Séries Numériques (corrigé niveau 2).

Séries télescopiques.

27. a. On peut écrire :

$$\forall \ n \in \mathbb{N}^{\star}, \ v_n = \frac{1 + u_n - 1}{(1 + u_0).(1 + u_1)...(1 + u_n)} = \frac{1}{(1 + u_0).(1 + u_1)...(1 + u_{n-1})} - \frac{1}{(1 + u_0).(1 + u_1)...(1 + u_n)},$$

avec le cas particulier :
$$v_0 = \frac{1 + u_0 - 1}{(1 + u_0)} = 1 - \frac{1}{1 + u_0}$$
.

On peut ainsi poser :
$$\forall n \in \mathbb{N}^*, \ a_n = \frac{1}{(1+u_0).(1+u_1)...(1+u_{n-1})}, \ \text{et} : \ a_0 = 1,$$

ce qui donne bien :
$$\forall n \in \mathbb{N}, v_n = a_n - a_{n+1}$$
.

b. La convergence de la série $\sum_{n>0} v_n$ est équivalente à celle de la suite (a_n) .

Or cette suite est positive et décroissante puisque (u_n) est à termes positifs, donc convergente.

La série $\sum_{n\geq 0} v_n$ est donc convergente.

c. Si $\sum_{n\geq 0} u_n$ diverge, la suite de ses sommes partielles tend vers $+\infty$ puisque $\sum_{n\geq 0} u_n$ est à termes positifs.

On a également :
$$\forall n \in \mathbb{N}, (1+u_0).(1+u_1)...(1+u_n) \ge u_0 + ... + u_n$$

car en développant le produit on voit apparaître la quantité minorante et d'autres termes positifs.

Donc:
$$\lim_{n\to +\infty} (1+u_0).(1+u_1)...(1+u_n) = +\infty$$
, et (a_n) tend vers 0.

Donc:
$$\sum_{n=0}^{+\infty} v_n = \sum_{n=0}^{+\infty} (a_n - a_{n+1}) = a_0 - \lim_{n \to +\infty} a_n = a_0 = 1$$
.

- 28. Notons tout d'abord que la suite (u_n) est toujours correctement définie et à termes positifs.
 - a. On constate que :

$$\forall n \in \mathbb{N}, \ u_{n+1} \le \frac{1}{2}.(u_n + \sqrt{u_n^2 + a_n^2 + 2.u_n.a_n}) \le \frac{1}{2}.(u_n + u_n + a_n) = u_n + \frac{1}{2}.a_n$$
, et:

$$\forall n \in \mathbb{N}, u_{n+1} \ge \frac{1}{2}.(u_n + \sqrt{u_n^2}) \le \frac{1}{2}.(u_n + u_n) = u_n$$
, d'où:

$$\forall n \in \mathbb{N}, 0 \le u_{n+1} - u_n \le \frac{1}{2} . a_n$$
.

Par comparaison de séries à termes positifs, la série télescopique $\sum_{n\geq 0} (u_{n+1} - u_n)$ converge donc la suite (u_n) aussi.

b. La suite (u_n) proposée est strictement croissante, à premier terme strictement positif et convergente (suite des sommes partielles d'une série de Riemann convergente) de somme : $L = \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{1}{n^2} > 0$.

Par ailleurs, on voudrait une suite (a_n) telle que : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}.(u_n + \sqrt{u_n^2 + a_n^2})$.

Il suffit pour cela que : $\forall n \in \mathbb{N}, \ (2.u_{n+1}-u_n)^2-u_n^2=a_n^2=4.u_{n+1}^2-4.u_{n+1}.u_n=4.u_{n+1}.(u_{n+1}-u_n)$, et donc on va poser : $\forall n \in \mathbb{N}, \ a_n=2.\sqrt{u_{n+1}.(u_{n+1}-u_n)}$.

La suite (a_n) est ainsi bien définie car la suite (u_n) est croissante et à termes positifs et on a bien :

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}.(u_n + \sqrt{u_n^2 + a_n^2}).$$

$$\text{Mais par ailleurs}: \forall \ n \in \mathbb{N}^*, \ a_n = 2.\sqrt{u_{n+1}.(u_{n+1}-u_n)} \underset{+\infty}{\sim} 2.\sqrt{L.(u_{n+1}-u_n)} = \frac{2.L}{n}\,,$$

et la série $\sum_{n=0}^{\infty} a_n$ diverge par comparaison de séries à termes positifs.

La réciproque de l'implication de la question a n'est donc pas vraie.

29. a. Il est immédiat que la suite (u_n) est bien définie et par récurrence : $\forall n \in \mathbb{N}, u_n \in]0,1[$.

En effet, ce résultat est vrai pour u_0 et s'il est vrai pour un entier : $n \ge 0$, alors :

$$u_n^2 \in]0,1[$$
, et donc: $u_{n+1} = \frac{1}{2}.(u_n + u_n^2) \in]0,1[$.

Puis:
$$\forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{2}.(u_n^2 - u_n) = \frac{1}{2}.u_n.(u_n - 1) < 0$$
,

et la suite est strictement décroissante.

Etant de plus minorée par 0, elle converge vers une limite L.

Enfin,
$$L$$
 vérifie : $L = \frac{1}{2} \cdot (L + L^2)$, soit : $L = L^2$, et L vaut 0 ou 1.

Mais (u_n) étant à termes dans]0,1[et strictement décroissante, on en déduit que : L=0 .

b. Puisque (u_n) tend vers 0, on a : $\forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{2} u_n . (u_n - 1) \sim \frac{u_n}{2}$.

Or la série télescopique $\sum_{n\geq 0}(u_{n+1}-u_n)$ converge car la suite (u_n) converge.

Par comparaison de séries à termes négatifs, la série $\sum_{n\geq 0} -\frac{u_n}{2}$ converge et donc aussi la série $\sum_{n\geq 0} u_n$.

30. a. Puisque la fonction f définie par : $\forall x \in \left]0, \frac{\pi}{2}\right[$, $f(x) = \sin(x) - x$, a une dérivée strictement négative, est donc strictement décroissante et nulle en 0, elle reste strictement négative sur l'intervalle. Donc la suite (u_n) est décroissante et étant minorée par 0, elle converge.

Enfin sa limite L est dans $\left[0,\frac{\pi}{2}\right]$, et comme elle ne peut pas être dans $\left[0,\frac{\pi}{2}\right]$, elle est nulle et (u_n) converge vers 0.

b. La série $\sum_{n\geq 0} (u_{n+1}-u_n)$ est télescopique et converge car la suite (u_n) converge.

De plus :
$$\forall n \in \mathbb{N}, u_{n+1} - u_n = \sin(u_n) - u_n = -\frac{u_n^3}{6} + o_{+\infty}(u_n^3) \sim -\frac{u_n^3}{6}$$
.

Donc par comparaison de séries à termes négatifs, la série $\sum_{n\geq 0} -\frac{u_n^3}{6}$ converge et la série $\sum_{n\geq 0} u_n^3$ aussi.

c. La série télescopique $\sum_{n\geq 0} (\ln(u_{n+1}) - \ln(u_n))$ est tout d'abord bien définie (puisque (u_n) est à termes dans

]0,1[) et divergente car la suite (u_n) tend vers 0 donc ($\ln(u_n)$) tend vers - ∞ .

De plus

$$\forall \ n \in \mathbb{N}, \ (\ln(u_{n+1}) - \ln(u_n)) = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(\frac{\sin(u_n)}{u_n}\right) = \ln\left(1 - \frac{u_n^2}{6} + o_{+\infty}(u_n^2)\right) = -\frac{u_n^2}{6} + o_{+\infty}(u_n^2) \underset{+\infty}{\sim} -\frac{u_n^2}{6}.$$

Donc par comparaison de séries à termes négatifs, la série $\sum_{n\geq 0} -\frac{u_n^2}{6}$ diverge et la série $\sum_{n\geq 0} u_n^2$ aussi.

31. On constate immédiatement que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} w_k = \sum_{k=0}^{n} \int_{u_k}^{u_{k+1}} \frac{dt}{t} = \int_{u_0}^{u_{n+1}} \frac{dt}{t} = \ln(u_{n+1}) - \ln(u_0)$.

Donc la série $\sum_{n>0} w_n$ diverge (vers $+\infty$).

Par ailleurs: $\forall n \in \mathbb{N}, \ w_n = \int_{u_n}^{u_{n+1}} \frac{dt}{t} \le \int_{u_n}^{u_{n+1}} \frac{dt}{u_n} = \frac{u_{n+1} - u_n}{u_n} = v_n$.

Donc par minoration de série à termes positifs, la série $\sum_{n>0} v_n$ diverge.

Séries à termes positifs ou de signe constant.

32. • Pour la première série, on peut écrire :

$$\left(\frac{n}{n+1}\right)^{n^2} = \exp\left(-n^2 \cdot \ln\left(\frac{n+1}{n}\right)\right) = \exp\left(-n^2 \cdot \ln\left(1+\frac{1}{n}\right)\right) = \exp\left(-n^2 \cdot \left(\frac{1}{n} + o_{+\infty}\left(\frac{1}{n}\right)\right)\right) = \exp\left(-n + o_{+\infty}(n)\right).$$

Donc:
$$n^2 \cdot \left(\frac{n}{n+1}\right)^{n^2} = \exp(-n + o_{+\infty}(n) + 2 \cdot \ln(n)) = \exp(-n + o_{+\infty}(n))$$
,

qui tend vers 0 en +∞.

Donc la série $\sum \left(\frac{n}{n+1}\right)^{n^2}$ converge.

• Pour la deuxième, on écrit :
$$(n^a + 1)^{\frac{1}{a}} = n \left(1 + \frac{1}{n^a}\right)^{\frac{1}{a}} = n \left(1 + \frac{1}{a} \cdot \frac{1}{n^a} + o_{+\infty} \left(\frac{1}{n^a}\right)\right) = n + \frac{1}{a} \cdot \frac{1}{n^{a-1}} + o_{+\infty} \left(\frac{1}{n^{a-1}}\right)$$
.

On distingue alors plusieurs cas:

si : a = b, la série est la série nulle et converge,

$$\mathrm{si}:\ a>b\ ,\ \mathrm{on}\ \mathrm{a}:\ u_{\scriptscriptstyle n}=(n^{\scriptscriptstyle a}+1)^{\frac{1}{a}}-(n^{\scriptscriptstyle b}+1)^{\frac{1}{b}}=\frac{1}{a}.\frac{1}{n^{\scriptscriptstyle a-1}}+o_{\scriptscriptstyle +\infty}\bigg(\frac{1}{n^{\scriptscriptstyle a-1}}\bigg)-\frac{1}{b}.\frac{1}{n^{\scriptscriptstyle b-1}}+o_{\scriptscriptstyle +\infty}\bigg(\frac{1}{n^{\scriptscriptstyle b-1}}\bigg)\overset{\scriptscriptstyle -}{\underset{\scriptscriptstyle +\infty}{\sim}}-\frac{1}{b}.\frac{1}{n^{\scriptscriptstyle b-1}}.$$

Par comparaison de séries à termes négatifs, $\sum_{n\geq 1}u_n$ converge si et seulement si : b-1>1, soit : b>2.

si : a < b, on a de même : $u_n \sim \frac{1}{a} \cdot \frac{1}{n^{a-1}}$, et la série $\sum_{n \ge 1} u_n$ converge si et seulement si : a > 2.

Conclusion : la série converge si et seulement si : (a = b) ou (a > 2, et : b > 2).

• Pour la troisième, on réécrit le terme général :

$$\frac{1}{(\ln(n))^{\ln(n)}} = \exp(-\ln(n).\ln(\ln(n))) = \frac{1}{n^{\ln(\ln(n))}}.$$

Et puisque $(\ln(\ln(n)))$ tend vers $+\infty$, il existe un rang n_0 à partir duquel : $\ln(\ln(n)) \ge 2$, soit :

$$\forall n \ge n_0, \ 0 \le \frac{1}{(\ln(n))^{\ln(n)}} = \frac{1}{n^{\ln(\ln(n))}} \le \frac{1}{n^2},$$

et par comparaison de séries à termes positifs, la série $\sum \frac{1}{(\ln(n))^{\ln(n)}}$ converge.

33. a. S_N étant une somme partielle de série, pour que la suite (S_N) converge, il est nécessaire que son terme général tende vers 0.

Or :

- $(|x| > 1) \Rightarrow (n.|x|^n \text{ tend vers } +\infty),$
- $(|x|=1) \Rightarrow (n.|x|^n \text{ tend vers } +\infty).$

Donc on doit prendre : |x| < 1.

b. A partir de là, et pour :
$$|x| < 1$$
, on a : $(1-x).S_N = \sum_{n=1}^N n.x^n - \sum_{n=1}^N n.x^{n+1} = \sum_{n=1}^N n.x^n - \sum_{n=2}^{N+1} (n-1).x^n$.

En regroupant ce qu'on peut regrouper :
$$(1-x).S_N = \sum_{n=1}^N n.x^n - \sum_{n=2}^{N+1} (n-1).x^n = x + \sum_{n=2}^N x^n - N.x^{N+1}$$
.

Si on fait tendre N vers $+\infty$, on conclut que $((1-x).S_N)$ converge et : $(1-x).S = \lim_{N \to +\infty} \sum_{n=1}^N x^n = \frac{x}{1-x}$.

Finalement :
$$\sum_{n=1}^{+\infty} n.x^n = \frac{x}{(1-x)^2}$$
.

34. a. On montre de façon immédiate par récurrence que :

 $\forall n \in \mathbb{N}, u_n$ existe et est strictement positif.

Dans ce cas : $\forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{a_n}{u_n} \ge 0$, et (u_n) est bien croissante.

b. Supposons que (u_n) converge.

Alors puisque la suite est strictement croissante, sa limite L est supérieure à u_0 , donc : L>0.

Mais alors :
$$u_{n+1} - u_n = \frac{a_n}{u_n} \sim \frac{a_n}{L}$$
.

Les deux séries $\sum (u_{n+1} - u_n)$ et $\sum \frac{a_n}{L}$ étant à termes positifs, elles ont alors même comportement.

Or la série télescopique $\sum (u_{n+1} - u_n)$ converge puisque la suite (u_n) converge, donc la série $\sum \frac{a_n}{L}$ puis la série $\sum a_n$ convergent aussi.

c. Réciproquement, si $\sum a_n$ converge, on commence par dire que : $\forall n \in \mathbb{N}, u_0 \leq u_n$ (puisque (u_n) est croissante), et : $\forall n \in \mathbb{N}, 0 \leq u_{n+1} - u_n = \frac{a_n}{u_n} \leq \frac{a_n}{u_0}$.

Donc par comparaison de séries à termes positifs, la série télescopique $\sum (u_{n+1} - u_n)$ converge et la suite (u_n) est convergente.

35. a. On peut réécrire l'hypothèse en : $\forall n \geq n_0, \ 0 \leq \frac{u_{n+1}}{\alpha_{n+1}} \leq \frac{u_n}{\alpha_n} \leq C = \frac{u_{n_0}}{\alpha_{n_0}}$.

Donc on a bien : $u_n = O_{+\infty}(\alpha_n)$, (soit $\left(\frac{u_n}{\alpha_n}\right)$ bornée).

- b. D'où : ($\sum \alpha_{\scriptscriptstyle n}$ converge) \Rightarrow ($\sum u_{\scriptscriptstyle n}$ converge), par comparaison de séries à termes positifs.
- 36. a. Notons tout d'abord que suivant P, la suite (u_n) présente un problème de définition.

Il est nécessaire que le coefficient dominant de P soit positif car sinon, P deviendrait négatif à partir d'un certain rang.

Dans le cas donc où le coefficient dominant de P (notons-le a) est positif, on peut alors écrire :

 $\forall n \in \mathbb{N}, P(n) = a.n^k + ... \sim a.n^k$, où k désigne le degré de P.

Cet équivalent garantit que P(n) devient positif pour n assez grand et que u_n est alors défini à partir de ce rang.

Puis : $\sqrt{P(n)} \sim \sqrt{a} \cdot n^{\frac{k}{2}}$, et d'autre part : $\sqrt{n^2 + 1} \sim n$.

Distinguons alors plusieurs cas:

- k < 2, alors $\sqrt{P(n)}$ est négligeable en + ∞ devant $\sqrt{n^2 + 1}$ et (u_n) tend vers + ∞ : la série $\sum u_n$ diverge.
- k>2, alors $\sqrt{n^2+1}$ devient négligeable devant $\sqrt{P(n)}$, et (u_n) tend vers - ∞ : la série diverge encore.
- k=2 , et : $a \neq 1$, on a alors : $u_n \underset{+\infty}{\sim} (1-\sqrt{a}).n$, u_n à nouveau ne tend pas vers 0, et $\sum u_n$ diverge.

Finalement pour que la série converge, il faut que : k = 2, a = 1, soit : $P = X^2 + b \cdot X + c$.

b. On peut sous la dernière hypothèse écrire :

$$\sqrt{P(n)} = \sqrt{n^2 + b \cdot n + c} = n \cdot \left(1 + \frac{b}{n} + \frac{c}{n^2}\right)^{\frac{1}{2}} = n \cdot \left(1 + \frac{b}{2} \cdot \frac{1}{n} + \left(\frac{c}{2} - \frac{b^2}{8}\right) \cdot \frac{1}{n^2} + \left(-\frac{b \cdot c}{4} + \frac{b^3}{16}\right) \cdot \frac{1}{n^3} + o_{+\infty}\left(\frac{1}{n^3}\right)\right),$$

et:
$$\sqrt{n^2 + 1} = n \cdot \left(1 + \frac{1}{n^2}\right)^{\frac{1}{2}} = n \cdot \left(1 + \frac{1}{2 \cdot n^2} + o_{+\infty}\left(\left(\frac{1}{n^3}\right)\right)\right).$$

$$\mathsf{D'où}: \ u_n = \left(-\frac{b}{2}\right) + \left(\frac{1}{2} - \frac{c}{2} + \frac{b^2}{8}\right) \cdot \frac{1}{n} + \left(\frac{b.c}{4} - \frac{b^3}{16}\right) \cdot \frac{1}{n^2} + o_{+\infty}\left(\frac{1}{n^2}\right).$$

On doit donc prendre : b = 0 , pour que u_n tende vers 0.

Si : $c \neq 1$, alors : $u_n \sim \left(\frac{1}{2} - \frac{c}{2}\right) \cdot \frac{1}{n}$, et la série $\sum u_n$ a son terme général équivalent à celui d'une série de

signe constant et divergente, et à ce titre diverge.

Donc on doit prendre : c=1, et dans ce cas : $\forall n \in \mathbb{N}, u_n=0$, et la série $\sum u_n$ converge.

Conclusion : la série converge si et seulement si : $P = X^2 + 1$, et la série est alors la série nulle.

Remarque : le développement limité (si u_n n'avait pas été constamment nul) nous aurait permis dans

tous les cas de déterminer la nature de $\sum u_n$ qui aurait été alors convergente, grâce à un équivalent.

Séries de signe quelconque, somme de séries convergentes.

37. a. Tout d'abord :
$$\frac{u_{n+1}}{u_n} = \frac{n+1}{x} \cdot \ln\left(1 + \frac{x}{n+1}\right) = \frac{n+1}{x} \cdot \left(\frac{x}{n+1} - \frac{x^2}{2 \cdot (n+1)^2} + o_{+\infty}\left(\frac{1}{n^2}\right)\right) = 1 - \frac{x}{2 \cdot (n+1)} + o_{+\infty}\left(\frac{1}{n}\right)$$

ce qui donne encore :
$$\frac{u_{n+1}}{u_n} = 1 - \frac{x}{2.n} + o_{+\infty} \left(\frac{1}{n}\right).$$

$$\text{Puis}: \ \forall \ n \geq 1, \ \ln(u_{n+1}) - \ln(u_n) = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(1 - \frac{x}{2.n} + o_{+\infty}\left(\frac{1}{n}\right)\right) = -\frac{x}{2.n} + o_{+\infty}\left(\frac{1}{n}\right) \sim -\frac{x}{2.n}.$$

Par équivalence avec une série de signe constant (x > 0), la série $\sum (\ln(u_{n+1}) - \ln(u_n))$ diverge vers - ∞ et la suite $(\ln(u_n))$ aussi.

Donc $(u_n u_n)$ tend vers 0.

b. Pour
$$\alpha$$
 donné, on a : $\ln(u_{n+1}) - \ln(u_n) - \alpha \cdot \ln\left(1 + \frac{1}{n}\right) = -\frac{x}{2 \cdot n} - \frac{\alpha}{n} + o_{+\infty}\left(\frac{1}{n}\right)$.

Par comparaison de séries à termes de signe constant, pour que la série converge, il faut que :

$$\alpha + \frac{x}{2} = 0$$
, soit: $\alpha = -\frac{x}{2}$.

Pour cette valeur de
$$\alpha$$
, le terme général s'écrit : $\ln\left(\frac{u_{n+1}}{u_n}\right) - \alpha . \ln\left(1 + \frac{1}{n}\right) = \frac{A}{n^2} + o_{+\infty}\left(\frac{1}{n^2}\right)$,

où A est une constante et ce terme est la somme des termes de deux séries absolument convergentes. On en déduit que cette valeur de α conduit bien à une série convergente.

Remarque : c'est un cas où la notation $O_{+\infty}\left(\frac{1}{n^2}\right)$ (« grand O ») est pratique.

c. La série précédente a pour terme général celui d'une série télescopique car :

$$\ln\left(\frac{u_{n+1}}{u_n}\right) - \alpha \cdot \ln\left(1 + \frac{1}{n}\right) = \left[\ln(u_{n+1}) - \alpha \cdot \ln(n+1)\right] - \left[\ln(u_n) - \alpha \cdot \ln(n)\right].$$

Puisque cette série converge, on en déduit que la suite $(\ln(u_n) - \alpha. \ln(n))$ converge vers une limite notée L, et $(u_n.n^{-\alpha})$ converge vers : $A = e^L$, soit : $u_n.n^{-\alpha} \underset{\scriptscriptstyle{+\infty}}{\sim} A$, ou encore : $u_n \underset{\scriptscriptstyle{+\infty}}{\sim} A.n^{\alpha}$.

d. Par comparaison de séries à termes positifs et puisque : $u_n \sim \frac{A}{n^{\frac{x}{2}}}$, on en déduit que :

• si :
$$\frac{x}{2} \le 1$$
, ou encore : $0 < x \le 2$, la série $\sum_{n \ge 1} u_n$ diverge,

• si :
$$\frac{x}{2} > 1$$
, ou encore : $x > 2$, la série $\sum_{n \ge 1} u_n$ converge.

38. Notons, pour : $n \in \mathbb{N}$: $P_n = \prod_{k=0}^n \cos\left(\frac{x}{2^k}\right)$.

Alors:
$$\forall n \ge 1$$
, on a: $\sin\left(\frac{x}{2^n}\right).P_n = \frac{1}{2}.\sin\left(\frac{x}{2^{n-1}}\right).P_{n-1}$, et par récurrence: $\sin\left(\frac{x}{2^n}\right).P_n = \frac{1}{2^n}.\sin(x).P_0$.

$$\mathsf{Donc}: \forall \ n \in \mathbb{N}, \ \sum_{k=0}^n \ln \left(\cos \left(\frac{x}{2^k} \right) \right) = \ln (P_n) = \ln \left(\frac{1}{2^n} \right) - \ln \left(\sin \left(\frac{x}{2^n} \right) \right) + \ln (\sin (x)) + \ln (P_0), \ \mathsf{pour}: \ x \neq 0, \ \mathsf{et}: \$$

$$\sum_{k=0}^{n} \ln \left(\cos \left(\frac{x}{2^k} \right) \right) = -\ln \left(2^n \cdot \sin \left(\frac{x}{2^n} \right) \right) + \ln(\sin(x)) + \ln(\cos(x)).$$

Or quand n tend vers $+\infty$, la suite $\left(\ln\left(2^n.\sin\left(\frac{x}{2^n}\right)\right)\right)$ tend vers $\ln(x)$ (avec un équivalent).

Donc la série converge et sa somme vaut :

$$\sum_{n=0}^{+\infty} \ln\left(\cos\left(\frac{x}{2^n}\right)\right) = -\ln(x) + \ln(\sin(x)) + \ln(\cos(x)) = \ln\left(\frac{\sin(x).\cos(x)}{x}\right) = \ln\left(\frac{\sin(2.x)}{2.x}\right).$$

39. Un équivalent du terme général donne la convergence de la série : $\frac{2 \cdot n - 1}{n \cdot (n^2 - 1)} \sim \frac{2}{n^2}$.

Par comparaison de séries à termes positifs, la série proposée converge

Puis :
$$\frac{2.X-1}{X.(X-1).(X+1)} = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{X+1}$$
, puis : $a = 1$, $b = \frac{1}{2}$, $c = -\frac{1}{2}$, d'où :

$$\forall n \geq 2, \sum_{k=2}^{n} \frac{2.k-1}{k.(k^2-1)} = \sum_{k=2}^{n} \frac{1}{k} - \frac{1}{2} \cdot \sum_{k=2}^{n} \frac{1}{k+1} + \frac{1}{2} \cdot \sum_{k=2}^{n} \frac{1}{k-1} = \sum_{k=2}^{n} \frac{1}{k} - \frac{1}{2} \cdot \sum_{k=3}^{n+1} \frac{1}{k} + \frac{1}{2} \cdot \sum_{k=1}^{n-1} \frac{1}{k}.$$

On simplifie alors la partie commune aux trois sommes et

$$\forall n \ge 2, \sum_{k=2}^{n} \frac{2 \cdot k - 1}{k \cdot (k^2 - 1)} = \left(\frac{1}{2} + \frac{1}{n}\right) - \frac{1}{2} \cdot \left(\frac{1}{n} + \frac{1}{n+1}\right) + \frac{1}{2} \cdot \left(1 + \frac{1}{2}\right) = \frac{5}{4} + \frac{1}{2} \cdot \frac{1}{n} - \frac{1}{2} \cdot \frac{1}{n+1}.$$

En passant à la limite, on en déduit la somme de la série qui vaut $\frac{5}{4}$.

40. a. On peut par exemple raisonner par récurrence sur N:

• pour :
$$N = 1$$
, on a : $\sum_{n=1}^{N} \frac{Z_n}{n} = z_1$, et : $\sum_{n=1}^{N} \frac{S_n}{n \cdot (n+1)} + \frac{S_N}{N+1} = \frac{S_1}{1 \cdot 2} + \frac{S_1}{2} = S_1 = z_1$, d'où l'égalité.

• si on suppose l'égalité vraie pour un : $N \in \mathbb{N}^*$, donné, alors :

$$\sum_{n=1}^{N+1} \frac{S_n}{n \cdot (n+1)} + \frac{S_{N+1}}{N+2} = \left(\sum_{n=1}^{N} \frac{z_n}{n} - \frac{S_N}{N+1}\right) + \frac{S_{N+1}}{(N+1) \cdot (N+2)} + \frac{S_{N+1}}{N+2} = \sum_{n=1}^{N} \frac{z_n}{n} + \frac{S_{N+1}}{N+1} - \frac{S_N}{N+1}$$

et comme :
$$\frac{S_{N+1}}{N+1} - \frac{S_N}{N+1} = \frac{z_{N+1}}{N+1}$$
,

on en déduit l'égalité voulue au rang N+1, ce qui termine la récurrence.

b. Puisque la série $\sum z_n$ converge, la suite (S_n) est convergente donc bornée.

Par conséquent, la suite $\left(\frac{S_N}{N+1}\right)$ converge vers 0.

De plus, si on note A un majorant de $\left|S_{N}\right|$, alors : $\forall n \in \mathbb{N}^{*}, \left|\frac{S_{n}}{n \cdot (n+1)}\right| \leq \frac{A}{n^{2}}$,

et la série $\sum \frac{S_n}{n.(n+1)}$ est absolument convergente, donc convergente.

Finalement la suite des sommes partielles de la série $\sum_{n\geq 1} \frac{Z_n}{n}$ converge, et la série $\sum_{n\geq 1} \frac{Z_n}{n}$ converge.

41. a. Il est immédiat que la suite (S_n) est croissante (et convergente puisque la série converge). De même, il est immédiat que la suite $(T_n - S_n)$ tend vers 0.

$$\mathsf{Enfin}: \forall \ n \in \mathbb{N}^*, \ T_{n+1} - T_n = S_{n+1} - S_n + \frac{1}{(n+1).(n+1)!} - \frac{1}{n.n!} = \frac{1}{(n+1)!} + \frac{1}{(n+1).(n+1)!} - \frac{1}{n.n!},$$

et donc :
$$T_{n+1} - T_n = \frac{n+2-(n+1)^2}{(n+1).(n+1)!} = \frac{-n^2-n+1}{(n+1).(n+1)!} \le 0$$
, puisque : $n \ge 1$.

Donc les suites sont bien adjacentes (et on retrouve la convergence de la suite (S_n)).

Leur limite commune est évidemment e.

b. Puisque : $\forall n \in \mathbb{N}^*$, $S_n \le e \le T_n$, on a : $n!.S_n \le n!.e < n!.T_n = n!.S_n + \frac{1}{n}$, car (T_n) est strictement décroissante.

De plus, il est clair que : $n!.S_n = n!.\sum_{k=0}^n \frac{1}{k!} = \sum_{k=0}^n \frac{n!}{k!} \in \mathbb{N}$, comme somme d'entiers.

Si on pose alors : $p_n = n!.S_n$, et : $0 \le r_n = n!.e - n!.S_n < \frac{1}{n}$, on a ainsi construit deux suites (p_n) et (r_n) que l'on peut au besoin compléter avec : $p_0 = 2$, et : $r_0 = e - 2$, répondant aux exigences à savoir que (p_n) est une suite d'entiers naturels et (r_n) tend bien vers 0 par le théorème des gendarmes.

c. On a immédiatement : $\forall n \in \mathbb{N}, \ 0 \le e - S_{n+1} \le T_{n+1} - S_{n+1} = \frac{1}{(n+1).(n+1)!}$

Puis:
$$\forall n \in \mathbb{N}, \ 0 \le n!.e - n!.S_{n+1} \le \frac{n!}{(n+1).(n+1)!}, \ d'où: \ 0 \le n!.e - n! \left(S_n + \frac{1}{(n+1)!}\right) \le \frac{n!}{(n+1).(n+1)!},$$

et:
$$0 \le r_n - \frac{n!}{(n+1)!} \le \frac{1}{(n+1)^2}$$
, puisque: $r_n = n! \cdot e - n! \cdot S_n$.

$$\mathsf{Donc}: \forall \ n \in \mathbb{N}^{\star}, \ 0 \leq r_n - \frac{1}{n+1} \leq \frac{1}{(n+1)^2}, \ \mathsf{soit}: \ r_n = \frac{1}{n+1} + o_{+\infty} \bigg(\frac{1}{n+1}\bigg) = \frac{1}{n} + o_{+\infty} \bigg(\frac{1}{n}\bigg), \ \mathsf{et}: \ r_n \sim \frac{1}{n}.$$

d. On peut alors écrire : $\forall n \in \mathbb{N}^*$, $\sin(2\pi n! e) = \sin(2\pi (p_n + r_n)) = \sin(2\pi r_n) \sim 2\pi r_n \sim \frac{2\pi}{n}$,

et donc la série $\sum_{n\geq 0} \sin(2\pi n! e)$ diverge par comparaison de séries à termes positifs.

e. La question c donne : $\forall n \in \mathbb{N}^*, r_n = \frac{1}{n+1} + x_n$, avec : $0 \le x_n \le \frac{1}{(n+1)^2}$, d'où : $x_n = O_{+\infty} \left(\frac{1}{n^2}\right)$.

Donc on en déduit que :
$$\forall n \in \mathbb{N}^*$$
, $r_n = \frac{1}{n} + x_n + O_{+\infty} \left(\frac{1}{n^2}\right) = \frac{1}{n} + O_{+\infty} \left(\frac{1}{n^2}\right)$,

puis :
$$\forall n \in \mathbb{N}^*$$
, $\sin(\pi . n! . e) = \sin(\pi . (p_n + r_n)) = \sin(\pi . r_n) . (-1)^{p_n}$

Enfin:
$$\forall n \ge 2$$
, $p_n = n!.S_n = \sum_{k=0}^n \frac{n!}{k!} = 1 + n + \sum_{k=0}^{n-2} \frac{n!}{k!} = (n+1) + n.(n-1).\sum_{k=0}^{n-2} \frac{(n-2)!}{k!}$,

et comme n.(n-1) est pair et $\sum_{k=0}^{n-2} \frac{(n-2)!}{k!}$ est un entier, on conclut que : $(-1)^{p_n} = (-1)^{n+1}$.

 $\text{Finalement}: \forall \ n \in \mathbb{N}^{\star}, \ \sin(\pi.n!.e) = (-1)^{^{n+1}} \cdot \left(\frac{1}{n} + O_{_{+\infty}} \left(\frac{1}{n^2}\right)\right) = \frac{(-1)^{^{n+1}}}{n} + O_{_{+\infty}} \left(\frac{1}{n^2}\right),$

et la série $\sum_{n\geq 0}\sin(\pi.n!.e)$ converge comme somme d'une série alternée convergente (d'après le critère spécial) et d'une série absolument convergente.

Produit infini.

42. a. Pour : $N \ge 2$, tous les termes du produit qui composent P_N sont strictement positifs et P_N l'est aussi.

De plus :
$$\forall N \ge 2$$
, $\ln \left(\prod_{n=2}^{N} \left(1 + \frac{(-1)^n}{\sqrt{n}} \right) \right) = \sum_{n=2}^{N} \ln \left(1 + \frac{(-1)^n}{\sqrt{n}} \right)$.

Si on note u_n le terme qui apparaît dans la somme, alors : $u_n = \ln \left(1 + \frac{(-1)^n}{\sqrt{n}} \right) = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2.n} + o_{+\infty} \left(\frac{1}{n} \right)$.

Or la série $\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}}$ converge du fait du critère spécial et la série $\sum_{n\geq 2} \left(-\frac{1}{2.n} + o_{+\infty}\left(\frac{1}{n}\right)\right)$ diverge vers -∞

par comparaison de séries à termes négatifs.

Donc la suite $(\ln(P_N))$ diverge vers $-\infty$ et (P_N) tend vers 0.

Remarque : l'écriture « intuitive » qu'on aurait pour ce résultat : $\prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^n}{\sqrt{n}}\right) = 0$,

montre qu'il faut être prudent car ce « produit » (ça n'en est pas un) est nul alors que tous ses termes sont non nuls.

b. Si on pousse le développement de u_n à un ordre de plus, on obtient :

$$u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2 \cdot n} + \frac{(-1)^n}{3 \cdot n \cdot \sqrt{n}} + o_{+\infty} \left(\frac{1}{n \cdot \sqrt{n}}\right) = a_n + b_n + c_n.$$

Les séries $\sum a_n$ et $\sum c_n$ convergent (la deuxième par absolue convergence), et donc :

$$\ln\!\left(P_{\scriptscriptstyle N}\right) = \sum_{\scriptscriptstyle n=2}^{\scriptscriptstyle N} a_{\scriptscriptstyle n} + \sum_{\scriptscriptstyle n=2}^{\scriptscriptstyle N} b_{\scriptscriptstyle n} + \sum_{\scriptscriptstyle n=2}^{\scriptscriptstyle N} c_{\scriptscriptstyle n} = L_{\scriptscriptstyle a} - \frac{1}{2} \cdot \left(\sum_{\scriptscriptstyle n=1}^{\scriptscriptstyle N} \frac{1}{n} - 1\right) + L_{\scriptscriptstyle c} + o_{\scriptscriptstyle +\infty}(1) = -\frac{1}{2} \cdot \ln(N) + K + o_{\scriptscriptstyle +\infty}(1) \; , \; \text{d'où} \; : \; + c_{\scriptscriptstyle +\infty}(1) \cdot \left(\sum_{\scriptscriptstyle n=1}^{\scriptscriptstyle N} \frac{1}{n} - 1\right) + L_{\scriptscriptstyle c} + o_{\scriptscriptstyle +\infty}(1) = -\frac{1}{2} \cdot \ln(N) + K + o_{\scriptscriptstyle +\infty}(1) \; , \; \text{d'où} \; : \; + c_{\scriptscriptstyle +\infty}(1) \cdot \left(\sum_{\scriptscriptstyle n=1}^{\scriptscriptstyle N} \frac{1}{n} - 1\right) + L_{\scriptscriptstyle c} + o_{\scriptscriptstyle +\infty}(1) = -\frac{1}{2} \cdot \ln(N) + K + o_{\scriptscriptstyle +\infty}(1) \; , \; \text{d'où} \; : \; + c_{\scriptscriptstyle +\infty}(1) \cdot \left(\sum_{\scriptscriptstyle n=1}^{\scriptscriptstyle N} \frac{1}{n} - 1\right) + L_{\scriptscriptstyle c} + o_{\scriptscriptstyle +\infty}(1) = -\frac{1}{2} \cdot \ln(N) + K + o_{\scriptscriptstyle +\infty}(1) \; .$$

$$P_N = \frac{1}{\sqrt{N}}.e^{K+o_{+\infty}(1)} \sim \frac{e^K}{\sqrt{N}} \sim \frac{C}{\sqrt{N}} \text{, avec}: C = e^K \in \mathbb{R}^*.$$

- 43. Remarquons tout d'abord que : $\forall N \in \mathbb{N}$, $\ln(P_N) = \sum_{n=0}^{N} \ln(1+u_n)$, et raisonnons par double implication :
 - si (P_N) converge, et puisque tous les termes du produit sont supérieurs à 1, la limite P de (P_N) est supérieure à 1.

La série $\sum \ln(1+u_n)$ converge alors vers $\ln(P)$ et son terme général tend vers 0.

Mais alors : $\ln(1+u_n) \sim u_n$, et par comparaison de séries à termes positifs, $\sum u_n$ converge.

• si la série $\sum u_n$ converge, alors son terme général tend vers 0 et : $\ln(1+u_n) \sim u_n$.

Donc la série $\sum \ln(1+u_n)$ converge, et la suite $\ln(P_{\scriptscriptstyle N})$ aussi, ce qui entraîne la convergence de ($P_{\scriptscriptstyle N}$).

Séries alternées et autour de la série alternée.

44. Attention à ne pas se contenter d'un équivalent

On peut écrire :
$$(-1)^n . \sqrt[n]{n} . \sin\left(\frac{1}{n}\right) = (-1)^n . \frac{\sqrt[n]{n}}{n} + \frac{(-1)^{n+1} . \sqrt[n]{n}}{3 . n^3} + o_{+\infty}\left(\frac{\sqrt[n]{n}}{n^3}\right).$$

On écrit ainsi le terme général u_n comme la somme de deux termes, a_n et b_n .

 $\text{La deuxième série converge par absolue convergence car}: \left|b_n\right| = \left|\frac{(-1)^{n+1}.\sqrt[n]{n}}{3.n^3} + o_{+\infty}\left(\frac{\sqrt[n]{n}}{n^3}\right)\right| \sim \frac{\sqrt[n]{n}}{3.n^3} \sim \frac{1}{3.n^3}.$

En effet, la suite $(\sqrt[n]{n})$ tend vers 1.

La première est alternée.

Posons alors f la fonction : $x \mapsto x^{1-x} = \exp((1-x).\ln(x))$, et étudions-la sur]0,1].

Elle y est dérivable et : $\forall x \in]0,1], f'(x) = \left(-\ln(x) + \frac{1-x}{x}\right).f(x).$

On pose alors: $g(x) = -\ln(x) + \frac{1}{x} - 1$, sur]0,1], et: $g'(x) = -\frac{1}{x} - \frac{1}{x^2} < 0$.

g est donc décroissante sur [0,1] et s'annule en 1 : elle reste positive sur l'intervalle.

On en déduit que f' est positive et f est donc croissante sur]0,1].

La série
$$\sum a_n$$
, avec : $\forall n \ge 1$, $a_n = (-1)^n \cdot \frac{\sqrt[n]{n}}{n} = (-1)^n \cdot \left(\frac{1}{n}\right)^{1-\frac{1}{n}} = (-1)^n \cdot f\left(\frac{1}{n}\right)$,

vérifie donc le critère spécial des séries alternées et est donc convergente.

Finalement la série proposée $\sum (-1)^n \sqrt[n]{n} \cdot \sin\left(\frac{1}{n}\right)$ converge.

45. La série proposée est alternée

De plus :
$$\forall n \ge 0$$
, $\frac{8^{n+1}}{(2.n+2)!} \cdot \frac{(2.n)!}{8^n} = \frac{8}{(2.n+1).(2.n+2)} = \frac{4}{(2.n+1).(n+1)}$,

et ce quotient est plus petit que 1 dès que : $n \ge 1$

Donc la série vérifie les hypothèses du critère spécial à partir du rang 1.

On peut alors écrire :
$$S = \sum_{n=0}^{+\infty} \frac{(-1)^n . 8^n}{(2.n)!} = 1 - 4 + \sum_{n=2}^{+\infty} \frac{(-1)^n . 8^n}{(2.n)!} = -3 + S'$$
, avec : $S' = \sum_{n=2}^{+\infty} \frac{(-1)^n . 8^n}{(2.n)!}$.

S' positif et :
$$|S'| \le \left| \frac{8^2}{4!} \right| = \frac{64}{24} = \frac{8}{3} < 3$$
.

Donc: S < 0.

- 46. a. Pour : $n \ge 1$, et comme reste d'une série convergente, R_n existe et est du signe de son premier terme à savoir $(-1)^{n+1}$ puisque la série définissant R_n vérifie le critère spécial des séries alternées.
 - b. On a immédiatement :

$$\forall \ n \in \mathbb{N}, \ R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{k=n+2}^{+\infty} \frac{(-1)^k}{k} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{p=n+1}^{+\infty} \frac{(-1)^{p+1}}{p+1} = \sum_{k=n+1}^{+\infty} \left(\frac{(-1)^k}{k} + \frac{(-1)^{k+1}}{k+1}\right),$$

en ayant effectué une translation d'indice et réappelé k le nouvel indice p.

D'où:
$$\forall n \in \mathbb{N}, R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k \cdot (k+1)}$$

c. On peut alors écrire :
$$\forall n \in \mathbb{N}, R_n = \frac{(-1)^{n+1}}{n+1} + R_{n+1}, \text{ donc} : 2.R_n = \frac{(-1)^{n+1}}{n+1} + R_n + R_{n+1}.$$

Or la série $\sum_{n\geq 1} \frac{(-1)^n}{n \cdot (n+1)}$ est alternées et vérifie le critère spécial de façon immédiate.

$$\mathsf{Donc}: \forall \ n \in \mathbb{N}, \ \left| R_n + R_{n+1} \right| = \left| \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k.(k+1)} \right| \leq \frac{1}{(n+1).(n+2)}, \ \mathsf{et}: \ R_n + R_{n+1} = O_{+\infty} \left(\frac{1}{n^2} \right) = o_{+\infty} \left(\frac{1}{n} \right).$$

$$\mathsf{Donc}: \ R_n = \frac{(-1)^{n+1}}{2.(n+1)} + O_{+\infty} \left(\frac{1}{n^2}\right) = \frac{(-1)^{n+1}}{2.n} + O_{+\infty} \left(\frac{1}{n^2}\right) \sim \frac{(-1)^{n+1}}{2.n} \ .$$

d. L'équivalent obtenu au-dessus ne permet pas d'en déduire la nature de la série $\sum_{n\geq 1} R_n$, mais comme somme d'une série convergente (alternée vérifiant le critère spécial) et d'une série absolument convergente, la série $\sum R_n$ converge.

Autour de la série harmonique.

47. a. On peut penser à comparer S_n à H_n .

Pour cela :
$$\forall n \in \mathbb{N}^*$$
, $S_n - H_n = \sum_{k=1}^n \frac{1}{k + \sqrt{k}} - \sum_{k=1}^n \frac{1}{k} = -\sum_{k=1}^n \frac{\sqrt{k}}{k \cdot (k + \sqrt{k})}$.

Or la série $\sum_{n\geq 1} \frac{\sqrt{n}}{n.(n+\sqrt{n})}$ converge par comparaison de séries à termes positifs, donc la suite de ses

Donc :
$$\frac{S_n}{\ln(n)} = \frac{H_n}{\ln(n)} + \frac{S_n}{n}$$
, avec $\left(\frac{H_n}{\ln(n)}\right)$ qui tend vers 1 et $\left(\frac{a_n}{\ln(n)}\right)$ qui tend vers 0.

Donc: $S_n \sim \ln(n)$.

b. On peut être plus précis puisque le fait que $(S_n - H_n)$ converge s'écrit aussi :

$$\exists K \in \mathbb{R}, S_n - H_n = K + o_{+\infty}(1)$$

et comme : $H_n = \ln(n) + \gamma + o_{+\infty}(1)$, finalement :

$$S_{\scriptscriptstyle n} = \ln(n) + (K + \gamma) + o_{\scriptscriptstyle +\infty}(1)$$
 , soit bien : $S_{\scriptscriptstyle n} = \ln(n) + C + o_{\scriptscriptstyle +\infty}(1)$,

où C est une constante, et $o_{+\infty}(1)$ tend vers 0 en $+\infty$.

Séries de Bertrand.

48. a. La fonction f est définie et de classe C^1 sur $]1,+\infty)$, et : $\forall x > 1$, $f'(x) = \frac{1}{x} \cdot \frac{1}{\ln(x)} = \frac{1}{x \cdot \ln(x)}$.

$$\mathsf{Donc}: \forall \ n \geq 2 \,,\, \exists \ c_{\scriptscriptstyle n} \in \,]\, n, n+1 \, \left[, \ f(n+1) - f(n) = f'(c_{\scriptscriptstyle n}) \,, \right.$$

autrement dit :
$$\forall n \ge 2$$
, $\ln(\ln(n+1)) - \ln(\ln(n)) = \frac{1}{c_n \cdot \ln(c_n)} \le \frac{1}{n \cdot \ln(n)}$.

Or la série télescopique $\sum_{n\geq 2} (\ln(\ln(n+1)) - \ln(\ln(n)))$ diverge puisque la suite $(\ln(\ln(n)))$ diverge.

Donc par minoration, la série de termes positifs $\sum_{n\geq 2} \frac{1}{n.\ln(n)}$ diverge.

b. Il est immédiat que :
$$\forall \alpha < 1, \forall n \ge 2, \frac{1}{n^{\alpha}.\ln(n)} \ge \frac{1}{n.\ln(n)}$$
,

et donc par minoration (d'une série à termes positifs), la série $\sum_{n\geq 2} \frac{1}{n^{\alpha} \cdot \ln(n)}$ diverge.

c. Pour :
$$\alpha \ge 2$$
, et : $\forall \beta \in \mathbb{R}$, on a : $\forall n \ge 2$, $\frac{1}{n^{\alpha}.(\ln(n))^{\beta}} = \frac{1}{n^{\frac{3}{2}}}.\frac{(\ln(n))^{-\beta}}{n^{\alpha-\frac{3}{2}}}$.

Or puisque : $\alpha - \frac{3}{2} > 0$, le théorème des croissances comparées montre que : $\lim_{n \to +\infty} \frac{(\ln(n))^{-\beta}}{n^{\alpha - \frac{3}{2}}} = 0$.

Donc:
$$\frac{1}{n^{\alpha}.(\ln(n))^{\beta}} = o_{+\infty}\left(\frac{1}{\frac{3}{n^{2}}}\right)$$
, et la série $\sum_{n\geq 2}\frac{1}{n^{\alpha}.(\ln(n))^{\beta}}$ converge, par comparaison.

Produit de Cauchy.

49. Si on note a_n le terme général de cette série et b_n celui de la série correspondant au produit de Cauchy proposé, on a :

$$\forall \ n \in \mathbb{N}, \ b_n = \sum_{k=0}^n a_k.a_{n-k} = \sum_{k=0}^n \frac{(-1)^k}{k+1}.\frac{(-1)^{n-k}}{n-k+1} = (-1)^n.\sum_{k=0}^n \frac{1}{(k+1).(n-k+1)} = \frac{(-1)^n}{n+2}.\sum_{k=0}^n \left(\frac{1}{k+1} + \frac{1}{n-k+1}\right).$$

De plus :
$$\sum_{k=0}^{n} \left(\frac{1}{k+1} + \frac{1}{n-k+1} \right) = \sum_{k=0}^{n} \frac{1}{k+1} + \sum_{k=0}^{n} \frac{1}{n-k+1} = 2.H_{n+1}$$
,

avec le changement d'indice : p = n - k, dans la deuxième somme.

Donc:
$$\forall n \in \mathbb{N}, b_n = (-1)^n \cdot \frac{2.H_{n+1}}{n+2}$$
.

La série est donc alternée et son terme général tend vers 0 puisque : $|b_n| \sim \frac{2 \cdot \ln(n+1)}{n} \sim \frac{2 \cdot \ln(n)}{n}$.

Enfin:
$$\forall n \in \mathbb{N}, |b_{n+1}| - |b_n| = 2 \cdot \left(\frac{H_{n+2}}{n+3} - \frac{H_{n+1}}{n+2} \right) = 2 \cdot \frac{(n+2) \cdot H_{n+2} - (n+3) \cdot H_{n+1}}{(n+3) \cdot (n+2)},$$

et:
$$(n+2).H_{n+2} - (n+3).H_{n+1} = (n+2).(H_{n+1} + \frac{1}{n+2}) - (n+3).H_{n+1} = 1 - H_{n+1} \le 0$$

Donc la série $\sum_{n>0} b_n$ vérifie les hypothèses du critère spécial des séries alternées et à ce titre, converge.

Remarque : évidemment ici la série $\sum_{n>0} \frac{(-1)^n}{n+1}$ n'est pas absolument convergente.

50. Remarque générale : u_n est le terme général d'un produit de Cauchy de la série $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ avec elle-même.

En effet, puisque la numérotation commence à 1, on a, en notant $\sum_{n\geq 1} v_n$ ce produit de Cauchy :

$$\forall \ n \ge 1, \ v_n = \sum_{\substack{p+q=n\\1\le n}\ 1\le \alpha} \frac{1}{p^{\alpha}} \cdot \frac{1}{q^{\alpha}} = \sum_{p=1}^{n-1} \frac{1}{p^{\alpha}} \cdot \frac{1}{(n-p)^{\alpha}} = u_n, \text{ sachant que} : \ v_1 = 0,$$

puisqu'on ne peut pas avoir $:1 \le p$, $1 \le q$, et : p+q=1 , autrement dit $: \forall n \ge 2$, $v_n=u_n$.

a. Si:
$$\alpha \le 0$$
, alors: $\forall n \ge 2$, $u_n = \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}.(n-k)^{\alpha}} \ge \frac{1}{1^{\alpha}.(n-1)^{\alpha}} = (n-1)^{-\alpha}$,

et (u_n) ne tend pas vers 0 donc la série $\sum_{n \ge 0} u_n$ diverge.

- b. Si : $\alpha > 1$, la série $\sum_{n \geq 2} u_n$ est le produit de Cauchy de deux séries (deux fois la même) absolument convergentes et donc converge.
- c. Si : $0 < \alpha \le 1$, alors la fonction : $x \mapsto x.(1-x)$, est positive sur]0,1[et en étudiant sa dérivée, on constate qu'elle atteint son maximum en $\frac{1}{2}$ où elle vaut $\frac{1}{4}$.

Donc: $\forall n \ge 2, \forall 1 \le k \le n-1, \left(\frac{k}{n}\right)^{\alpha} \cdot \left(1-\frac{k}{n}\right)^{\alpha} \le \left(\frac{1}{4}\right)^{\alpha}$, puisque de plus la fonction: $x \mapsto x^{\alpha}$, est

croissante sur
$$\mathbb{R}^{+*}$$
 et donc : $\frac{1}{k^{\alpha}.(n-k)^{\alpha}} = \frac{1}{n^{2.\alpha}}.\frac{1}{\left(\frac{k}{n}\right)^{\alpha}.\left(1-\frac{k}{n}\right)^{\alpha}} \ge \frac{1}{n^{2.\alpha}}.4^{\alpha}$.

Donc:
$$\forall n \ge 2, u_n \ge (n-1).\frac{1}{n^{2.\alpha}}.4^{\alpha} \sim \frac{1}{n^{\alpha}}.4^{\alpha},$$

et la série $\sum_{n\geq 2}u_n$ diverge par comparaison d'une série à termes positifs avec une série de Riemann divergente.