 = )+P(X2 = 2’X1 = —1)P(X1 = —1)
:pP(Xlzl)—l-OXP(Xl ) ,
P(Xy=0)=P(Xz=0[X1 =1)P(X; =1)+ P(Xy =0| Xy = —1)P(X; = —1) = 2pq,
P(X2 = —2) = P(X2 = —2’X1 = 1)P(X1 = 1) +P(X2 = —Q‘Xl = —1)P(X1 = —1)
—0x P(X;1=1)+qP(X; =-1)=¢%

e La particule ne peut revenir en 0 qu’aprés un nombre pair de mouvements, ainsi, pour tout
n € N, P(X2,41 = 0) = 0. Pour n € N, la particule est a 'origine aprés 2n mouvements si et



seulement si elle a effectué n mouvements a droite et m mouvements & gauche. Le nombre de
mouvements & droite parmi les 2n premiers suit la loi #(2n,p), donc

P(X2, =0) = (?) p(1—p)* " = n!); (p(1 —p))"™.

D’aprés la formule de Stirling,

et finalement,

P(Xay = 0) ~ o (4p(1 = p)"

e La variable aléatoire 1(x,—g) + -+ + L(x,,=0) représente le nombre de retours a l'origine au
cours des 2n premiers mouvements. Par linéarité de l'espérance (pour tout A € 7, la variable
aléatoire 1 4 est d’espérance finie égale a P(A)),

E(L(xy—0) +* + 1 (x,,~0)) ZP Xor = 0).

Remarquons que 'on a calculé cette espérance sans déterminer la loi du nombre de retours.

~Sip#1/2,0 < 4p(1 —p) < 1, et par comparaison de séries a termes positifs, la série de
terme général P(Xs, = 0) converge. L’espérance du nombre de retours a l'origine est majorée
indépendamment du nombre de mouvements.

~Sip=1/2, P(X9, =0) ~

1
N et la série de terme général P(Xo, = 0) (& termes positifs)
nm
diverge par comparaison avec une série de Riemann d’exposant 1/2 < 1. Un résultat sur les
sommes partielles de séries a termes positifs divergentes, puis une comparaison série/intégrale

(que nous ne détaillons pas ici), montrent alors que

P(Xop, = 0) —~2
> Pt z \f

Cette espérance tend vers +oo lorsque n — 400 : en un temps illimité, il y a en moyenne une
infinité de retours a 'origine!

V. Séries génératrices des variables aléatoires a valeurs dans N

,—[Propriété/Déﬁnition — Série génératrice} .

Soit X une variable aléatoire sur (2,.2/, P), a valeurs dans N.

Alors, pour tout ¢ € [—1,1], la variable aléatoire tX est d’espérance finie. On pose, pour
tout t € [—1,1],

Gx(t) = E(tY), etona Gx(t ZP

La fonction G x est la somme d’une série entiére de rayon de convergence au moins égal
a 1. Elle est appelée série génératrice (ou fonction génératrice) de X.




Démonstration — On peut considérer que X (2) = N. Soit ¢ € [—1,1]. D’aprés le théoréme de
transfert, tX est d’espérance finie si et seulement si la série

> P(X =n)t"
n>0

converge absolument. Or, pour tout n € N, [P(X = n)t"| < P(X = n), et 3, -, P(X = n)
converge (et sa somme vaut 1). Par comparaison, on en déduit l'existence de E(tX); la formule
donnant E(t*X) provient aussi du théoréme de transfert.

Sachant que la série entiére définissant G'x converge absolument en tout point de [—1,1], son
rayon de convergence est au moins égal a 1. U

Remarques
+o0
eOnaGx(l)=) P(X=n)=1
n=0

e Lorsque X () est fini, Gx est un polynéme (et R = 400).

— Propriété \

La loi d’une variable aléatoire a valeurs dans N est caractérisée par sa série génératrice :
soient X et Y deux variables aléatoires sur (2,47, P), a valeurs dans N, telles que
X(Q)=Y(22) et Gx(t) = Gy(t) pour tout t €| — r,;r|[ (pour un certain r €]0,1]).
Alors X et Y ont la méme loi.
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Démonstration — Si Gx(t) = Gy (t) pour tout ¢t € [—1,1], alors par unicité du développement en
série entiére, P(X =n) = P(Y =n) pour tout n € N. O

Remarque — La série génératrice de X contient donc toute I'information sur la loi de X. On a en
fait, d’aprés I'expression des coefficients d’une série entiére : pour tout n € N,

aP(o
P(X =n)=—=~ ©
n!
,—[Propriété — Lien avec l’espérance} \

Soit X une variable aléatoire sur (£2,.o7, P), a valeurs dans N.

Alors, pour que X soit d’espérance finie, il faut et il suffit que Gx soit dérivable a
gauche en 1. Dans ce cas, on a

E(X) = Gl ().
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Démonstration (non exigible)
Posons, pour tout n € N, f, : t — P(X = n)t". La série de fonctions Zn>0 fn converge
simplement sur [—1,1]; pour tout n € N, f,, est de classe C! sur [—1,1] avec pour tout n € N* et
te[-1,1],

(0] = In P(X = n) 1" < n P(X = n).
Le majorant est le terme général d’une série convergente car X est d’espérance finie. D’aprés
le théoréme de la classe C! pour les séries de fonctions, Gx est de classe C! sur [—1,1], et en
particulier dérivable & gauche en 1. On a de plus

+o0o +oo
Gy(1) = £,0) =Y nP(X =n) = E(X).
n=0 n=1

Soit p € N*. Pour tout ¢ € [0,1],

GX(tl)t:fX(l) 2,;)]3()( =n) t:__11 =Y P(X=n)14t+--+t"),

n=1




I'inégalité étant valable par positivité des termes. Lorsque t — 17, on en déduit que
P
Y nP(X =n) < Gx(1).
n=1

pour tout p € N*. La série & termes positifs Zn>0nP(X = n) est donc & sommes partielles
majorées indépendamment de p, donc convergente, ce qui entraine (& nouveau par positivité des
termes) que X est d’espérance finie. O

,—[Propriété — Séries génératrices correspondant aux lois usuelles} \

Soit X une variable aléatoire sur (€2, .27, P).
e Si X — HA(p), alors pour tout t € R, Gx(t) =1—p—+ pt.
e Si X — HA(n,p), alors pour tout t € R, Gx(t)=(1—p+pt)".
t
e Si X — ¥(p), alors pour tout ¢ tel que |(1 —p)t| <1, Gx(t) = ﬁ
—\l=D

e Si X — Z(A), alors pour tout t € R, Gx(t) = eMt=1)
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Démonstration
e S5i X — A(p),onapourtout t e R, Gx(t) = P(X =0)+P(X =1)t=1—p+pt.
e Si X — ZA(n,p), on a pour tout ¢t € R,

n n

Gxﬁ%=§:<2ﬁfﬂ-ﬁﬁ”“k:§:<Z>@ﬂwl—mm*=(1—p+mw

k=0 k=0

d’aprés la formule du bindme de Newton.

e Supposons que X — ¥(p). La série génératrice de X est la fonction somme de la série entiére
> op(t—p e
n>1

On reconnait une série géométrique de raison (1—p)t. Elle converge si et seulement si |(1—p)t| < 1,
et dans ce cas

+o0o
Gx(t)=pt Y ((1—p)t)" = ﬁ
n=0

e Supposons que X — Z(A). La série génératrice de X est la fonction somme de la série entiére
)\n
S
=0 n!

On reconnait une série exponentielle ; elle converge pour tout ¢ € R, et

S ()"
VieR, Gx(t)=e ) = e M — A1) 0
n=0
,—[Propriété — Somme de deux variables aléatoires indépendantes} .

Soient X et Y deux variables aléatoires indépendantes sur (€2, o7, P), a valeurs dans N.
Alors, pour tout ¢ € [—1,1],

Gx4y(t) = Gx(t) Gy (1).




Démonstration — La variable X + Y est & valeurs dans N de méme que X et Y. Les variables X
et Y sont indépendantes, donc pour tout ¢ € [—1,1], tX et t¥ sont indépendantes. On en déduit
que

Gxyy(t) = E*TY) = Et* tY) = EGN)E(tY) = Gx(t) Gy (t).

Remarque — Soit n € N; on a

(X+Y =n)= O(X:k:,Y:n—k),
k=0

ces événements étant deux & deux incompatibles, d’oti, par indépendance,
n n
P(X+Y=n)=» P(X=kY=n—k) =) P(X=kPY =n-k).
k=0 k=0

On connait donc la loi de X + Y. Par produit de Cauchy de deux séries entiéres absolument
convergentes, on a pour tout ¢ € [—1,1],

—+o00 n +oo
Gx(H)Gy(t) =) (Z P(X =k)P(Y =n— k)) "= P(X+Y =n)t" = Gxiy(b),
n=0 \k=0 n=0

ce qui donne une autre démonstration de la propriété précédente.

Corollaire — Somme de variables aléatoires suivant une loi de Poisson

Soient X et Y deux variables aléatoires indépendantes sur (2, o7, P) et A\, u deux réels
strictement positifs. On suppose que X — Z(\) et Y — P (u).

Alors X +Y — (A + p).

Démonstration — Pour tout n € N, P(X =n,Y =0) = P(X =n) P(Y = 0) par indépendance,
donc P(X +Y =n) > 0. On en déduit que (X + Y)(2) = N. De plus, pour tout ¢ € [—1,1] (en
fait pour tout ¢t € R),

Gxiy(t) = Gx(t) Gy (t) = M1 erlt=1) — LO+m)(E=1)

La série génératrice caractérisant la loi, on en déduit que X +Y — Z(\ + p). U

VI. Variance

1. Généralités

L’espérance de X correspond & la moyenne pondérée des valeurs de X, mais ne décrit pas
comment sont réparties les valeurs de X autour de cette moyenne. C’est I'intérét des notions de
variance et d’écart-type.

— Propriété \

Soit X une variable aléatoire réelle sur (£2,.27, P). On suppose que X2 est d’espérance
finie. Alors :

e X est d’espérance finie.
o (X — E(X))? est d’espérance finie.




Démonstration

e Le probléme ne se pose que si X () est dénombrable. On écrit X (Q2) = {z,,; n € N}. La variable
aléatoire X2 est d’espérance finie, donc d’aprés le théoréme de transfert, Zn>o 22 P(X = zy,)
converge et sa somme est £(X?). Pour tout p € N, on a d’aprés I'inégalité de Cauchy-Schwarz,

> lwal PIX = 20) = Y (Joal VPX = 20) ) VPX = 2)
n=0 nzOp . "
< Zx%P(X = Zy) ZP(X = wn))
n=0 n=0

car Y SO P(X =) = 1.

Les sommes partielles de la série & termes positifs »_, o[, P(X = z5,) sont majorées
indépendamment de p, donc cette série converge, ce qui prouve le résultat. En passant & la limite
dans les inégalités précédentes, on obtient méme : E(|X|) < /E(X?).
eOna (X —E(X))?=X?2-2E(X)X + E(X)2 Si X? est d’espérance finie, X également, et
donc par combinaison linéaire, (X — E(X))? est d’espérance finie. O

Cette propriété permet de donner la définition suivante :

,—[Propriété/ Définition — Variance et écart-type} \

Soit X une variable aléatoire réelle sur (2, <7, P). On dit que X admet une variance
(ou admet un moment d’ordre 2) si X? est d’espérance finie. Dans ce cas :

e On appelle variance de X le réel positif
V(X) = E((X - B(X))?).

On a aussi V(X) = E(X?) — B(X)2.
e On appelle écart-type de X le réel positif o(X) = /V(X).

\

Démonstration de la seconde expression de V(X))
D’aprés la propriété précédente, (X — F(X))? = X2 —2E(X)X + E(X)? est d’espérance finie;
par linéarité de I'espérance,

V(X) = E(X?) - 2E(X)* + E(X)* = E(X?) - BE(X)*. 0

Remarques

e Si X? est d’espérance finie, le moment d’ordre 2 de X est le réel positif E(X?).

e Si X(92) = {x,; n € N}, d’aprés le théoréme de transfert, X a une variance si et seulement si
la série & termes positifs Zn>0 22 P(X = x,) converge, et dans ce cas,

“+o00
V(X)=> (o — E(X))* P(X = xy).
n=0
e Si X admet une variance et m = E(X), on a V(X) = 0 si et seulement si P(X =m) = 1.
Exemple — Soit X une variable aléatoire prenant les valeurs 1 et —1 et suivant la loi uniforme, et
soit Y la variable aléatoire nulle. Alors X et Y sont toutes les deux d’espérance nulle. Pourtant,
elles se comportent trés différemment ; la variance est un moyen de mesurer cette différence : on

’ VIX)=B(X-0})=EX?)=1 et V(¥)=0.



Propriété

Soit X une variable aléatoire réelle sur (£2,.27, P), admettant une variance, et (a,b) € R2.
Alors aX + b admet une variance et on a : V(aX +b) = a® V(X).

Démonstration — On a (aX +b)? = a?X2+2abX +b? et X? est d’espérance finie donc X également.
Par combinaison linéaire, aX + b a une variance et par linéarité de 1’espérance,

E((aX +b)?) = a>E(X?) + 2abE(X) + b

(E(aX 4+ b))% = (aE(X) +b)? = a®E(X)? 4+ 2abE(X) + V°.
Par différence, on en déduit que

V(aX +b) = a*(E(X?) — B(X)?) = a®* V(X). O

Remarque — Cette propriété est cohérente avec l'interprétation de V(X) et o(X) comme indi-
cateurs de dispersion des valeurs de X autour de son espérance : ajouter une méme valeur b a

toutes les valeurs de X ne modifie pas la variance et I’écart-type, multiplier toutes les valeurs de
X par un réel a multiplie I’écart-type par |a|.

,—[Propriété — Lien entre série génératrice et variance} \

Soit X une variable aléatoire sur (£2,.27, P), a valeurs dans N.

Pour que X admette une variance, il faut et il suffit que G x soit deux fois dérivable &
gauche en 1. Dans ce cas,

V(X) = Gx (1) + Gx (1) - Gx (1)*.
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Ce résultat est admis (démonstration non exigible). Il s’agit d’adapter la démonstration faisant
le lien entre l'existence de E(X) et celle de Gy (1). Expliquons simplement comment retrouver
la formule donnant V(X)) : en cas d’existence, on montre que G’ (t) et G’ (t) se calculent, pour
t € [-1,1], par dérivation terme a terme avec

+oo +oo
Gx(t) =) nP(X =n)t"", G%(t)=> n(n—1)P(X =n)t"?
n=1 n=2
+00 +oo
Gx(1) =) nP(X =n)=E(X), Gx1)=> n(n—1)P(X =n)=EX(X -1)).
n=0 n=0

D’apres le théoréme de transfert, et par linéarité de ’espérance,

V(X)=E(X*)-EX)?=EXX-1)+EX)-EX)?=G%1)+G%x(1)-G%x(1)?* O

,—[Propriété — Variance correspondant aux lois usuelles} \

Soit X une variable aléatoire sur (€2, <7, P).
e Si X — A(p), alors X admet une variance et V(X) = p(1 — p).

e Si X — ZAB(n,p), alors X admet une variance et V(X) = np(1 — p).

1—

e Si X — ¥(p), alors X admet une variance et V(X) = 2p'
p
=\

e Si X — Z(\), alors X admet une variance et V(X)




Démonstration
e Si X — %(p),ona E(X?) =0%x(1-p)+12 xp=p. Alors

V(X)=E(X?*)—E(X)*=p-p*=p(l-p).

e Si X — A(n,p), on sait que Gx(t) = (1 — p+ pt)" pour tout t € R. La fonction Gx est deux
fois dérivable en 1, donc X admet une variance, et

V(X) = G% (1) + Gx(1) = Gx(1)* = n(n — 1)p* +np — n*p? = np(1 - p).

pt

e Supposons que X — ¥(p). On sait que Gx (t) = m notamment pour tout ¢ € [—1,1].
—l=p
La fonction Gx est deux fois dérivable sur [—1,1], avec
p 1" 2p(1 —p)
Vie[-11], CGy(t)=— L t) =
N D A e (T
En particulier, X admet une variance, et
2p(1 — 1 1 1-—
V0 = G4+ Gx) - G = 2O L Lo

e Supposons que X — Z()\). On sait que Gx(t) = M1 pour tout ¢ € R. La fonction Gy est
deux fois dérivable en 1, donc X admet une variance, et

V(X)=G%(1) + Gy (1) = Gx(1)? =22+ X - A2 =\, -

Remarque — On peut calculer toutes ces variances directement a partir du théoréme de transfert.

2. Covariance et corrélation

,—[Propriété — Inégalité de Cauchy-Schwarz} \

Soient X et Y deux variables aléatoires sur (2,27, P), admettant une variance.

Alors XY est d’espérance finie et

|E(XY)| < VE(X?)E(Y?).
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Démonstration — On a |XY| < X2 4+ Y?; en adaptant la démonstration de la linéarité de 1'es-
pérance, on en déduit que XY est d’espérance finie. Quant & I'inégalité de Cauchy-Schwarz, on
procéde comme pour un produit scalaire, en considérant la fonction polynomiale de degré au
plus 2

A= B(AX +Y)%) = NX2E(X?) + 20AE(XY) + BE(Y?),

A valeurs positives. O

— Définition N

Soient X et Y deux variables aléatoires sur (Q2,.o7, P), admettant une variance.

e On appelle covariance de X et Y le réel
Cov(X,Y) = E([X — EX)|[Y - E(Y)]) = E(XY)-EX)E(®YY).

e Si 0(X) et o(Y) sont non nuls, on appelle coefficient de corrélation de X et Y le
réel

Cov(X,Y)

PXY) = XY ow)




Démonstration de |'existence de Cov(X,Y), et de la seconde formule

Ona[X-EX)|Y -EY)|=XY-EX)Y —EY)X + E(X)E(Y). Les variables aléatoires
X et Y ont une variance, donc le produit XY est d’espérance finie et par combinaison linéaire,
[X — E(X)][Y — E(Y)] est d’espérance finie. Par linéarité de l'espérance, on a

Cov(X,)Y)=EXY)-EX)EY)-EY)E(X)+EX)EY)=EXY)-EX)E(Y). O
Remarques

e Si X admet une variance, Cov(X,X) = V(X).
e Si X et Y admettent une variance, Cov(X,Y) = Cov(Y,X).

Propriété

Soient X et Y deux variables aléatoires indépendantes sur (2, <7, P), admettant une
variance.

Alors Cov(X,Y) = 0.

Démonstration — On a Cov(X,Y) = E(XY) — E(X)E(Y) = 0 par indépendance. O

Remarque — La réciproque de la propriété précédente est fausse comme le montre I'exemple
suivant : soit X une variable aléatoire d’image {—1,0,1}, de loi uniforme, et soit Y = X?2. Alors
E(XY) = E(X) =0 (ona XY = X3 = X) donc Cov(X,Y) = 0, mais X et Y ne sont pas
indépendantes car

P(Y:0|X:1):O#%:P(Y:0).

Exemple — Soit (X,,)nen+ une suite de variables aléatoires mutuellement indépendantes suivant
la loi Z(p) avec p €]0,1[. Posons, pour tout n € N*| Y,y = X, X,,+1. Pour tout n, X, est la
fonction indicatrice de I’événement (X,, = 1), et Y}, est la fonction indicatrice de I’événement
(X, =1)N(X,11 = 1), de probabilité p?> €]0,1[ par indépendance. En particulier, Y, — %(p?).
La variable Y,, indique deux succés consécutifs aux rangs n et n + 1.

De la méme facon, pour tout n € N*, Y, V11 = X, Xy 1 Xni2 — B(p?), donc

Cov (Yo, Yns1) = E(YVpYng1) — E(Yn) E(Yni1) = p° — p* = p*(1 — p).

Notamment, Y,, et Y, 11 ne sont pas indépendantes.

En revanche, si j > ¢ + 2, on remarque que Y;Y; est la fonction indicatrice de
(Y = 1) = (X, = 1) 1 (Xis1 = 1) 0 (X5 = D)0 (X1 = 1),
de probabilité p* par indépendance, et donc F (Y3Y;) = pt, puis
Cov(Y;,Y;) = E(Y;Y;) — E(Y)E(Y;) = p' —p*p* = 0.

Attention, on ne peut pas en déduire que Y; et Y; sont indépendantes (c’est vrai, mais il faudrait
le prouver en revenant par exemple a la définition).

,—‘ Propriété \

Soient X et Y deux variables aléatoires sur (£2,.o7, P), admettant une variance.
Alors

Cov(X, V)| < o(X) o(¥),
En particulier, si 0(X) # 0 et o(Y) # 0,

p(X,Y) € [-1,1].




Démonstration — D’apreés 'inégalité de Cauchy-Schwarz,
Cov(X,Y)| = | E(X~EX)|Y ~EX)))| < (E(X — EC)HE((Y - EY)?)"* = 0(X) o (¥).

L’encadrement de p(X,Y’) s’ensuit directement. O

Remarque — Le coefficient de corrélation mesure en quelque sorte la dépendance entre X et Y.
Lorsque |p(X,Y)] est proche de 1, une information sur X apporte une information sur Y. Lorsque
X et Y sont indépendantes, p(X,Y) = 0, mais la réciproque est fausse.

,—[Propriété — Variance d’une somme de variables aléatoires} \
Soient X1,...,X,, des variables aléatoires sur (£2,.o7, P), admettant une variance.
Alors :

e > 1 _, Xi admet une variance et

1% <Z Xk> =) V(Xp)+2)  Cov(X;,X;).
k=1

k=1 i<j

e Si de plus Xq,...,X,, sont deux & deux indépendantes, on a

1% (Z Xk> = V(Xp).
k=1 k=1
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Démonstration
e On a
n 2 n
() - Xt oy w,
k=1 k=1 i<j
Les X}, ont toutes une variance, donc les X; X; sont d’espérance finie, et par combinaison linéaire

(O Xk)2 est d’espérance finie (i.e., > ._; X} admet une variance). De plus, par linéaritée de
I’espérance,

n 2 n
E (ZXk> =Y B(X{)+2) E(X;X;).
k=1 k=1 i<y

D’autre part,

<E <2Xk>> = (mek)) =S (B(XW)? +2Y ) B(X)E(X)).
k=1 k=1 k=1 i<j
On en déduit le résultat par différence.
e Si les Xj sont deux & deux indépendantes, on a, pour tout (i,j) € [[1,n]]2 tel que i < 7,
Cov(X;,X;) =0, d’ou 'égalité souhaitée. O

Application — Soient X7,...,X,, des variables aléatoires mutuellement indépendantes suivant
la méme loi #A(p) et soit S = X1 +---+ X,. D’aprés la propriété précédente, S a une variance et

V(S)=> V(Xy) =np(l—p).
k=1

On sait aussi que S suit la loi #(n,p). La variance ne dépendant que de la loi, on en déduit que
pour toute variable aléatoire X qui suit la loi Z(n,p), on a V(X) = np(1 — p). On retrouve donc
la valeur de V' (X) déterminée plus tot par un calcul direct.



3. Estimations de la dispersion

La variance s’interpréte comme indicateur de dispersion. Dans ce paragraphe, nous allons
montrer plus précisément comment la variance (ou I’écart-type) permet de mesurer cette disper-
sion.

,—[Théoréme — Inégalité de Markov} \

Soit X une variable aléatoire sur (£2,.<7, P), positive, d’espérance finie.

Alors, pour tout € > 0,
E(X)

P(X >¢) <
€
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Démonstration — Soit € > 0 fixé. On décrit X (£2) en extension sous la forme {z,; n € I}. Soit
U = [e, + oo[. Par positivité de X,

E(X)> Y anP(X=mz,)2e Y P(X =1,
znelU znelU

car T, = € si x, € U. Alors
E(X)>eP(XeU)=eP(X >¢),

d’ou le résultat. O

,—[Théoréme — Inégalité de Bienaymé - Tchebychev} \

Soit X une variable aléatoire sur (£2,.o/, P), admettant une variance.

Alors, pour tout € > 0,

2
P(X - B(X)| > 2) < 280

e
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Démonstration — Soit € > 0 fixé. La variable aléatoire X admet une variance donc est d’espérance
finie et, en posant Y = (X — F(X))2, alors Y est une variable aléatoire positive d’espérance finie.

De plus, on remarque que
(X -BX)[ze)=(Y =€),

Alors, d’apreés I'inégalité de Markov,

P(|X —EX)|=2e)=PY =2&%) < = : O

Remarque — L’inégalité de Bienaymé - Tchebychev permet de majorer la probabilité que X s’écarte
d’au moins € de son espérance, i.e., de sa moyenne. On voit que cette majoration fait intervenir
lécart-type de X ; plus précisément, plus o(X) est petit, plus la probabilité précédente est faible,
c’est-a-dire, plus grande est la probabilité que X soit proche de son espérance. Cela confirme
I'interprétation de o(X) et V(X) comme indicateurs de dispersion.

Exemple — Notons m = E(X) et 0 = 0(X). Pour € = 20, on obtient
1
P(|X —m|>20) < 7

ou de fagon équivalente,

3
P(m—20<X<m—|—20)>Z.

La probabilité que X soit au plus & 2 écarts-types de son espérance est donc au moins 3/4. En
revanche, pour € = o, l'inégalité ne donnerait pas de résultat intéressant.



,—[Théoréme — Loi faible des grands nombres} \

Soit (Xp)nen+ une famille de variables aléatoires sur (2, .47, P). On suppose que les
variables aléatoires X,

e sont deux a deux indépendantes,

e ont la méme loi et admettent une variance.
On note m = E(X1), 0 = o(X1) et pour tout n € N*, S;, = X; +--- + X,,.
Alors, pour tout € > 0,

1
n
et en particulier,

1
P(’—Sn—m’ 25) — 0.
n

n—-+o0o

\. J

Démonstration — Les variables aléatoires X,, admettent une variance donc également une espé-
rance. Sachant qu’elles ont la méme loi, elles ont la méme espérance et la méme variance (par
exemple celles de X1, m et 02). De plus, par linéarité de I'espérance, on a pour tout n € N*,

1 1

E <—Sn> =—nE(X1)=m,
n n

et d’aprés les propriétés de la variance,

V lSn :iVSn:lVXl
(350) = sz V) =2 vix)

n? n

S\ o2
par indépendance deux & deux des Xj,. Ainsi, o (—n> = —,
n n

Soit e > 0 fixé. D’aprés 'inégalité de Bienaymé-Tchebychev appliquée a S,,/n, on a

2 2
i (‘ES" _m‘ > 8) < oSn/n)” _ @ — 0. U
n

g2 neZ n—+oo

Remarques

e Imaginons que 'on répéte indéfiniment une méme expérience aléatoire en observant, a chaque
étape, un certain résultat; cette situation est modélisée par une suite (X, )nen+ de variables
aléatoires mutuellement indépendantes et de méme loi, X,, représentant le résultat observé a la
n-iéme étape. Alors S,,/n représente la moyenne empirique des résultats au cours des n premiéres
expériences.
Notons m I’espérance commune a toutes les variables X,,. La loi faible des grands nombres affirme
que pour tout € > 0, la probabilité que S,,/n s’écarte de m d’au moins ¢ tend vers 0 lorsque
le nombre d’expériences tend vers 4+o0o0. De fagon équivalente, la probabilité que cette moyenne
vérifie m —e < S, /n < m + ¢ tend vers 1.
e Par exemple, considérons un jeu de pile ou face infini (ou toute autre expérience de Bernoulli
reproduite indéfiniment) et notons X, 'indicatrice de ’événement « le n-iéme lancer donne pile ».
Pour tout n € N*, X, — %(p), E(X,) = p et V(X,,) = p(1 — p). Si les X,, sont deux a deux
indépendantes, le théoréme précédent affirme que la moyenne S,,/n du nombre de « pile » au
cours des n premiers lancers sera « proche » de p (& € prés) avec une probabilité tendant vers 1
lorsque n — 4o00. En un certain sens, la moyenne se stabilise vers p lorsque le nombre de lancers
augmente.

Ci-dessous, on a représenté les fréquences relatives d’apparition de « pile » au cours des n
premiers lancers, pour n € [1,200] puis pour n € [1,1000]. Dans chaque cas, on a effectué trois
simulations (courbes des différentes couleurs).
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Il faut bien comprendre que ce théoréme ne dicte pas & une expérience « concréte » comment
elle va se dérouler pour « assurer » 1’'équilibre. Le théoréme s’inscrit a l’intérieur du modéle, mais
est cohérent avec ’approche intuitive des probabilités comme fréquence relative de réalisation
lors d’un grand nombre de répétitions.

e Ce théoréme peut jouer un réle dans la validation du modéle : si on suppose une piéce équilibrée
et que toutes les observations montrent une convergence vers p # 1/2, alors le modéle est sans
doute a revoir. Il permet d’estimer certains paramétres (par observation d’un échantillon, comme
par exemple lors d’un sondage), I'inégalité du théoréme permettant de mesurer le risque d’erreur.
Ces deux remarques relévent de la théorie des Statistiques.

e Le théoréme précédent n’affirme pas que Sy, (w)/n tend vers m pour toute issue w (ce qui est
faux en général) ; il ne faudrait donc pas s’étonner d’une issue w pour laquelle (S, (w)/n)nen+
ne converge pas vers m, ou méme, ne converge pas : dans le jeu de pile ou face infini avec une
piéce équilibrée, il est possible d’obtenir pile a chaque tirage (méme si ’événement associé est de
probabilité nulle), et pour cette issue w de lexpérience, (S, (w)/n) est constante égale a 1.

Exemple — On fait un test de qualité dans une production de N articles. Soit p la proportion
d’articles défectueux. On vérifie n articles pris au hasard dans le stock, ce que 'on modélise
par une famille (X7, ...,X,,) de variables aléatoires de Bernoulli mutuellement indépendantes de
paramétre p (X prend la valeur 1 si le k-iéme article testé est défectueux).Avec les notations
précédentes, S, /n est la proportion d’articles défectueux dans I’échantillon testé. On sait que
pour tout € > 0,

r—p) 1

= 4ne?’

1
n

>6><

la derniére inégalité provenant de 'étude de la fonction trindéme p — p(1 — p). Choisissons par
exemple ¢ = 1072 ; alors le majorant vaut 2500/n. Ainsi, en testant n piéces, on peut affirmer
avec un risque d’erreur d’au plus 2500/n, que la proportion observée est une valeur approchée
de p 4 1072 prés. On voit que, avec la précision voulue, minimiser le risque d’erreur implique de
tester un nombre assez grand d’articles : la convergence du majorant n’est pas trés rapide.



Le tableau suivant récapitule certaines caractéristiques des lois usuelles

Nom Notation Condition | Image P(X =k) EX)| V(X) Gx(t)
Bernoulli B(p) p € [0,1] {0,1} P X=1)=p P p(1 —p) 1—p+pt
Binomiale HB(n,p) |neN pel0l]]| [0,n] <Z> PPA—p)" k| np | np(l—p)| (1 —p+pt)"

s _ 1 1—»p pt
Géométrique Y (p p€]0,1 N* p(1—p)kt -

Q 0.1 (1-p) > = | =
)\k
Poisson P(N) A>0 N e A o A A M=)






