
Chapitre 14

Variables aléatoires

Très souvent, on peut associer à chaque issue d’une expérience aléatoire un résultat, notam-
ment numérique, qui correspond à l’observation d’un des aspects de l’expérience. Par exemple, si
on lance deux dés, un rouge et un vert, on peut s’intéresser au résultat du dé rouge, à celui du dé
vert, à la somme des deux, à la couleur de celui (ou ceux) qui donne(nt) le plus grand résultat.
Si l’on observe le déplacement aléatoire d’une particule dans l’espace, on peut s’intéresser à la
position, à chaque seconde, de la particule, mais aussi à sa vitesse, au temps nécessaire pour que
la particule atteigne, éventuellement, une position fixée, etc...

Dans tout le chapitre, (Ω,A , P ) est un espace probabilisé.

I. Définitions, premières propriétés

Une variable aléatoire discrète sur (Ω,A ) est une application définie sur Ω, et
vérifiant les conditions suivantes :

• L’image X(Ω) de X est finie ou dénombrable,

• Pour tout x ∈ X(Ω), X−1({x}) ∈ A .

Pour tout x ∈ X(Ω), l’événement X−1({x}) est noté {X = x} ou (X = x).

Lorsque X est à valeurs dans R, on dit que X est une variable aléatoire réelle.

Définition – Variable aléatoire

Remarques

• On parle aussi souvent de variable aléatoire sur (Ω,A , P ), mais la définition d’une variable
aléatoire n’utilise pas la probabilité P .

• Dans ce cours, toutes les variables aléatoires seront implicitement supposées discrètes.

• On rappelle que X−1({x}) = {ω ∈ Ω; X(ω) = x}. Plus généralement, si U est un sous-
ensemble de X(Ω), X−1(U) = {ω ∈ Ω; X(ω) ∈ U}. Le fait d’employer cette notation ne signifie
absolument pas que X est bijective !

• Si X est une variable aléatoire sur (Ω,A ), X(Ω) est fini ou dénombrable, donc on peut le
décrire en extension sous la forme X(Ω) = {xn; n ∈ I}, où I est une partie de N.

Alors la famille ((X = xn))n∈I est un système complet d’événements.

• Lorsque Ω est fini, si X est une application définie sur Ω, X(Ω) est également fini. Sachant
de plus que A = P(Ω), la deuxième condition de la définition ci-dessus est aussi remplie. Une
variable aléatoire est donc tout simplement, dans ce cadre, une application définie sur Ω. On
parle de variable aléatoire sur Ω, au lieu de (Ω,P(Ω)).



Soit X une variable aléatoire sur (Ω,A ) et U un sous-ensemble de X(Ω) : U ⊂ X(Ω).

Alors X−1(U) ∈ A . L’événement X−1(U) est noté {X ∈ U} ou (X ∈ U).

Propriété

Démonstration – L’ensemble U est fini ou dénombrable en tant que sous-ensemble de X(Ω), on
peut le décrire en extension sous la forme U = {xn; n ∈ I}, où I est une partie de N. Alors

X−1(U) =
⋃

n∈I

X−1({xn});

c’est un élément de A en tant que réunion finie ou dénombrable d’éléments de A . �

Notation – SoitX une variable aléatoire réelle sur (Ω,A ) et x ∈ R. Lorsque U = ]−∞,x]∩X(Ω),
l’événement (X ∈ U) est noté plus simplement (X 6 x). On définit de façon analogue les
événements (X < x), (X > x) et (X > x).

Exemple – On modélise le lancer de deux dés, un rouge et un vert, par le choix de Ω = [[1,6]]2,
muni de la probabilité uniforme. Pour tout (i,j) ∈ Ω, i est le résultat du dé rouge, j celui du dé
vert. La fonction X qui à (i,j) associe i + j est une variable aléatoire sur Ω. Elle prend toutes
les valeurs de [[2,12]]. Par exemple,

(X = 2) = {1,1} avec P (X = 2) =
1

36
,

(X = 4) = {(1,3),(2,2),(3,1)} avec P (X = 4) =
3

36
=

1

12
,

(X = 7) = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} avec P (X = 7) =
6

36
=

1

6
,

Soit X une variable aléatoire sur (Ω,A ) et f une fonction définie sur X(Ω).

Alors f ◦X est une variable aléatoire sur (Ω,A ), plus souvent notée f(X).

Propriété/Définition

Démonstration – L’image de X est finie ou dénombrable, donc celle de f(X) également. De plus,
soit a un élément de f(X(Ω)) (image de f(X)) ; alors

(f ◦X)−1({a}) = (X ∈ f−1({a})).

Or f−1({a}) ⊂ X(Ω), donc d’après la propriété précédente, (f ◦X)−1({a}) ∈ A , ce qui prouve
le résultat. �

Exemple – Si X est une variable aléatoire réelle, X2 est une variable aléatoire. Si X est à valeurs
strictement positives, ln(X) est une variable aléatoire.

II. Loi d’une variable aléatoire

1. Généralités

Soit X une variable aléatoire sur (Ω,A , P ).

On appelle loi de la variable aléatoire X la fonction définie sur X(Ω) par :

∀x ∈ X(Ω), PX(x) = P (X = x).

Définition – Loi d’une variable aléatoire

Remarque – La loi de X permet de définir une probabilité sur (X(Ω),P(X(Ω))).



Soit X une variable aléatoire sur (Ω,A , P ). On décrit X(Ω) en extension sous la forme
X(Ω) = {xn; n ∈ I} où I est une partie de N.

Alors, pour tout U ⊂ X(Ω), on a

P (X ∈ U) =
∑

xn∈U

P (X = xn).

Propriété

Rappel – Lorsque X(Ω) est dénombrable et décrit en extension sous la forme {xn; n ∈ N}, U
est fini ou dénombrable, et peut-être décrit en extension sous la forme {xϕ(1), . . . ,xϕ(m)} (où
m = card(U)) ou {xϕ(k); k ∈ N} (où ϕ est une bijection de N sur N). Alors

∑

xn∈U P (X = xn)
s’exprime comme une somme finie, ou une somme de série convergente :

∑

xn∈U

P (X = xn) =
m∑

k=1

P (X = xϕ(k)) ou
∑

xn∈U

P (X = xn) =
+∞∑

k=0

P (X = xϕ(k)).

Par exemple, si X(Ω) = N et U = 2N = {2k; k ∈ N}, alors P (X ∈ U) =
∑+∞

k=0 P (X = 2k).

Démonstration de la propriété – L’événement (X ∈ U) est la réunion des événements deux à
deux disjoints (X = xn) pour les xn de U , d’où le résultat par définition d’une probabilité (et
notamment, la somme précédente ne dépend pas de la façon de décrire U en extension). �

Remarque – Dans le cas dénombrable, la série
∑

n>0 P (X = xn) converge et a pour somme 1. De
plus, pour tout événement A ∈ A , on a d’après la formule des probabilités totales,

P (A) =

+∞∑

n=0

P (A |X = xn)P (X = xn).

Soit X une variable aléatoire réelle sur (Ω,A , P ).

On appelle fonction de répartition de X la fonction FX définie sur R par :

∀x ∈ R, FX(x) = P (X 6 x).

Définition – Fonction de répartition

Soit X une variable aléatoire réelle sur (Ω,A ,P ) et FX sa fonction de répartition. Alors :

• FX est croissante sur R.

• FX(x) −→
x→−∞

0 et FX(x) −→
x→+∞

1.

Propriété

Démonstration

• Soit (x, y) ∈ R2 tel que x 6 y ; alors (X 6 x) ⊂ (X 6 y), et donc P (X 6 x) 6 P (X 6 y), i.e.,
FX(x) 6 FX(y) : la fonction FX est croissante.

• D’après le premier point, FX a une limite ℓ en +∞, et donc FX(n) −→
n→+∞

ℓ. Or on remarque

que
⋃+∞

n=0(X 6 n) = Ω, donc par propriété de continuité croissante,

FX(n) = P (X 6 n) −→
n→+∞

P (Ω) = 1.

On a donc ℓ = 1.

On procède de même pour la limite en −∞ en utilisant la propriété de continuité décroissante
et le fait que

⋂+∞
n=0(X 6 −n) = ∅ avec P (∅) = 0. �



Remarques

• La fonction de répartition d’une variable aléatoire réelle X est une fonction « en escalier » (pas
tout à fait au sens mathématique), chaque « marche » correspondant au passage en abscisse d’une
valeur prise par X. Ci-dessous, on donne la fonction de répartition correspondant au résultat du
lancer d’un dé équilibré.

x

y = FX(x)

•
•

•
•

•
•
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• Les fonctions FX et PX sont liées : si X(Ω) = N par exemple, on a, pour tout n ∈ N,

FX(n) =

n∑

k=0

P (X = k) =

n∑

k=0

PX(k)

et pour n > 1,

PX(n) = P (X 6 n)− P (X 6 n− 1) = FX(n)− FX(n− 1).

Les valeurs de PX correspondent aux hauteurs des « marches », sur le dessin précédent, PX(n)
est la hauteur de la marche au point d’abscisse n.

Comme on l’a vu plus haut, si X est une variable aléatoire sur (Ω,A ), la donnée d’une
probabilité sur (Ω,A ) définit la loi deX, qui s’identifie à la donnée des P (X = x) pour x ∈ X(Ω).
Inversement, il est en fait possible de choisir des lois, ce qui peut être très utile lors de l’étape
de modélisation :

Soit X une variable aléatoire sur (Ω,A ). On décrit X(Ω) en extension sous la forme
X(Ω) = {xn; n ∈ I}, où I est une partie de N.

Soit (pn)n∈I une famille ou une suite de réels positifs vérifiant

∑

n∈I

pn = 1 (si X(Ω) est fini) ou







∑

n>0

pn converge

+∞∑

n=0

pn = 1

(si X(Ω) est dénombrable)

Alors il existe une probabilité P sur (Ω,A ) telle que, pour tout n ∈ I, P (X = xn) = pn.

Propriété (admise : démonstration hors programme)

Remarque – En pratique, très souvent, une expérience aléatoire est en fait décrite par des données
sur une ou plusieurs variables aléatoires. La modélisation par le choix de (Ω,A ) vient après, et
elle n’est parfois pas nécessaire, ou admise. Par exemple :

• L’évolution d’un arbre généalogique peut être décrite par le nombre aléatoire de descendants
directs de chaque individu, mais un choix de (Ω,A ) n’est pas du tout évident.

• Imaginons un système dont les états à différentes dates sont repérés par les entiers naturels ou
relatifs (on pourra penser à la position d’une particule, à un stock de marchandises). L’évolution
du système est décrite par les probabilités de transition de l’état i à l’état j. Supposons que les



transitions se font entre états voisins dans Z (de k à k + 1 ou k − 1), et notons Xn l’état du
système au rang n. La description du système se fait en donnant, pour tout (n,k) ∈ N × Z, la
probabilité

P (Xn+1 = k + 1 |Xn = k).

On peut choisir
Ω = {(un)n∈N ∈ ZN; ∀n ∈ N, |un+1 − un| = 1},

mais ce n’est pas nécessairement utile de le préciser pour étudier le système.

2. Lois usuelles

La propriété précédente permet de définir des lois par la simple vérification qu’une série est
à termes positifs, convergente et de somme 1 (ou qu’une famille finie de nombres positifs a pour
somme 1). Ceci permet de définir les lois fondamentales suivantes ; pour chaque exemple, on
donne un exemple de situation ainsi modélisée.

a. Loi uniforme

On dit qu’une variable aléatoire X sur (Ω,A , P ) suit la loi uniforme si X(Ω) est fini
et si les événements (X = x) pour x ∈ X(Ω) sont équiprobables.

Définition

Exemples

• La loi uniforme modélise par exemple le résultat d’un lancer de dé équilibré.

• Dans la modélisation du jeu de pile ou face infini faite dans le chapitre Espaces probabilisés,
la variable aléatoire X qui donne le résultat des n premiers lancers suit la loi uniforme : pour
tout (u1, . . . ,un) ∈ {0, 1}n (qui est de cardinal 2n),

P (X = (u1, . . . ,un)) =
1

2n
.

b. Loi de Bernoulli

Soit p ∈ [0,1]. On dit qu’une variable aléatoire X sur (Ω,A , P ) suit la loi de Bernoulli
de paramètre p si X(Ω) = {0, 1} et si

P (X = 1) = p, P (X = 0) = 1− p.

Ceci se note X →֒ B(p).

Définition

Remarque – On note très souvent q = 1− p.
Exemples

• La loi de Bernoulli modélise un lancer de pièce, p représentant par exemple la probabilité
d’obtenir « pile ».

• Plus généralement, la loi de Bernoulli modélise toutes les épreuves de Bernoulli, c’est-à-dire
ayant deux résultats possibles ; celui de probabilité p est souvent interprété comme succès.

En Python, on peut simuler ainsi une expérience de Bernoulli de paramètre p (on supposera
importé le module random) :

1 def sim_bernoulli(p):

2 x = random.random ()

3 if x < p:

4 return 1

5 else:

6 return 0



• Soit A un événement de probabilité p, avec A 6= ∅ et A 6= Ω. Alors 1A est une
variable aléatoire sur (Ω,A , P ) qui suit la loi de Bernoulli de paramètre p.

• Inversement, soit X une variable aléatoire sur (Ω,A , P ) qui suit la loi de Bernoulli
de paramètre p. Alors X = 1A, avec A = (X = 1) de probabilité p.

Propriété – Lien avec les fonctions indicatrices

Démonstration

• La fonction 1A prend les valeurs 0 et 1, et P (1A = 1) = P (A) = p.

• Les deux fonctions X et 1(X=1) prennent la valeur 1 sur (X = 1) et 0 sur (X = 0), avec
(X = 0) ∪ (X = 1) = Ω, donc ces fonctions sont égales. On a P (X = 1) = p par définition. �

c. Loi binomiale

Soient n ∈ N∗ et p ∈ [0,1]. On dit qu’une variable aléatoire X sur (Ω,A , P ) suit la loi
binomiale de paramètres n et p si X(Ω) = [[0,n]] et si

∀ k ∈ [[0,n]], P (X = k) =

(
n
k

)

pk (1− p)n−k.

Ceci se note X →֒ B(n,p).

Définition

Remarque – On définit bien ainsi une loi, car d’après la formule du binôme de Newton,

n∑

k=0

(
n
k

)

pk(1− p)n−k = (p + 1− p)n = 1.

Interprétation – Le nombre S de succès lors d’une succession de n épreuves de Bernoulli de
paramètre p mutuellement indépendantes suit la loi binomiale de paramètres n et p. En effet,
la variable aléatoire S est à valeurs dans [[0,n]] et, pour k ∈ [[0,n]], l’événement (S = k) est la
réunion des événements consistants à fixer k succès et n − k échecs. Ces événements sont deux
à deux incompatibles, sont au nombre de

(n
k

)
, et chacun est de probabilité pk (1 − p)n−k par

indépendance mutuelle. On a donc

P (S = k) =

(
n
k

)

pk (1− p)n−k.

Exemples

• Le nombre de « pile » obtenus lors de n lancers successifs mutuellement indépendants d’une
pièce suit la loi binomiale de paramètres n et p, où p est la probabilité d’obtenir « pile » à un
lancer donné.

• On effectue n tirages avec remise dans une urne contenant des boules indiscernables, rouges
en proportion p et vertes en proportion q = 1 − p. La variable aléatoire donnant le nombre de
boules rouges tirées suit la loi binomiale de paramètres n et p.

En Python, on peut simuler ainsi une suite de n épreuves de Bernoulli de paramètre p :

1 def sim_tirages(n,p):

2 L = []

3 for i in range(n):

4 x = random.random ()

5 if x < p:

6 L.append (1)

7 else:

8 L.append (0)

9 return L



On peut simuler la variable aléatoire S de la façon suivante :

1 def sim_nb_succes(n,p):

2 S = 0

3 for i in range(n):

4 x = random.random ()

5 if x < p:

6 S += 1

7 return S

On peut alors simuler la loi B(n,p) de la façon suivante : on répète N fois la simulation ci-dessus,
et on calcule, pour tout k ∈ [[0,n]] la fréquence relative du résultat k lors de ces N expériences :

1 def loi_binomiale(n,p,N):

2 L = []

3 for i in range(N):

4 S = sim_nb_succes(n,p)

5 L.append(S)

6 return [L.count(k)/float(N) for k in range(n+1)]

d. Loi géométrique

Soit p ∈ ]0,1[. On dit qu’une variable aléatoire X sur (Ω,A , P ) suit la loi géométrique
de paramètre p si X(Ω) ⊃ N∗ et si

∀ k ∈ N∗, P (X = k) = p (1− p)k−1.

Ceci se note X →֒ G (p).

Définition

Remarques

• C’est le premier exemple que l’on rencontre de variable aléatoire prenant un nombre infini de
valeurs.

• On définit bien une loi car la série géométrique de raison (1 − p) ∈ ]0,1[ est à termes positifs,
elle converge, et

+∞∑

k=1

p (1− p)k−1 = p
+∞∑

k=0

(1− p)k =
p

1− (1− p) = 1.

Exemples

• Considérons le jeu de pile ou face infini, avec p la probabilité d’obtenir « pile ». Pour k ∈ N∗,
l’événement « pile apparaît pour la première fois au rang k » a pour probabilité p (1 − p)k−1

(k − 1 échecs suivis d’un succès).

• Plus généralement, la loi géométrique peut être interprétée comme loi du rang du premier
succès dans une suite illimitée d’épreuves de Bernoulli mutuellement indépendantes et de même
paramètre p.

Il est parfois utile d’autoriser que X prenne d’autres valeurs que celles de N∗, avec probabilité
nulle, notamment, en lien avec l’interprétation précédente, si aucun succès ne survient.

• La loi géométrique est aussi souvent utilisée pour modéliser des durées de fonctionnement de
composants, machines, etc...

Remarque – On peut remplacer X(Ω) = N∗ par X(Ω) = N avec :

∀ k ∈ N, P (X = k) = p (1− p)k.

Dans ce cas, cette loi s’interprète comme loi du nombre d’échecs avant le premier succès.



e. Loi de Poisson

Soit λ ∈ R∗
+. On dit qu’une variable aléatoire X sur (Ω,A , P ) suit la loi de Poisson

de paramètre λ si X(Ω) = N et si

∀ k ∈ N, P (X = k) = e−λ λ
k

k!
.

Ceci se note X →֒P(λ).

Définition

Remarque – On définit bien ainsi une loi, car on reconnaît la série exponentielle de λ, qui est à
termes positifs, convergente, avec

+∞∑

k=0

e−λ λ
k

k!
= e−λ eλ = 1.

Le théorème suivant établit un lien asymptotique entre loi binomiale et loi de Poisson :

Soient (pn)n∈N une suite d’éléments de [0,1], (Xn)n∈N une suite de variables aléatoires
sur (Ω,A , P ) et λ ∈ R∗

+. On fait les hypothèses suivantes :

• Pour tout n ∈ N, Xn suit la loi binomiale de paramètres n et pn,

• n pn −→
n→+∞

λ.

Alors, pour tout k ∈ N,

P (Xn = k) −→
n→+∞

e−λ λ
k

k!

Théorème – Approximation de la loi binomiale par la loi de Poisson

Démonstration – Soit k ∈ N. Alors, pour n > k assez grand, pn ∈ ]0,1[ et on a

P (Xn = k) =

(
n
k

)

pk
n (1− pn)n−k =

n(n− 1) · · · (n− k + 1)

k!
pk

n (1− pn)n−k

∼
n→+∞

nk

k!
pk

n (1− pn)n−k.

Tout d’abord, (npn)k −→
n→+∞

λk. De plus, n pn → λ, donc pn → 0+ et, lorsque n→ +∞,

(1− pn)n−k = exp ((n− k) ln (1− pn)) = exp ((n− k)(−pn + o(pn))) .

Or
(n− k)(−pn + o(pn)) = −n pn + o(n pn) ∼

n→+∞
−n pn −→

n→+∞
−λ.

Par continuité de l’exponentielle et d’après ce qui précède, on a bien

P (Xn = k) −→
n→+∞

e−λ λ
k

k!
�

Remarques

• Dans les calculs, on peut donc approcher

(
n
k

)

pk (1− p)n−k par e−np (np)k

k!
.

Cela permet d’éviter des calculs de coefficients du binôme, qui font intervenir des quotients de
grands nombres.

• On considère que l’approximation est intéressante lorsque p 6 0,1, n > 30 et np < 15.



Exemple – On lance 100 fois un dé équilibré à 20 faces et on compte le nombre N de 20 obtenus.
Ce nombre suit une loi binomiale B(100,1/20), on a donc, pour tout k ∈ [[0,100]],

P (N = k) =

(
100
k

)
1

20k

(
19

20

)100−k

On est dans les conditions de l’approximation avec np = 100/20 = 5, on peut donc approcher
P (N = k) par e−5 5k/k!. Pour k = 2 par exemple, on a

(
100
2

)
1

202

(
19

20

)98

≈ 0,081 et e−5 52

2!
≈ 0,084. �

Le programme suivant permet d’utiliser cette approximation :

1 from math import exp , factorial

2

3 def approx_poisson(n,p):

4 return [exp(-n*p)*(n*p)**k/factorial(k) for k in range(n+1)]

On peut alors tester par exemple l’approximation de B(30,0.1) par P(3) (listes B et A), ainsi
qu’une simulation de cette approximation (liste L) ; dans ce qui suit, on n’affiche que les 10
premières valeurs, en arrondissant à 4 décimales pour B et A :

1 from scipy.special import binom

2

3 # Loi binomiale B(30,0.1)

4 B = [ binom(30,k)*(0.1**k)*(0.9**(30 -k)) for k in range (31) ]

5 B = [ float("%.4f" % x) for x in B ]

6

7 # Approximation par P(3)

8 A = approx_poisson(30,0.1)

9 A = [ float("%.4f" % x) for x in A ]

10

11 # Simulation de B(30,0.1)

12 L = loi_binomiale(30 ,0.1 ,10000)

13

14 for k in range (10):

15 print "P( X =",k,") :",B[k],",",A[k],",",L[k]

Voici un résultat possible :

P( X = 0 ) : 0.0424 , 0.0498 , 0.0424

P( X = 1 ) : 0.1413 , 0.1494 , 0.139

P( X = 2 ) : 0.2277 , 0.224 , 0.2332

P( X = 3 ) : 0.2361 , 0.224 , 0.2358

P( X = 4 ) : 0.1771 , 0.168 , 0.1743

P( X = 5 ) : 0.1023 , 0.1008 , 0.1014

P( X = 6 ) : 0.0474 , 0.0504 , 0.047

P( X = 7 ) : 0.018 , 0.0216 , 0.0187

P( X = 8 ) : 0.0058 , 0.0081 , 0.006

P( X = 9 ) : 0.0016 , 0.0027 , 0.0019

Remarque – On s’intéresse à la loi du nombre d’occurrences d’un phénomène dans un intervalle
de temps [0,T ]. On fait les hypothèses suivantes :

• il existe a ∈ R tel que la probabilité que le phénomène se produise une fois dans un intervalle
de temps de petite longueur h est ah ;

• la probabilité qu’il se produise plus d’une fois est négligeable (en fait, un o(h)) ;

• les nombres d’occurrences du phénomène dans des intervalles disjoints sont mutuellement
indépendants.



On subdivise [0,T ] en intervalles de longueur T/n. D’après les hypothèses précédentes, on
peut considérer que le nombre d’occurrences du phénomène dans l’intervalle [0,T ] suit la loi
binomiale B(n,aT/n). D’après le résultat d’approximation précédent, pour n grand, on peut
approcher cette loi par la loi de Poisson P(aT ) (le paramètre λ s’identifie donc à aT ).

Pour cette raison, la loi de Poisson est dite loi des événements rares ; elle est souvent
utilisée pour modéliser le nombre d’occurrences d’un phénomène dans un intervalle de temps
fixé, ce phénomène étant « rare » dans un court intervalle de temps, mais observé sur un grand
nombre de tels intervalles. Par exemple, on peut modéliser ainsi le nombre de véhicules passant
devant un point d’observation, de clients entrant dans un magasin, de catastrophes naturelles,
de désintégrations de noyaux radioactifs (lorsque la source est éloignée, les mesures faites par un
compteur Geiger font effectivement apparaître une loi de Poisson).

III. Familles de variables aléatoires

1. Couple de variables aléatoires

Soient X et Y deux variables aléatoires sur (Ω,A ).

L’application ω 7→ (X(ω), Y (ω)) est une variable aléatoire sur (Ω,A ), appelée couple
(X,Y ).

Propriété/Définition

Démonstration – Les ensembles X(Ω) et Y (Ω) sont finis ou dénombrables, donc X(Ω) × Y (Ω)
est fini ou dénombrable. L’image de (X,Y ) est contenue dans X(Ω)× Y (Ω), elle est donc aussi
finie ou dénombrable. Notons Z = (X,Y ). Pour tout (x, y) de Z(Ω),

Z−1({(x, y)}) = {ω ∈ Ω; (X(ω), Y (ω)) = (x, y)} = X−1(x) ∩ Y −1(y);

c’est un événement en tant qu’intersection de deux événements. �

Notation

• L’événement ((X,Y ) = (x, y)) = (X = x) ∩ (Y = y) est plus souvent noté (X = x, Y = y).

• Si A ⊂ X(Ω) et B ⊂ Y (Ω), l’événement ((X,Y ) ∈ A×B), c’est-à-dire (X ∈ A)∩ (Y ∈ B), est
plus souvent noté (X ∈ A,Y ∈ B).

L’ensemble des variables aléatoires sur (Ω,A ) à valeurs dans K (K = R ou C) est un
K-espace vectoriel (pour les lois d’addition et de multiplication par un scalaire).

Corollaire

Démonstration – C’est un sous-ensemble de l’espace vectoriel des applications de Ω dans K, qui
est non vide (la fonction nulle est une variable aléatoire) Enfin, soient X et Y deux variables
aléatoires sur (Ω,A ) à valeurs dans K et soit λ ∈ K. On définit la fonction f : (x, y) 7→ λx+ y
sur K2. Alors λX + Y = f(X,Y ), qui est une variable aléatoire car le couple (X,Y ) est une
variable aléatoire. �

Soit (X,Y ) un couple de variables aléatoires sur (Ω,A , P ). On appelle :

• loi conjointe de X et Y la loi du couple (X,Y ).

• lois marginales du couple (X,Y ) les lois de X et de Y .

Définition



Soit (X,Y ) un couple de variables aléatoires sur (Ω,A , P ).

La loi du couple (X,Y ) détermine entièrement ses lois marginales par les relations

∀x ∈ X(Ω), P (X = x) =
∑

y∈Y (Ω)

P (X = x, Y = y),

∀ y ∈ Y (Ω), P (Y = y) =
∑

x∈X(Ω)

P (X = x, Y = y).

En revanche, les lois marginales du couple (X,Y ) ne déterminent pas la loi conjointe
de X et Y .

Propriété

Démonstration – La première égalité est immédiate en remarquant que ((Y = y))y∈Y (Ω) est un
système complet dénombrable d’événements ; de même pour la seconde, avec ((X = x))x∈X(Ω).

En revanche, considérons l’exemple suivant, où l’on définit les lois de deux couples (X1, Y1)
et (X2, Y2) :

(x, y) (0,0) (0,1) (1,0) (1,1)

P (X1 = x, Y1 = y) 0,25 0,25 0,25 0,25

P (X2 = x, Y2 = y) 0,3 0,2 0,2 0,3

Dans les deux cas, les lois marginales sont les mêmes, car pour i ∈ {1,2},

P (Xi = 0) = P (Xi = 1) = P (Yi = 0) = P (Yi = 1) = 0,5

mais les lois conjointes ne sont pas les mêmes (car P (X1 = 0, Y1 = 0) 6= P (X2 = 0, Y2 = 0) par
exemple).

Les lois marginales du couple (X,Y ) ne déterminent donc pas la loi conjointe de X et Y . �

2. Conditionnement et indépendance

SoientX et Y deux variables aléatoires sur (Ω,A , P ) et y ∈ Y (Ω) tel que P (Y = y) > 0.

On appelle loi conditionnelle de X sachant (Y = y) la fonction

{
X(Ω) → [0,1]

x 7→ P (X = x |Y = y)

C’est la loi de X en tant que variable aléatoire sur l’espace probabilisé (Ω,A , P(Y =y)).

On rappelle que pour tout x ∈ X(Ω),

P (X = x |Y = y) =
P (X = x, Y = y)

P (Y = y)
.

Définition – Loi conditionnelle

Exemple – Dans l’exemple de la propriété précédente, on a

P (Y2 = 0) = P (X2 = 0, Y2 = 0) + P (X2 = 1, Y2 = 0) = 0,3 + 0,2 = 0,5 > 0.

La loi de X2 sachant (Y2 = 0) est caractérisée par les deux nombres

P (X2 = 0 |Y2 = 0) =
0,3

0,5
= 0,6 et P (X2 = 1 |Y2 = 0) =

0,2

0,5
= 0,4.



• Soient X et Y deux variables aléatoires sur (Ω,A , P ).

On dit que X et Y sont indépendantes si pour tout (x, y) ∈ X(Ω) × Y (Ω), les
événements (X = x) et (Y = y) sont indépendants, i.e.

P (X = x, Y = y) = P (X = x)P (Y = y).

• Soit I un ensemble d’indices. Pour tout i ∈ I, soit Xi une variable aléatoire sur
(Ω,A , P ).

On dit que les variables aléatoires Xi, pour i ∈ I, sont mutuellement indépendantes
si, pour toute famille (xi)i∈I telle que pour tout i ∈ I, xi ∈ Xi(Ω), les événements
(Xi = xi) pour i ∈ I sont mutuellement indépendants, i.e. : pour toute partie finie
J ⊂ I,

P




⋂

j∈J

(Xj = xj)



 =
∏

j∈J

P (Xj = xj).

Définition – Indépendance de variables aléatoires

• Soient X et Y deux variables aléatoires indépendantes sur (Ω,A , P ), A un sous-
ensemble de X(Ω) et B un sous-ensemble de Y (Ω).

Alors les événements (X ∈ A) et (Y ∈ B) sont indépendants, i.e.

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

• Soit (Xi)i∈I une famille de variables aléatoires mutuellement indépendantes sur
(Ω,A , P ).

Alors, pour toute famille (Ai)i∈I telle que pour tout i ∈ I, Ai ⊂ Xi(Ω), les événements
(Xi ∈ Ai) pour i ∈ I sont mutuellement indépendants, i.e. : pour toute partie finie
J ⊂ I,

P




⋂

j∈J

(Xj ∈ Aj)



 =
∏

j∈J

P (Xj ∈ Aj).

Propriété (admise : démonstration hors programme)

Soient X et Y deux variables aléatoires indépendantes sur (Ω,A , P ).

Soient f et g des fonctions définies respectivement sur X(Ω) et Y (Ω).

Alors les variables aléatoires f(X) et g(Y ) sont indépendantes.

Propriété

Démonstration – Soit a ∈ f(X(Ω)) et b ∈ g(Y (Ω)). Alors

P (f(X) = a, g(Y ) = b) = P (X ∈ f−1({a}), Y ∈ g−1({b})).

Par indépendance de X et Y , et d’après la propriété précédente,

P (f(X) = a, g(Y ) = b) = P (X ∈ f−1({a}))P (Y ∈ g−1({b})) = P (f(X) = a)P (g(Y ) = b),

d’où le résultat. �



3. Quelques propriétés des lois usuelles

Soient X1, . . . ,Xn des variables aléatoires mutuellement indépendantes sur (Ω,A , P ),
suivant chacune la loi de Bernoulli B(p).

Alors la variable aléatoire X1 + · · ·+Xn suit la loi binomiale B(n,p).

Propriété – Somme de variables de Bernoulli

Démonstration – La démonstration est identique à celle donnée plus haut en interprétation de la
loi B(n,p). �

Remarque – Des sommes de variables de Bernoulli, comme dans la propriété précédente, sont très
utiles pour compter le nombre de succès dans une succession d’épreuves de Bernoulli. On rappelle
de plus que de telles variables de Bernoulli peuvent être vues comme des fonctions indicatrices.

Soit X une variable aléatoire sur (Ω,A , P ) telle que X(Ω) = N∗.

Les propriétés suivantes sont équivalentes :

1. Il existe p ∈ ]0,1[ tel que X →֒ G (p).

2. P (X = 1) > 0, P (X > n) > 0 pour tout n ∈ N et

∀ (n,k) ∈ N2, P (X > n+ k |X > n) = P (X > k).

La loi d’une variable aléatoire vérifiant 2 est dite loi sans mémoire (ou sans vieillise-
ment).

Ainsi, les lois géométriques sont exactement les lois sans mémoire.

Propriété – Caractérisation des lois géométriques comme lois sans mémoire

Démonstration

1 ⇒ 2 : supposons que X →֒ G (p) avec p ∈ ]0,1[. Alors P (X = 1) = p > 0 et, pour tout n ∈ N,

P (X > n) =
+∞∑

j=n+1

P (X = j) =
+∞∑

j=n+1

p(1− p)j−1 = p
(1− p)n

1− (1− p) = (1− p)n.

En particulier, P (X > n) > 0 pour tout n ∈ N. Soit (n,k) ∈ N2. Alors

P (X > n+ k |X > n) =
P (X > n+ k,X > n)

P (X > n)

=
P (X > n+ k)

P (X > n)
=

(1− p)n+k

(1 − p)n = (1− p)k = P (X > k).

2 ⇒ 1 : posons p = P (X = 1) > 0. On a aussi p = 1 − P (X > 1) < 1. Soit, pour tout n ∈ N,
xn = P (X > n). D’après la propriété d’absence de mémoire,

xn+1 = P (X > n+ 1) = P (X > n+ 1 |X > n)P (X > n) = P (X > 1)P (X > n) = (1− p)xn.

La suite (xn)n∈N est donc géométrique de raison 1− p et de premier terme x0 = P (X > 0) = 1,
donc pour tout n ∈ N, xn = (1− p)n. Alors, pour tout n ∈ N∗,

P (X = n) = P (X > n− 1)− P (X > n) = (1− p)n−1 − (1− p)n

= (1− p)n−1(1− (1− p))
= p (1− p)n−1.

Finalement, p ∈ ]0,1[ et X →֒ G (p). �



Remarque – Comme on l’a dit plus haut, la loi G (p) modélise souvent une durée de fonctionne-
ment, ou plus généralement un temps d’attente avant qu’un phénomène se produise. La propriété
d’absence de mémoire signifie que ce temps d’attente est indépendant de l’étape à laquelle on
commence à attendre.

4. Indépendance et modélisation

Comme nous l’avons déjà vu, la modélisation d’une expérience aléatoire par le choix de
(Ω,A , P ) n’est pas toujours évidente. En fait, elle n’est parfois pas utile, le fait de préciser les
conditions de l’expérience, ce qui est plus intuitif, étant souvent suffisant. C’est ce que permet
de faire le résultat suivant :

Soit I un ensemble d’indices fini ou dénombrable. Pour tout i ∈ I, on se donne une loi
discrète Li (ce qui revient à se donner une famille ou une suite de nombres positifs de
somme 1).

Alors il existe un espace probabilisé (Ω,A , P ) et une famille (Xi)i∈I de variables aléa-
toires sur (Ω,A , P ), mutuellement indépendantes, tels que pour tout i ∈ I, Xi suit la
loi Li.

Théorème (admis : démonstration hors programme)

Il est ainsi possible de modéliser une succession, finie ou infinie, d’expériences aléatoires
mutuellement indépendantes, par le choix des lois de variables aléatoires, sans avoir à préciser
(Ω,A , P ).

Exemples

• Un jeu de pile ou face, fini ou infini, avec indépendance mutuelle des différents lancers, pourra
être modélisé par le choix d’une suite (Xi)i∈I , finie ou infinie, de variables de Bernoulli mutuel-
lement indépendantes de même paramètre p. Pour tout i ∈ I, Xi représente le résultat du i-ième
lancer (1 pour « pile », de probabilité p, 0 pour « face », par exemple).

• On considère la situation suivante : une urne contient des jetons rouges en proportion p, et
blancs en proportion 1−p ; N personnes tirent successivement, avec remise, n jetons dans l’urne,
le gain de chaque personne étant lié au nombre de jetons rouges tirés.

On pourra modéliser cette situation par une famille (X1, . . . ,XN ) de N variables aléatoires
mutuellement indépendantes, suivant chacune la loi binomiale B(n,p). Pour tout i ∈ [[1,N ]], Xi

représente le nombre de jetons rouges tirés par le i-ième participant.

IV. Espérance

Soit X une variable aléatoire réelle sur (Ω,A , P ), avec X(Ω) dénombrable ; on décrit
X(Ω) en extension sous la forme {xn; n ∈ N}.
On dit que X est d’espérance finie si la série

∑

n>0

xn P (X = xn)

est absolument convergente.

Dans ce cas, la somme de cette série est appelée espérance de X, et notée E(X),
c’est-à-dire,

E(X) =

+∞∑

n=0

xn P (X = xn).

Définition – Espérance



Remarques

• L’espérance de X est à interpréter comme moyenne pondérée des valeurs de X. Par exemple
en physique, elle représente l’énergie moyenne de systèmes à spectre discret (comme un atome
confiné dans une boîte).

• La notion d’espérance de X dépend de X uniquement à travers sa loi.

• La définition précédente semble dépendre du choix des xn (c’est-à-dire de l’ordre d’énumération
des éléments de X(Ω)). On admettra que lorsque X est d’espérance finie, la somme définissant
E(X) ne dépend pas de l’ordre d’énumération.

• Si X(Ω) est fini avec X(Ω) = {x1, . . . ,xm}, alors X est d’espérance finie, et E(X) est simple-
ment définie par :

E(X) =

m∑

n=1

xn P (X = xn).

• S’il existe a ∈ R tel que P (X = a) = 1, alors X est d’espérance finie égale à a.

• Si Ω est fini, on a la relation E(X) =
∑

ω∈Ω

X(ω)P ({ω}).

Soit X une variable aléatoire sur (Ω,A , P ).

• Si X suit la loi uniforme avec X(Ω) = {x1, . . . ,xm}, alors X est d’espérance finie
avec

E(X) =
1

m

m∑

n=1

xn.

• Si X →֒ B(p), alors X est d’espérance finie et E(X) = p.

• Si X →֒ B(n,p), alors X est d’espérance finie et E(X) = np.

• Si X →֒ G (p), alors X est d’espérance finie et E(X) =
1

p
.

• Si X →֒P(λ), alors X est d’espérance finie et E(X) = λ.

Propriété – Espérance correspondant aux lois usuelles

Démonstration

• Pour tout n ∈ [[1,m]], P (X = xn) = 1/m, d’où le résultat.

• Si X →֒ B(p), on a E(X) = 0× (1− p) + 1× p = p.

• Si X →֒ B(n,p),

E(X) =

n∑

k=0

k

(
n
k

)

pk(1− p)n−k =

n∑

k=1

n

(
n− 1
k − 1

)

pk(1− p)n−k.

Avec le changement d’indice j = k − 1, on obtient

E(X) = n

n−1∑

j=0

(
n− 1
j

)

pj+1(1− p)(n−1)−j

= np

n−1∑

j=0

(
n− 1
j

)

pj(1− p)(n−1)−j = np (p+ (1− p))n−1 = np.

• Supposons que X →֒ G (p). La série (à termes positifs)
∑

n>1 n p(1 − p)n−1 est convergente :
on reconnaît la dérivée de la série géométrique évaluée en 1 − p avec |1 − p| < 1. Donc X est
d’espérance finie et

E(X) = p
1

(1− (1− p))2 =
1

p
.



• Supposons que X →֒P(λ). Pour tout n ∈ N∗,

n e−λλ
n

n!
= e−λ λn

(n− 1)!
,

terme général (positif) d’une série convergente (série exponentielle). Donc X est d’espérance finie
et avec un changement d’indice, on obtient

E(X) = λ e−λ
+∞∑

n=0

λn

n!
= λ e−λeλ = λ.

�

Soit X une variable aléatoire sur (Ω,A , P ) à valeurs dans N.

La variable aléatoire X est d’espérance finie si et seulement si la série
∑

n>1 P (X > n)
converge, et dans ce cas on a

E(X) =

+∞∑

n=1

P (X > n).

Propriété

Démonstration – Pour tout n ∈ N, on a

(X > n) = (X = n) ∪ (X > n+ 1),

ces deux événements étant incompatibles, et donc

P (X = n) = P (X > n)− P (X > n+ 1).

Alors, pour tout p ∈ N∗,

p
∑

n=0

nP (X = n) =

p
∑

n=0

n (P (X > n)− P (X > n+ 1))

=

p
∑

n=0

nP (X > n)−
p+1
∑

n=1

(n− 1)P (X > n)

après séparation des sommes et changement d’indice dans la deuxième somme. Finalement,

p
∑

n=0

nP (X = n) =

(
p
∑

n=1

P (X > n)

)

− pP (X > p+ 1). (14.1)

Si X est d’espérance finie, alors on peut écrire

0 6 pP (X > p+ 1) = p

+∞∑

n=p+1

P (X = n) 6

+∞∑

n=p+1

nP (X = n) −→
p→+∞

0

en tant que reste d’une série convergente. On en déduit que
∑

n>1 P (X > n) converge ainsi que
l’égalité souhaitée en faisant tendre p vers +∞.

Par positivité des termes, et d’après (14.1), si
∑

n>1 P (X > n) converge, alors

∑

n>1

nP (X = n)

converge (la suite de ses sommes partielles est majorée) donc X est d’espérance finie. On conclut
comme précédemment. �



Soit X une variable aléatoire sur (Ω,A , P ) avec X(Ω) dénombrable ; on décrit X(Ω)
en extension sous la forme {xn; n ∈ N}. Soit f : X(Ω)→ R une fonction.

La variable aléatoire f(X) est d’espérance finie si et seulement si la série
∑

n>0 f(xn)P (X = xn) converge absolument, et dans ce cas, on a

E(f(X)) =
+∞∑

n=0

f(xn)P (X = xn).

Théorème de transfert (admis : démonstration hors-programme)

Remarque – Si l’on appliquait la définition de l’espérance pour f(X), on devrait déterminer la loi
de f(X) : on devrait décrire f(X(Ω)) en extension sous la forme {yn; n ∈ I} (I fini ou I = N)
puis considérer la somme finie ou la série

∑

n∈I yn P (f(X) = yn).

L’immense avantage du théorème de transfert est de montrer qu’il suffit en fait de considérer la
loi de X. On a transféré le calcul de E(f(X)) sur la variable aléatoire X. Ceci est particulièrement
intéressant lorsque f n’est pas injective.

Exemple – Soit X une variable aléatoire suivant la loi géométrique de paramètre p. D’après le
théorème de transfert, si la série

∑

n>1

(−1)n p (1− p)n−1

converge absolument, alors (−1)X est d’espérance finie et la somme de cette série est E((−1)X ).
On reconnaît (à un facteur −p près) la série géométrique de raison p − 1 avec |p − 1| < 1, donc
absolument convergente. On en déduit que (−1)X est d’espérance finie avec

E((−1)X ) =

+∞∑

n=1

(−1)n p (1− p)n−1 = −p 1

1− (p− 1)
=

p

p− 2
.

Soient X et Y deux variables aléatoires d’espérance finie sur (Ω,A , P ) et λ ∈ R. Alors :

• Linéarité : λX + Y est d’espérance finie et E(λX + Y ) = λE(X) + E(Y ).

• Positivité : si P (X > 0) = 1, alors E(X) > 0.

• Croissance : si P (X 6 Y ) = 1, alors E(X) 6 E(Y ).

Théorème – Quelques propriétés de l’espérance

Démonstration

• La démonstration de la linéarité de l’espérance n’est pas exigible.

Considérons le couple (X,Y ) et lorsque X(Ω)×Y (Ω) est dénombrable, décrivons-le en extension
sous la forme {(xn,yn)}; n ∈ N}. Soit f une fonction définie sur X(Ω) × Y (Ω), à valeurs dans
R ; d’après le théorème de transfert, la série

∑

n>0 f(xn,yn)P (X = xn, Y = yn) est absolument
convergente si et seulement si f(X,Y ) est d’espérance finie, et dans ce cas

E(f(X,Y )) =

+∞∑

n=0

f(xn,yn)P (X = xn, Y = yn).

Nous allons utiliser ce résultat avec f : (x, y) 7→ x, f : (x, y) 7→ y et f : (x, y) 7→ λx + y. Les
séries ∑

n>0

xn P (X = xn, Y = yn) et
∑

n>0

yn P (X = xn, Y = yn)

sont absolument convergentes car X et Y sont d’espérance finie. Par combinaison linéaire, la
série ∑

n>0

(λxn + yn)P (X = xn, Y = yn)



est absolument convergente, donc λX + Y est d’espérance finie ; on a alors

E(λX + Y ) = λ

+∞∑

n=0

xn P (X = xn, Y = yn) +

+∞∑

n=0

yn P (X = xn, Y = yn) = λE(X) + E(Y ).

On adapte la démonstration avec des sommes finies si X(Ω)× Y (Ω) est fini.

• On décrit X(Ω) en extension sous la forme {xn; n ∈ I}. On a P (X < 0) = 0, donc pour tout
n tel que xn < 0, xn P (X = xn) = 0. Donc on peut écrire E(X) comme somme d’une série (ou
somme finie) à termes positifs, d’où E(X) > 0.

• Cela résulte des deux points précédents. �

Application – On retrouve facilement l’espérance d’une variable aléatoire suivant la loi B(n,p)
en utilisant la linéarité de l’espérance : soient X1, . . . ,Xn des variables aléatoires mutuellement
indépendantes suivant la même loi B(p) (on sait qu’il existe un espace probabilisé portant de
telles lois). Alors on sait que S = X1 + · · ·+Xn suit la loi B(n,p). Par linéarité de l’espérance,
on a donc

E(S) =

n∑

k=1

E(Xk) = np

car E(Xk) = p pour tout k. L’espérance ne dépendant que de la loi, on obtient ainsi l’espérance
de toutes les variables aléatoires suivant la loi B(n,p).

Soient X et Y deux variables aléatoires indépendantes sur (Ω,A , P ), d’espérance finie.
Alors XY est d’espérance finie et

E(XY ) = E(X)E(Y ).

La réciproque est fausse en général.

Propriété

La démonstration est hors-programme dans le cas général. Dans le cas des univers finis, elle
a été donnée en première année. �

Exemple – Marche aléatoire

Reprenons un exemple décrit plus haut : une particule peut occuper différentes positions repérées
par les entiers relatifs. À intervalle régulier, la particule peut passer de la position i à la position
i+1 avec probabilité p ∈ ]0,1[, ou à la position i−1 avec probabilité q = 1−p. On suppose qu’un
mouvement ne dépend que de la position à partir de laquelle il est fait. Pour n > 1, on note
Xn la variable aléatoire représentant la position de la particule après n mouvements ; X0 est la
variable aléatoire nulle (la position initiale est 0). On admet l’existence d’un espace probabilisé
(Ω,A , P ) modélisant cette expérience.

On cherche à étudier différents aspects de cette marche aléatoire.

• Loi de X1 et X2 : X1 prend les valeurs 1 et −1, avec P (X1 = 1) = p, P (X1 = −1) = q. On
en déduit que X2 prend les valeurs −2, 0 et 2. D’après la formule des probabilités totales,

P (X2 = 2) = P (X2 = 2 |X1 = 1)P (X1 = 1) + P (X2 = 2 |X1 = −1)P (X1 = −1)

= pP (X1 = 1) + 0× P (X1 = −1) = p2,

P (X2 = 0) = P (X2 = 0 |X1 = 1)P (X1 = 1) + P (X2 = 0 |X1 = −1)P (X1 = −1) = 2pq,

P (X2 = −2) = P (X2 = −2 |X1 = 1)P (X1 = 1) + P (X2 = −2 |X1 = −1)P (X1 = −1)

= 0× P (X1 = 1) + q P (X1 = −1) = q2.

• La particule ne peut revenir en 0 qu’après un nombre pair de mouvements, ainsi, pour tout
n ∈ N, P (X2n+1 = 0) = 0. Pour n ∈ N, la particule est à l’origine après 2n mouvements si et



seulement si elle a effectué n mouvements à droite et n mouvements à gauche. Le nombre de
mouvements à droite parmi les 2n premiers suit la loi B(2n,p), donc

P (X2n = 0) =

(
2n
n

)

pn(1− p)2n−n =
(2n)!

(n!)2
(p(1− p))n.

D’après la formule de Stirling,

(2n)!

(n!)2
∼

(
2n

e

)2n√
4πn

(n

e

)2n
2πn

=
4n

√
nπ

et finalement,

P (X2n = 0) ∼ 1√
nπ

(4p(1− p))n.

• La variable aléatoire 1(X2=0) + · · · + 1(X2n=0) représente le nombre de retours à l’origine au
cours des 2n premiers mouvements. Par linéarité de l’espérance (pour tout A ∈ A , la variable
aléatoire 1A est d’espérance finie égale à P (A)),

E(1(X2=0) + · · ·+ 1(X2n=0)) =
n∑

k=1

P (X2k = 0).

Remarquons que l’on a calculé cette espérance sans déterminer la loi du nombre de retours.

– Si p 6= 1/2, 0 < 4p(1 − p) < 1, et par comparaison de séries à termes positifs, la série de
terme général P (X2n = 0) converge. L’espérance du nombre de retours à l’origine est majorée
indépendamment du nombre de mouvements.

– Si p = 1/2, P (X2n = 0) ∼ 1√
nπ

et la série de terme général P (X2n = 0) (à termes positifs)

diverge par comparaison avec une série de Riemann d’exposant 1/2 < 1. Un résultat sur les
sommes partielles de séries à termes positifs divergentes, puis une comparaison série/intégrale
(que nous ne détaillons pas ici), montrent alors que

n∑

k=1

P (X2k = 0) ∼
n∑

k=1

1√
kπ
∼ 2

√
n

π
.

Cette espérance tend vers +∞ lorsque n → +∞ : en un temps illimité, il y a en moyenne une
infinité de retours à l’origine !

V. Séries génératrices des variables aléatoires à valeurs dans N

Soit X une variable aléatoire sur (Ω,A , P ), à valeurs dans N.

Alors, pour tout t ∈ [−1,1], la variable aléatoire tX est d’espérance finie. On pose, pour
tout t ∈ [−1,1],

GX(t) = E(tX), et on a GX(t) =

+∞∑

n=0

P (X = n) tn.

La fonction GX est la somme d’une série entière de rayon de convergence au moins égal
à 1. Elle est appelée série génératrice (ou fonction génératrice) de X.

Propriété/Définition – Série génératrice



Démonstration – On peut considérer que X(Ω) = N. Soit t ∈ [−1,1]. D’après le théorème de
transfert, tX est d’espérance finie si et seulement si la série

∑

n>0

P (X = n) tn

converge absolument. Or, pour tout n ∈ N, |P (X = n) tn| 6 P (X = n), et
∑

n>0 P (X = n)

converge (et sa somme vaut 1). Par comparaison, on en déduit l’existence de E(tX) ; la formule
donnant E(tX) provient aussi du théorème de transfert.

Sachant que la série entière définissant GX converge absolument en tout point de [−1,1], son
rayon de convergence est au moins égal à 1. �

Remarques

• On a GX(1) =

+∞∑

n=0

P (X = n) = 1.

• Lorsque X(Ω) est fini, GX est un polynôme (et R = +∞).

La loi d’une variable aléatoire à valeurs dans N est caractérisée par sa série génératrice :
soient X et Y deux variables aléatoires sur (Ω,A , P ), à valeurs dans N, telles que
X(Ω) = Y (Ω) et GX(t) = GY (t) pour tout t ∈ ]− r,r[ (pour un certain r ∈ ]0,1]).

Alors X et Y ont la même loi.

Propriété

Démonstration – Si GX(t) = GY (t) pour tout t ∈ [−1,1], alors par unicité du développement en
série entière, P (X = n) = P (Y = n) pour tout n ∈ N. �

Remarque – La série génératrice de X contient donc toute l’information sur la loi de X. On a en
fait, d’après l’expression des coefficients d’une série entière : pour tout n ∈ N,

P (X = n) =
G

(n)
X (0)

n!

Soit X une variable aléatoire sur (Ω,A , P ), à valeurs dans N.

Alors, pour que X soit d’espérance finie, il faut et il suffit que GX soit dérivable à
gauche en 1. Dans ce cas, on a

E(X) = G′
X(1).

Propriété – Lien avec l’espérance

Démonstration (non exigible)

⇒ Posons, pour tout n ∈ N, fn : t 7→ P (X = n) tn. La série de fonctions
∑

n>0 fn converge
simplement sur [−1,1] ; pour tout n ∈ N, fn est de classe C1 sur [−1,1] avec pour tout n ∈ N∗ et
t ∈ [−1,1],

|f ′n(t)| = |nP (X = n) tn−1| 6 nP (X = n).

Le majorant est le terme général d’une série convergente car X est d’espérance finie. D’après
le théorème de la classe C1 pour les séries de fonctions, GX est de classe C1 sur [−1,1], et en
particulier dérivable à gauche en 1. On a de plus

G′
X(1) =

+∞∑

n=0

f ′n(1) =
+∞∑

n=1

nP (X = n) = E(X).

⇐ Soit p ∈ N∗. Pour tout t ∈ [0,1[,

GX(t)−GX(1)

t− 1
>

p
∑

n=0

P (X = n)
tn − 1

t− 1
=

p
∑

n=1

P (X = n) (1 + t+ · · ·+ tn−1),



l’inégalité étant valable par positivité des termes. Lorsque t→ 1−, on en déduit que

p
∑

n=1

nP (X = n) 6 G′
X(1).

pour tout p ∈ N∗. La série à termes positifs
∑

n>0 nP (X = n) est donc à sommes partielles
majorées indépendamment de p, donc convergente, ce qui entraîne (à nouveau par positivité des
termes) que X est d’espérance finie. �

Soit X une variable aléatoire sur (Ω,A , P ).

• Si X →֒ B(p), alors pour tout t ∈ R, GX(t) = 1− p+ pt.

• Si X →֒ B(n,p), alors pour tout t ∈ R, GX(t) = (1− p+ pt)n.

• Si X →֒ G (p), alors pour tout t tel que |(1− p)t| < 1, GX(t) =
pt

1− (1− p)t .

• Si X →֒P(λ), alors pour tout t ∈ R, GX(t) = eλ(t−1).

Propriété – Séries génératrices correspondant aux lois usuelles

Démonstration

• Si X →֒ B(p), on a pour tout t ∈ R, GX(t) = P (X = 0) + P (X = 1)t = 1− p+ pt.

• Si X →֒ B(n,p), on a pour tout t ∈ R,

GX(t) =

n∑

k=0

(
n
k

)

pk (1− p)n−k tk =

n∑

k=0

(
n
k

)

(pt)k (1− p)n−k = (1− p+ pt)n

d’après la formule du binôme de Newton.

• Supposons que X →֒ G (p). La série génératrice de X est la fonction somme de la série entière
∑

n>1

p (1− p)n−1 tn.

On reconnaît une série géométrique de raison (1−p)t. Elle converge si et seulement si |(1−p)t| < 1,
et dans ce cas

GX(t) = pt
+∞∑

n=0

((1− p)t)n =
pt

1− (1− p)t .

• Supposons que X →֒P(λ). La série génératrice de X est la fonction somme de la série entière

∑

n>0

e−λ λ
n

n!
tn.

On reconnaît une série exponentielle ; elle converge pour tout t ∈ R, et

∀ t ∈ R, GX(t) = e−λ
+∞∑

n=0

(λt)n

n!
= e−λ eλt = eλ(t−1). �

Soient X et Y deux variables aléatoires indépendantes sur (Ω,A , P ), à valeurs dans N.

Alors, pour tout t ∈ [−1,1],

GX+Y (t) = GX(t)GY (t).

Propriété – Somme de deux variables aléatoires indépendantes



Démonstration – La variable X + Y est à valeurs dans N de même que X et Y . Les variables X
et Y sont indépendantes, donc pour tout t ∈ [−1,1], tX et tY sont indépendantes. On en déduit
que

GX+Y (t) = E(tX+Y ) = E(tX tY ) = E(tX)E(tY ) = GX(t)GY (t).

�

Remarque – Soit n ∈ N ; on a

(X + Y = n) =

n⋃

k=0

(X = k, Y = n− k),

ces événements étant deux à deux incompatibles, d’où, par indépendance,

P (X + Y = n) =

n∑

k=0

P (X = k, Y = n− k) =

n∑

k=0

P (X = k)P (Y = n− k).

On connaît donc la loi de X + Y . Par produit de Cauchy de deux séries entières absolument
convergentes, on a pour tout t ∈ [−1,1],

GX(t)GY (t) =

+∞∑

n=0

(
n∑

k=0

P (X = k)P (Y = n− k)
)

tn =

+∞∑

n=0

P (X + Y = n) tn = GX+Y (t),

ce qui donne une autre démonstration de la propriété précédente.

Soient X et Y deux variables aléatoires indépendantes sur (Ω,A , P ) et λ, µ deux réels
strictement positifs. On suppose que X →֒P(λ) et Y →֒P(µ).

Alors X + Y →֒P(λ+ µ).

Corollaire – Somme de variables aléatoires suivant une loi de Poisson

Démonstration – Pour tout n ∈ N, P (X = n, Y = 0) = P (X = n)P (Y = 0) par indépendance,
donc P (X + Y = n) > 0. On en déduit que (X + Y )(Ω) = N. De plus, pour tout t ∈ [−1,1] (en
fait pour tout t ∈ R),

GX+Y (t) = GX(t)GY (t) = eλ(t−1) eµ(t−1) = e(λ+µ)(t−1).

La série génératrice caractérisant la loi, on en déduit que X + Y →֒P(λ+ µ). �

VI. Variance

1. Généralités

L’espérance de X correspond à la moyenne pondérée des valeurs de X, mais ne décrit pas
comment sont réparties les valeurs de X autour de cette moyenne. C’est l’intérêt des notions de
variance et d’écart-type.

Soit X une variable aléatoire réelle sur (Ω,A , P ). On suppose que X2 est d’espérance
finie. Alors :

• X est d’espérance finie.

• (X − E(X))2 est d’espérance finie.

Propriété



Démonstration

• Le problème ne se pose que siX(Ω) est dénombrable. On écritX(Ω) = {xn; n ∈ N}. La variable
aléatoire X2 est d’espérance finie, donc d’après le théorème de transfert,

∑

n>0 x
2
n P (X = xn)

converge et sa somme est E(X2). Pour tout p ∈ N, on a d’après l’inégalité de Cauchy-Schwarz,

p
∑

n=0

|xn|P (X = xn) =

p
∑

n=0

(

|xn|
√

P (X = xn)
) √

P (X = xn)

6

(
p
∑

n=0

x2
n P (X = xn)

p
∑

n=0

P (X = xn)

)1/2

6

(
+∞∑

n=0

x2
n P (X = xn)

+∞∑

n=0

P (X = xn)

)1/2

=
√

E(X2)

car
∑+∞

n=0 P (X = xn) = 1.

Les sommes partielles de la série à termes positifs
∑

n>0 |xn|P (X = xn) sont majorées
indépendamment de p, donc cette série converge, ce qui prouve le résultat. En passant à la limite
dans les inégalités précédentes, on obtient même : E(|X|) 6

√

E(X2).

• On a (X − E(X))2 = X2 − 2E(X)X + E(X)2. Si X2 est d’espérance finie, X également, et
donc par combinaison linéaire, (X − E(X))2 est d’espérance finie. �

Cette propriété permet de donner la définition suivante :

Soit X une variable aléatoire réelle sur (Ω,A , P ). On dit que X admet une variance
(ou admet un moment d’ordre 2) si X2 est d’espérance finie. Dans ce cas :

• On appelle variance de X le réel positif

V (X) = E((X − E(X))2).

On a aussi V (X) = E(X2)− E(X)2.

• On appelle écart-type de X le réel positif σ(X) =
√

V (X).

Propriété/Définition – Variance et écart-type

Démonstration de la seconde expression de V (X)

D’après la propriété précédente, (X − E(X))2 = X2 − 2E(X)X + E(X)2 est d’espérance finie ;
par linéarité de l’espérance,

V (X) = E(X2)− 2E(X)2 +E(X)2 = E(X2)− E(X)2. �

Remarques

• Si X2 est d’espérance finie, le moment d’ordre 2 de X est le réel positif E(X2).

• Si X(Ω) = {xn; n ∈ N}, d’après le théorème de transfert, X a une variance si et seulement si
la série à termes positifs

∑

n>0 x
2
n P (X = xn) converge, et dans ce cas,

V (X) =
+∞∑

n=0

(xn − E(X))2 P (X = xn).

• Si X admet une variance et m = E(X), on a V (X) = 0 si et seulement si P (X = m) = 1.

Exemple – Soit X une variable aléatoire prenant les valeurs 1 et −1 et suivant la loi uniforme, et
soit Y la variable aléatoire nulle. Alors X et Y sont toutes les deux d’espérance nulle. Pourtant,
elles se comportent très différemment ; la variance est un moyen de mesurer cette différence : on
a

V (X) = E((X − 0)2) = E(X2) = 1 et V (Y ) = 0.



SoitX une variable aléatoire réelle sur (Ω,A , P ), admettant une variance, et (a,b) ∈ R2.

Alors aX + b admet une variance et on a : V (aX + b) = a2 V (X).

Propriété

Démonstration – On a (aX+b)2 = a2X2+2abX+b2 etX2 est d’espérance finie doncX également.
Par combinaison linéaire, aX + b a une variance et par linéarité de l’espérance,

E((aX + b)2) = a2E(X2) + 2abE(X) + b2

(E(aX + b))2 = (aE(X) + b)2 = a2E(X)2 + 2abE(X) + b2.

Par différence, on en déduit que

V (aX + b) = a2(E(X2)− E(X)2) = a2 V (X). �

Remarque – Cette propriété est cohérente avec l’interprétation de V (X) et σ(X) comme indi-
cateurs de dispersion des valeurs de X autour de son espérance : ajouter une même valeur b à
toutes les valeurs de X ne modifie pas la variance et l’écart-type, multiplier toutes les valeurs de
X par un réel a multiplie l’écart-type par |a|.

Soit X une variable aléatoire sur (Ω,A , P ), à valeurs dans N.

Pour que X admette une variance, il faut et il suffit que GX soit deux fois dérivable à
gauche en 1. Dans ce cas,

V (X) = G′′
X(1) +G′

X(1)−G′
X(1)2.

Propriété – Lien entre série génératrice et variance

Ce résultat est admis (démonstration non exigible). Il s’agit d’adapter la démonstration faisant
le lien entre l’existence de E(X) et celle de G′

X(1). Expliquons simplement comment retrouver
la formule donnant V (X) : en cas d’existence, on montre que G′

X(t) et G′′
X(t) se calculent, pour

t ∈ [−1,1], par dérivation terme à terme avec

G′
X(t) =

+∞∑

n=1

nP (X = n) tn−1, G′′
X(t) =

+∞∑

n=2

n(n− 1)P (X = n) tn−2

G′
X(1) =

+∞∑

n=0

nP (X = n) = E(X), G′′
X(1) =

+∞∑

n=0

n(n− 1)P (X = n) = E(X(X − 1)).

D’après le théorème de transfert, et par linéarité de l’espérance,

V (X) = E(X2)− E(X)2 = E(X(X − 1)) +E(X) − E(X)2 = G′′
X(1) +G′

X(1) −G′
X(1)2. �

Soit X une variable aléatoire sur (Ω,A , P ).

• Si X →֒ B(p), alors X admet une variance et V (X) = p(1− p).
• Si X →֒ B(n,p), alors X admet une variance et V (X) = np(1− p).
• Si X →֒ G (p), alors X admet une variance et V (X) =

1− p
p2

.

• Si X →֒P(λ), alors X admet une variance et V (X) = λ.

Propriété – Variance correspondant aux lois usuelles



Démonstration

• Si X →֒ B(p), on a E(X2) = 02 × (1− p) + 12 × p = p. Alors

V (X) = E(X2)− E(X)2 = p− p2 = p(1− p).

• Si X →֒ B(n,p), on sait que GX(t) = (1− p+ pt)n pour tout t ∈ R. La fonction GX est deux
fois dérivable en 1, donc X admet une variance, et

V (X) = G′′
X(1) +G′

X(1) −G′
X(1)2 = n(n− 1)p2 + np− n2p2 = np(1− p).

• Supposons que X →֒ G (p). On sait que GX(t) =
pt

1− (1− p)t notamment pour tout t ∈ [−1,1].

La fonction GX est deux fois dérivable sur [−1,1], avec

∀ t ∈ [−1,1], G′
X(t) =

p

(1− (1− p)t)2 , G′′
X(t) =

2p(1 − p)
(1− (1− p)t)3 .

En particulier, X admet une variance, et

V (X) = G′′
X(1) +G′

X(1)−G′
X(1)2 =

2p(1− p)
p3

+
1

p
− 1

p2
=

1− p
p2

.

• Supposons que X →֒P(λ). On sait que GX(t) = eλ(t−1) pour tout t ∈ R. La fonction GX est
deux fois dérivable en 1, donc X admet une variance, et

V (X) = G′′
X(1) +G′

X(1)−G′
X(1)2 = λ2 + λ− λ2 = λ. �

Remarque – On peut calculer toutes ces variances directement à partir du théorème de transfert.

2. Covariance et corrélation

Soient X et Y deux variables aléatoires sur (Ω,A , P ), admettant une variance.

Alors XY est d’espérance finie et

|E(XY )| 6
√

E(X2)E(Y 2).

Propriété – Inégalité de Cauchy-Schwarz

Démonstration – On a |XY | 6 X2 + Y 2 ; en adaptant la démonstration de la linéarité de l’es-
pérance, on en déduit que XY est d’espérance finie. Quant à l’inégalité de Cauchy-Schwarz, on
procède comme pour un produit scalaire, en considérant la fonction polynomiale de degré au
plus 2

λ 7→ E((λX + Y )2) = λ2E(X2) + 2λE(XY ) + E(Y 2),

à valeurs positives. �

Soient X et Y deux variables aléatoires sur (Ω,A , P ), admettant une variance.

• On appelle covariance de X et Y le réel

Cov(X,Y ) = E
(
[X − E(X)] [Y − E(Y )]

)
= E(XY )− E(X)E(Y ).

• Si σ(X) et σ(Y ) sont non nuls, on appelle coefficient de corrélation de X et Y le
réel

ρ(X,Y ) =
Cov(X,Y )

σ(X)σ(Y )
.

Définition



Démonstration de l’existence de Cov(X,Y ), et de la seconde formule

On a [X − E(X)] [Y − E(Y )] = XY − E(X)Y − E(Y )X + E(X)E(Y ). Les variables aléatoires
X et Y ont une variance, donc le produit XY est d’espérance finie et par combinaison linéaire,
[X − E(X)] [Y − E(Y )] est d’espérance finie. Par linéarité de l’espérance, on a

Cov(X,Y ) = E(XY )− E(X)E(Y )− E(Y )E(X) + E(X)E(Y ) = E(XY )− E(X)E(Y ). �

Remarques

• Si X admet une variance, Cov(X,X) = V (X).

• Si X et Y admettent une variance, Cov(X,Y ) = Cov(Y,X).

Soient X et Y deux variables aléatoires indépendantes sur (Ω,A , P ), admettant une
variance.

Alors Cov(X,Y ) = 0.

Propriété

Démonstration – On a Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0 par indépendance. �

Remarque – La réciproque de la propriété précédente est fausse comme le montre l’exemple
suivant : soit X une variable aléatoire d’image {−1,0,1}, de loi uniforme, et soit Y = X2. Alors
E(XY ) = E(X) = 0 (on a XY = X3 = X) donc Cov(X,Y ) = 0, mais X et Y ne sont pas
indépendantes car

P (Y = 0 |X = 1) = 0 6= 1

3
= P (Y = 0).

Exemple – Soit (Xn)n∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant
la loi B(p) avec p ∈ ]0,1[. Posons, pour tout n ∈ N∗, Yn = XnXn+1. Pour tout n, Xn est la
fonction indicatrice de l’événement (Xn = 1), et Yn est la fonction indicatrice de l’événement
(Xn = 1)∩ (Xn+1 = 1), de probabilité p2 ∈ ]0,1[ par indépendance. En particulier, Yn →֒ B(p2).
La variable Yn indique deux succès consécutifs aux rangs n et n+ 1.

De la même façon, pour tout n ∈ N∗, YnYn+1 = XnXn+1Xn+2 →֒ B(p3), donc

Cov(Yn, Yn+1) = E(YnYn+1)− E(Yn)E(Yn+1) = p3 − p4 = p3(1− p).

Notamment, Yn et Yn+1 ne sont pas indépendantes.

En revanche, si j > i+ 2, on remarque que YiYj est la fonction indicatrice de

(YiYj = 1) = (Xi = 1) ∩ (Xi+1 = 1) ∩ (Xj = 1) ∩ (Xj+1 = 1),

de probabilité p4 par indépendance, et donc E(YiYj) = p4, puis

Cov(Yi, Yj) = E(YiYj)− E(Yi)E(Yj) = p4 − p2 p2 = 0.

Attention, on ne peut pas en déduire que Yi et Yj sont indépendantes (c’est vrai, mais il faudrait
le prouver en revenant par exemple à la définition).

Soient X et Y deux variables aléatoires sur (Ω,A , P ), admettant une variance.

Alors
|Cov(X,Y )| 6 σ(X)σ(Y ),

En particulier, si σ(X) 6= 0 et σ(Y ) 6= 0,

ρ(X,Y ) ∈ [−1,1].

Propriété



Démonstration – D’après l’inégalité de Cauchy-Schwarz,

|Cov(X,Y )| = |E([X−E(X)][Y −E(Y )])| 6
(
E((X − E(X))2)E((Y − E(Y ))2)

)1/2
= σ(X)σ(Y ).

L’encadrement de ρ(X,Y ) s’ensuit directement. �

Remarque – Le coefficient de corrélation mesure en quelque sorte la dépendance entre X et Y .
Lorsque |ρ(X,Y )| est proche de 1, une information sur X apporte une information sur Y . Lorsque
X et Y sont indépendantes, ρ(X,Y ) = 0, mais la réciproque est fausse.

Soient X1, . . . ,Xn des variables aléatoires sur (Ω,A , P ), admettant une variance.

Alors :

• ∑n
k=1Xk admet une variance et

V

(
n∑

k=1

Xk

)

=
n∑

k=1

V (Xk) + 2
∑

i<j

Cov(Xi,Xj).

• Si de plus X1, . . . ,Xn sont deux à deux indépendantes, on a

V

(
n∑

k=1

Xk

)

=
n∑

k=1

V (Xk).

Propriété – Variance d’une somme de variables aléatoires

Démonstration

• On a
(

n∑

k=1

Xk

)2

=

n∑

k=1

X2
k + 2

∑

i<j

XiXj .

Les Xk ont toutes une variance, donc les XiXj sont d’espérance finie, et par combinaison linéaire
(
∑n

k=1Xk)
2 est d’espérance finie (i.e.,

∑n
k=1Xk admet une variance). De plus, par linéarité de

l’espérance,

E





(
n∑

k=1

Xk

)2


 =
n∑

k=1

E(X2
k) + 2

∑

i<j

E(XiXj).

D’autre part,

(

E

(
n∑

k=1

Xk

))2

=

(
n∑

k=1

E(Xk)

)2

=

n∑

k=1

(E(Xk))2 + 2
∑

i<j

E(Xi)E(Xj).

On en déduit le résultat par différence.

• Si les Xk sont deux à deux indépendantes, on a, pour tout (i,j) ∈ [[1,n]]2 tel que i < j,
Cov(Xi,Xj) = 0, d’où l’égalité souhaitée. �

Application – Soient X1, . . . ,Xn des variables aléatoires mutuellement indépendantes suivant
la même loi B(p) et soit S = X1 + · · ·+Xn. D’après la propriété précédente, S a une variance et

V (S) =

n∑

k=1

V (Xk) = np(1− p).

On sait aussi que S suit la loi B(n,p). La variance ne dépendant que de la loi, on en déduit que
pour toute variable aléatoire X qui suit la loi B(n,p), on a V (X) = np(1− p). On retrouve donc
la valeur de V (X) déterminée plus tôt par un calcul direct.



3. Estimations de la dispersion

La variance s’interprète comme indicateur de dispersion. Dans ce paragraphe, nous allons
montrer plus précisément comment la variance (ou l’écart-type) permet de mesurer cette disper-
sion.

Soit X une variable aléatoire sur (Ω,A , P ), positive, d’espérance finie.

Alors, pour tout ε > 0,

P (X > ε) 6
E(X)

ε
.

Théorème – Inégalité de Markov

Démonstration – Soit ε > 0 fixé. On décrit X(Ω) en extension sous la forme {xn; n ∈ I}. Soit
U = [ε,+∞[. Par positivité de X,

E(X) >
∑

xn∈U

xn P (X = xn) > ε
∑

xn∈U

P (X = xn)

car xn > ε si xn ∈ U . Alors

E(X) > εP (X ∈ U) = εP (X > ε),

d’où le résultat. �

Soit X une variable aléatoire sur (Ω,A , P ), admettant une variance.

Alors, pour tout ε > 0,

P (|X −E(X)| > ε) 6
σ(X)2

ε2
.

Théorème – Inégalité de Bienaymé - Tchebychev

Démonstration – Soit ε > 0 fixé. La variable aléatoire X admet une variance donc est d’espérance
finie et, en posant Y = (X−E(X))2, alors Y est une variable aléatoire positive d’espérance finie.
De plus, on remarque que

(|X − E(X)| > ε) = (Y > ε2).

Alors, d’après l’inégalité de Markov,

P (|X − E(X)| > ε) = P (Y > ε2) 6
E(Y )

ε2
=
σ(X)2

ε2
. �

Remarque – L’inégalité de Bienaymé - Tchebychev permet de majorer la probabilité queX s’écarte
d’au moins ε de son espérance, i.e., de sa moyenne. On voit que cette majoration fait intervenir
l’écart-type de X ; plus précisément, plus σ(X) est petit, plus la probabilité précédente est faible,
c’est-à-dire, plus grande est la probabilité que X soit proche de son espérance. Cela confirme
l’interprétation de σ(X) et V (X) comme indicateurs de dispersion.

Exemple – Notons m = E(X) et σ = σ(X). Pour ε = 2σ, on obtient

P (|X −m| > 2σ) 6
1

4
,

ou de façon équivalente,

P (m− 2σ < X < m+ 2σ) >
3

4
.

La probabilité que X soit au plus à 2 écarts-types de son espérance est donc au moins 3/4. En
revanche, pour ε = σ, l’inégalité ne donnerait pas de résultat intéressant.



Soit (Xn)n∈N∗ une famille de variables aléatoires sur (Ω,A , P ). On suppose que les
variables aléatoires Xn

• sont deux à deux indépendantes,

• ont la même loi et admettent une variance.

On note m = E(X1), σ = σ(X1) et pour tout n ∈ N∗, Sn = X1 + · · ·+Xn.

Alors, pour tout ε > 0,

P

(∣
∣
∣
∣

1

n
Sn −m

∣
∣
∣
∣
> ε

)

6
σ2

n ε2
,

et en particulier,

P

(∣
∣
∣
∣

1

n
Sn −m

∣
∣
∣
∣
> ε

)

−→
n→+∞

0.

Théorème – Loi faible des grands nombres

Démonstration – Les variables aléatoires Xn admettent une variance donc également une espé-
rance. Sachant qu’elles ont la même loi, elles ont la même espérance et la même variance (par
exemple celles de X1, m et σ2). De plus, par linéarité de l’espérance, on a pour tout n ∈ N∗,

E

(
1

n
Sn

)

=
1

n
nE(X1) = m,

et d’après les propriétés de la variance,

V

(
1

n
Sn

)

=
1

n2
V (Sn) =

1

n
V (X1)

par indépendance deux à deux des Xk. Ainsi, σ

(
Sn

n

)2

=
σ2

n
.

Soit ε > 0 fixé. D’après l’inégalité de Bienaymé-Tchebychev appliquée à Sn/n, on a

P

(∣
∣
∣
∣

1

n
Sn −m

∣
∣
∣
∣
> ε

)

6
σ(Sn/n)2

ε2
=

σ2

n ε2
−→

n→+∞
0. �

Remarques

• Imaginons que l’on répète indéfiniment une même expérience aléatoire en observant, à chaque
étape, un certain résultat ; cette situation est modélisée par une suite (Xn)n∈N∗ de variables
aléatoires mutuellement indépendantes et de même loi, Xn représentant le résultat observé à la
n-ième étape. Alors Sn/n représente la moyenne empirique des résultats au cours des n premières
expériences.
Notons m l’espérance commune à toutes les variables Xn. La loi faible des grands nombres affirme
que pour tout ε > 0, la probabilité que Sn/n s’écarte de m d’au moins ε tend vers 0 lorsque
le nombre d’expériences tend vers +∞. De façon équivalente, la probabilité que cette moyenne
vérifie m− ε < Sn/n < m+ ε tend vers 1.

• Par exemple, considérons un jeu de pile ou face infini (ou toute autre expérience de Bernoulli
reproduite indéfiniment) et notons Xn l’indicatrice de l’événement « le n-ième lancer donne pile ».
Pour tout n ∈ N∗, Xn →֒ B(p), E(Xn) = p et V (Xn) = p(1 − p). Si les Xn sont deux à deux
indépendantes, le théorème précédent affirme que la moyenne Sn/n du nombre de « pile » au
cours des n premiers lancers sera « proche » de p (à ε près) avec une probabilité tendant vers 1
lorsque n→ +∞. En un certain sens, la moyenne se stabilise vers p lorsque le nombre de lancers
augmente.

Ci-dessous, on a représenté les fréquences relatives d’apparition de « pile » au cours des n
premiers lancers, pour n ∈ [[1,200]] puis pour n ∈ [[1,1000]]. Dans chaque cas, on a effectué trois
simulations (courbes des différentes couleurs).
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Il faut bien comprendre que ce théorème ne dicte pas à une expérience « concrète » comment
elle va se dérouler pour « assurer » l’équilibre. Le théorème s’inscrit à l’intérieur du modèle, mais
est cohérent avec l’approche intuitive des probabilités comme fréquence relative de réalisation
lors d’un grand nombre de répétitions.

• Ce théorème peut jouer un rôle dans la validation du modèle : si on suppose une pièce équilibrée
et que toutes les observations montrent une convergence vers p 6= 1/2, alors le modèle est sans
doute à revoir. Il permet d’estimer certains paramètres (par observation d’un échantillon, comme
par exemple lors d’un sondage), l’inégalité du théorème permettant de mesurer le risque d’erreur.
Ces deux remarques relèvent de la théorie des Statistiques.

• Le théorème précédent n’affirme pas que Sn(ω)/n tend vers m pour toute issue ω (ce qui est
faux en général) ; il ne faudrait donc pas s’étonner d’une issue ω pour laquelle (Sn(ω)/n)n∈N∗

ne converge pas vers m, ou même, ne converge pas : dans le jeu de pile ou face infini avec une
pièce équilibrée, il est possible d’obtenir pile à chaque tirage (même si l’événement associé est de
probabilité nulle), et pour cette issue ω de l’expérience, (Sn(ω)/n) est constante égale à 1.

Exemple – On fait un test de qualité dans une production de N articles. Soit p la proportion
d’articles défectueux. On vérifie n articles pris au hasard dans le stock, ce que l’on modélise
par une famille (X1, . . . ,Xn) de variables aléatoires de Bernoulli mutuellement indépendantes de
paramètre p (Xk prend la valeur 1 si le k-ième article testé est défectueux).Avec les notations
précédentes, Sn/n est la proportion d’articles défectueux dans l’échantillon testé. On sait que
pour tout ε > 0,

P

(∣
∣
∣
∣

1

n
Sn − p

∣
∣
∣
∣
> ε

)

6
p(1− p)
n ε2

6
1

4nε2
,

la dernière inégalité provenant de l’étude de la fonction trinôme p 7→ p(1 − p). Choisissons par
exemple ε = 10−2 ; alors le majorant vaut 2500/n. Ainsi, en testant n pièces, on peut affirmer
avec un risque d’erreur d’au plus 2500/n, que la proportion observée est une valeur approchée
de p à 10−2 près. On voit que, avec la précision voulue, minimiser le risque d’erreur implique de
tester un nombre assez grand d’articles : la convergence du majorant n’est pas très rapide.



Le tableau suivant récapitule certaines caractéristiques des lois usuelles :

Nom Notation Condition Image P (X = k) E(X) V (X) GX(t)

Bernoulli B(p) p ∈ [0,1] {0,1} P (X = 1) = p p p(1− p) 1− p+ pt

Binomiale B(n,p) n ∈ N∗, p ∈ [0,1] [[0,n]]

(
n
k

)

pk(1− p)n−k np np(1− p) (1− p+ pt)n

Géométrique G (p) p ∈ ]0,1[ N∗ p (1− p)k−1 1

p

1− p
p2

pt

1− (1− p)t

Poisson P(λ) λ > 0 N e−λ λ
k

k!
λ λ eλ(t−1)




