Problème A

Rappelons que la série de Riemann $\sum_{n\geq 1} \frac{1}{n^3}$ converge puisque 3>1!

1) La fonction $x\mapsto \frac{1}{x^3}$ étant décroissante sur $[1,+\infty[$, j'ai, pour tout couple (p,q) de \mathbb{N}^2 tel que p< q:

$$\forall n \in [p+1, q] \quad \forall x \in [n, n+1] \quad \frac{1}{(n+1)^3} \le \frac{1}{x^3} \le \frac{1}{n^3},$$

d'où, par croissance de l'intégrale :

$$\forall n \in [p+1, q] \quad \frac{1}{(n+1)^3} \le \int_n^{n+1} \frac{\mathrm{d}x}{x^3} \le \frac{1}{n^3},$$

puis, en sommant de p+1 à q, grâce à la relation de Chasles

$$\sum_{n=p+1}^{q} \frac{1}{(n+1)^3} \le \int_{p+1}^{q+1} \frac{\mathrm{d}x}{x^3} = \frac{1}{2} \left[\frac{1}{(p+1)^2} - \frac{1}{(q+1)^2} \right] \le \sum_{n=p+1}^{q} \frac{1}{n^3}.$$

En réindexant la première somme et en passant à la limite pour $q \to \infty$ (les trois membres admettent bien une limite), j'obtiens :

$$R_{p+1} \le \frac{1}{2(p+1)^2} \le R_p,$$

cela pour tout p de \mathbb{N} . L'inégalité de gauche signifie que : $\forall p \in \mathbb{N}^* \ R_p \leq \frac{1}{2n^2}$, d'où finalement

$$(1) \forall p \in \mathbb{N}^* \frac{1}{2(p+1)^2} \le R_p \le \frac{1}{2p^2}.$$

J'ai: $\frac{1}{2v^2} < 10^{-8} \Leftrightarrow p > \frac{10^4}{\sqrt{2}} \approx 7071, 1.$ D'où

Le plus petit entier
$$p$$
 tel que $\frac{1}{2p^2} < 10^{-8}$ est 7 072.

2) Si je pose $\varepsilon_p = \frac{1}{2n^2}$, je viens de voir que $S = S_p + R_p \in [S_p + \varepsilon_{p+1}, S_p + \varepsilon_p]$; $\overline{S_p} = S_p + \frac{1}{2} \cdot [\varepsilon_{p+1} + \varepsilon_p]$ n'est autre que le milieu de cet intervalle! J'ai d'après (1):

$$\varepsilon_{p+1} - \frac{1}{2} \cdot [\varepsilon_{p+1} + \varepsilon_p] \le S - \overline{S_p} = R_p - \frac{1}{2} \cdot [\varepsilon_{p+1} + \varepsilon_p] \le \varepsilon_p - \frac{1}{2} \cdot [\varepsilon_{p+1} + \varepsilon_p]$$

soit

$$-\frac{1}{2}\cdot \left[\varepsilon_p-\varepsilon_{p+1}\right] \leq S-\overline{S_p} \leq \frac{1}{2}\cdot \left[\varepsilon_p-\varepsilon_{p+1}\right] \quad \text{c'est-\`a-dire} \quad \left|S-\overline{S_p}\right| \leq \frac{1}{2}\cdot \left[\varepsilon_p-\varepsilon_{p+1}\right]$$

οù

$$\frac{1}{2}\cdot\left[\varepsilon_{p}-\varepsilon_{p+1}\right]=\frac{2p+1}{4p^{2}\left(p+1\right)^{2}}\leq\frac{2p+2}{4p^{2}\left(p+1\right)^{2}}=\frac{1}{2p^{2}\left(p+1\right)}\leq\frac{1}{2p^{3}}.$$

Finalement,

$$\boxed{\forall p \in \mathbb{N}^* \quad \left| S - \overline{S_p} \right| \le \frac{1}{2p^3}.}$$

J'ai : $\frac{1}{2p^3} < 10^{-8} \Leftrightarrow p > \sqrt[3]{\frac{10^8}{2}} \approx 368, 4$. D'où

Le plus petit entier
$$p$$
 tel que $\frac{1}{2p^3} < 10^{-8}$ est 369.

3) a) La remarque de l'énoncé montre que, en constatant l'hécatombe :

$$\forall p \in \mathbb{N}^* \quad \sum_{n=1}^{p} \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \cdot \left[\frac{1}{1\cdot 2} - \frac{1}{(p+1)(p+2)} \right] \underset{p \to \infty}{\longrightarrow} \frac{1}{4}.$$

Par conséquent, la série de terme général $\frac{1}{n(n+1)(n+2)}$ converge et a pour somme $\frac{1}{4}$.

S' est ainsi la différence entre les sommes de deux séries convergentes :

$$S'$$
 existe et vaut $S - \frac{1}{4}$, donc $S = S' + \frac{1}{4}$.

b) Remarquons que (dans le même esprit qu'au 2)):

$$\forall n \geq 2 \quad \frac{1}{n^3} - \frac{1}{n\left(n+1\right)\left(n+2\right)} = \frac{3n+2}{n^3\left(n+1\right)\left(n+2\right)} \leq \frac{3n+3}{n^3\left(n+1\right)\left(n+2\right)} = \frac{3}{n^3\left(n+2\right)} \leq \frac{3}{n^4} \leq \int_{n-1}^{n} \frac{3\mathrm{d}x}{x^4}.$$

En sommant de p+1 à q puis en faisant tendre q vers l'infini, j'obtiens :

$$R_p' \le \lim_{q \to \infty} \int_p^q \frac{3\mathrm{d}x}{x^4} = \frac{1}{p^3}.$$

De même :

$$\forall n \ge 2 \quad \frac{1}{n^3} - \frac{1}{n(n+1)(n+2)} = \frac{3n+2}{n^3(n+1)(n+2)} \ge \frac{3}{n^2(n+1)(n+2)} \ge \frac{3}{(n+2)^4} \ge \int_{n+2}^{n+3} \frac{3\mathrm{d}x}{x^4} dx$$

conduit à :

$$R'_p \ge \lim_{q \to \infty} \int_{p+3}^{q+3} \frac{3\mathrm{d}x}{x^4} = \frac{1}{(p+3)^3}.$$

En conclusion.

$$\forall p \in \mathbb{N}^* \quad \frac{1}{(p+3)^3} \le R_p' \le \frac{1}{p^3}.$$

c) Suivant le même principe qu'au 3), avec ici $\varepsilon_p' = \frac{1}{p^3}$, j'ai

$$\left|S' - \overline{S'_p}\right| \le \frac{1}{2} \cdot \left[\varepsilon'_p - \varepsilon'_{p+3}\right]$$

οù

$$\varepsilon_p' - \varepsilon_{p+3}' = \frac{9p^2 + 27p + 27}{p^3 (p+3)^3} \le \frac{9(p+3)^2}{p^3 (p+3)^3} = \frac{9}{p^3 (p+3)} \le \frac{9}{p^4}.$$

D'où finalement:

$$\left| |S' - \overline{S_p'}| \le \frac{9}{2p^4}. \right|$$

J'ai : $\frac{9}{2p^4} < 10^{-8} \Leftrightarrow p > \sqrt[4]{\frac{9 \cdot 10^8}{2}} \approx 145.65$. D'où :

Le plus petit entier
$$p$$
 tel que $\frac{9}{2p^4} < 10^{-8}$ est 146.

4) a) Puisqu'il faudra majorer explicitement δ_n , je fais un calcul exact plutôt qu'un développement limité. Par définition, pour $n \geq 2$, j'ai

$$\delta_{n} = -\frac{a}{n^{2}} - \frac{b}{n^{3}} - \frac{c}{n^{4}} - \frac{1}{n^{3}} + \frac{a}{(n-1)^{2}} + \frac{b}{(n-1)^{3}} + \frac{c}{(n-1)^{4}}$$

$$= \frac{(2a-1)n^{5} + (3b-5a+4)n^{4} + (4c-6b+4a-6)n^{3} + (4b-a-6c+4)n^{2} + (4c-b-1)n-c}{n^{4}(n-1)^{4}}$$

Pour annuler au numérateur les termes respectifs en n^5, n^4, n^3 , je choisis successivement

$$a = \frac{1}{2}, \ b = -\frac{1}{2}, \ c = \frac{1}{4}.$$

Par chance, le terme en n^2 disparaît aussi et il reste

Pour
$$a = \frac{1}{2}$$
, $b = -\frac{1}{2}$, $c = \frac{1}{4}$, $\delta_n = \frac{2n-1}{4n^4(n-1)^4}$.

b) Reprenant le cheminement du 4)b), j'ai pour $n \geq 3$

$$\delta_n \le \frac{2n}{4n^4 (n-1)^4} = \frac{1}{2n^3 (n-1)^4} \le \frac{1}{2(n-1)^7} \le \int_{n-2}^{n-1} \frac{\mathrm{d}x}{2x^7}$$

d'où pour $p \ge 2$

$$\sum_{n=p+1}^{\infty} \delta_n \le \lim_{q \to \infty} \int_{p-1}^{q-1} \frac{\mathrm{d}x}{2x^7} = \frac{1}{12(p-1)^6}.$$

Or — en revenant à la définition — après une nouvelle hécatombe :

$$\sum_{n=p+1}^{q} \delta_n = U_p - U_q \xrightarrow[q \to \infty]{} U_p - S.$$

Ainsi : $S = U_p - \sum_{n=p+1}^{\infty} \delta_n$. Or ce dernier reste est positif (les δ_n sont positifs) et nous venons de le majorer.

$$\forall p \ge 2$$
 $\sum_{n=p+1}^{\infty} \delta_n \le \frac{1}{12(p-1)^6}$ et $U_p - \frac{1}{12(p-1)^6} \le S \le U_p$.

c) L'encadrement précédent montre qu'en choisissant p tel que $\frac{1}{12(p-1)^6} < 2.10^{-8}$, le milieu de l'intervalle précédent, à savoir $U_p - \frac{1}{24(p-1)^6}$ sera une valeur approchée de S à 10^{-8} près (le rayon de l'intervalle). Le plus petit entier p vérifiant la condition précédente est 14 et, tous calculs faits :

$$U_{14} \approx 1,20205691417$$
 et $S \approx 1,20205690554$ à 10^{-8} près.

(sympy donne $S \approx 1,2020569031595942854$ avec 20 chiffres significatifs.)

Problème B

Première partie

1) Comme f' est décroissante, de limite nulle, elle est à valeurs positives. Donc la série $\sum (-1)^n f'(x_n)$ est une série alternée ; elle vérifie les hypothèses du théorème spécial des séries alternées, puisque (x_n) croît vers $+\infty$ et donc $f'(x_n)$, qui est la valeur absolue du terme général, décroît vers 0:

La série
$$\sum (-1)^n f'(x_n)$$
 est convergente.

2) a) Puisque $x \neq y$, il suffit de choisir $A = \frac{2}{(y-x)^2} [F(y) - F(x) - (y-x) f(x)].$

Il existe
$$A$$
 tel que $G(y) = 0$.

b) f est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} , donc F est de classe \mathcal{C}^2 et F'=f; ainsi G est de classe \mathcal{C}^2 et

$$\forall z \in \mathbb{R}^{+*} \quad G'(z) = f(z) - f(x) - (z - x) A \quad \text{et} \quad G''(z) = f'(z) - A.$$

G s'annule par construction en x et en y, le théorème de Rolle me fournit un point y_1 de]x,y[où G' s'annule ; or G' s'annule également en x, d'où, toujours grâce au théorème de Rolle, l'existence de c dans $]x,y_1[$ où G'' s'annule, autrement dit f'(c) - A = 0. En conclusion :

Il existe
$$c$$
 dans $]x, y[$ tel que $A = f'(c)$.

3) En transformant la relation G(y) = 0, je remarque que la question précédente montre que, pour x, y distincts dans \mathbb{R}^{+*} ,

$$\exists c \in]x, y[F(y) - F(x) = (y - x) f(x) + \frac{(y - x)^2}{2} f'(c).$$

a) J'applique ici le résultat précédent avec $x = n, y = n + \frac{1}{2}$:

$$\exists y_n \in \left] n, n + \frac{1}{2} \left[F\left(n + \frac{1}{2}\right) - F(n) = \frac{1}{2}f(n) + \frac{1}{8}f'(y_n). \right]$$

b) Puis ici avec $x = n + 1, y = n + \frac{1}{2}$:

$$\exists z_n \in \left[n+1, n+\frac{1}{2} \right[F\left(n+\frac{1}{2}\right) - F\left(n+1\right) = -\frac{1}{2}f\left(n+1\right) + \frac{1}{8}f'\left(z_n\right),$$

autrement dit:

$$\exists z_n \in \left[n + \frac{1}{2}, n + 1 \right[F(n+1) - F\left(n + \frac{1}{2}\right) = \frac{1}{2}f(n+1) - \frac{1}{8}f'(z_n). \right]$$

4) a) Soit $n \ge 2$. J'ai d'une part, après l'hécatombe :

$$\sum_{p=1}^{n-1} (F(p+1) - F(p)) = F(n) - F(1) = F(n) \text{ puisque } F(1) = 0;$$

d'autre part, en intercalant (habilement) $F\left(p+\frac{1}{2}\right)$ j'ai, grâce à la question précédente, pour $p\in [\![1,n-1]\!]$:

$$F(p+1) - F(p) = F(p+1) - F\left(p + \frac{1}{2}\right) + F\left(p + \frac{1}{2}\right) - F(p)$$
$$= \frac{1}{2}[f(p) + f(p+1)] + \frac{1}{8}[f'(y_p) - f'(z_p)]$$

d'où:

$$\sum_{p=1}^{n-1} (F(p+1) - F(p)) = \frac{1}{2} \sum_{p=1}^{n-1} [f(p) + f(p+1)] + \frac{1}{8} \sum_{p=1}^{n-1} [f'(y_p) - f'(z_p)]$$

$$= \frac{1}{2} f(1) + \sum_{p=2}^{n-1} f(p) + \frac{1}{2} f(n) - \frac{1}{8} \sum_{k=1}^{2n-2} (-1)^k f'(x_k)$$

cela en posant, pour $p \in [1, n-1]$:

$$x_{2p-1} = y_p \quad \text{et} \quad x_{2p} = z_p.$$

En comparant ces deux écritures de la même somme, j'obtiens :

$$U_n(f) = \frac{1}{8} \sum_{k=1}^{2n-2} (-1)^k f'(x_k).$$

Or, pour tout $p, y_p \in \left] n, n + \frac{1}{2} \right[\text{ et } z_p \in \left] n + \frac{1}{2}, n + 1 \right[$; il en résulte que la suite (x_k) est strictement croissante, de limite $+\infty$, donc le **1)** s'applique :

La suite
$$(U_n(f))$$
 converge vers $U(f) = \frac{1}{8} \sum_{k=1}^{\infty} (-1)^k f'(x_k)$.

b) En outre, si je note, pour tout p,

$$S_p = \frac{1}{8} \sum_{k=1}^{p} (-1)^k f'(x_k),$$

je sais, d'après la démonstration du théorème spécial des séries alternées, que les deux suites (S_{2n}) et (S_{2n+1}) sont adjacentes, avec :

$$\forall n \geq 1 \quad S_{2n-1} \leq U(f) \leq S_{2n-2}$$

d'où, en retranchant S_{2n-2} qui n'est autre que $U_{n}\left(f\right)$:

$$\forall n \ge 1 \quad -\frac{1}{8}f'(x_{2n-1}) \le U(f) - U_n(f) \le 0;$$

or $x_{2n-1}=y_n\geq n$ et f' est décroissante ; j'en déduis, en multipliant par -1 :

$$\forall n \ge 2 \quad 0 \le U_n(f) - U(f) \le \frac{1}{8} f'(n).$$

5) $f_1: x \mapsto -\frac{1}{x}$ est bien de classe \mathcal{C}^1 sur \mathbb{R}^{+*} , $f_1': x \mapsto \frac{1}{x^2}$ est décroissante, de limite nulle en $+\infty$; donc les résultats précédents s'appliquent. Or :

$$\forall n \ge 2 \quad U_n(f_1) = -\frac{1}{2} - \sum_{p=2}^{n-1} \frac{1}{p} - \frac{1}{2n} + \int_1^n \frac{\mathrm{d}x}{x} = \frac{1}{2} + \frac{1}{2n} - \sum_{p=1}^n \frac{1}{p} + \ln n.$$

J'en déduis que :

$$\lim_{n \to \infty} \left(\sum_{p=1}^{n} \frac{1}{p} - \ln n \right) = \gamma \quad \text{où} \quad \gamma = \frac{1}{2} - U(f_1).$$

Plus précisément, d'après 4)b)

$$\forall n \ge 2 \quad 0 \le \gamma + \frac{1}{2n} - \sum_{p=1}^{n} \frac{1}{p} + \ln n \le \frac{1}{8n^2}$$

d'où

$$\boxed{\sum_{p=1}^{n} \frac{1}{p} - \ln n = \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right).}$$

6) $f_2: x \mapsto \ln x$ est bien de classe \mathcal{C}^1 sur \mathbb{R}^{+*} , $f_2': x \mapsto \frac{1}{x}$ est décroissante, de limite nulle en $+\infty$; donc les résultats du 4) s'appliquent. Or :

$$\forall n \ge 2 \quad U_n(f_2) = \frac{1}{2} \ln 1 + \sum_{p=2}^{n-1} \ln p + \frac{1}{2} \ln n - \int_1^n \ln x dx$$
$$= \sum_{p=2}^n \ln p - \frac{1}{2} \ln n - [x \ln x - x]_1^n$$
$$= \ln (n!) - \left(n + \frac{1}{2}\right) \ln n + n - 1$$

Je déduis du 4)b) que $\beta = -U\left(f_{2}\right)$ vérifie :

$$\forall n \ge 2 \quad 0 \le \ln(n!) - \left(n + \frac{1}{2}\right) \ln n + n - 1 + \beta \le \frac{1}{8n}.$$

Donc, par continuité de la fonction exponentielle :

$$\exp\left(\ln\left(n!\right) - \left(n + \frac{1}{2}\right)\ln n + n - 1 + \beta\right) \underset{n \to \infty}{\longrightarrow} 1,$$

soit

$$\frac{n!}{n^{n+\frac{1}{2}}}e^ne^{-1+\beta}\underset{n\to\infty}{\longrightarrow} 1,$$

autrement dit:

$$n! \underset{n \to \infty}{\sim} e^{1-\beta} \sqrt{n} \left(\frac{n}{e}\right)^n.$$

Deuxième partie

1) Soit $p \ge 2$; j'écris $\cos^p t = \cos^{p-1} t \cdot \cos t$ et j'intègre par parties :

$$I_{p} = \left[\cos^{p-1} t \cdot \sin t\right]_{0}^{\pi/2} - \int_{0}^{\pi/2} (p-1) \cos^{p-2} t \cdot (-\sin t) \sin t dt$$

$$= (p-1) \int_{0}^{\pi/2} \cos^{p-2} t \cdot (1 - \cos^{2} t) dt$$

$$= (p-1) (I_{p-2} - I_{p})$$

d'où

$$\forall p > 1 \quad pI_p = (p-1)I_{p-2}.$$

2) Soit $p \in \mathbb{N}^*$; partant de

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad 0 \le \cos^p t \le \cos^{p-1} t,$$

j'obtiens par croissance de l'intégrale :

$$0 < I_p \le I_{p-1}$$
;

ainsi:

La suite
$$(I_p)$$
 est décroissante et positive.

Plus précisément, $I_p > 0$ en tant qu'intégrale d'une fonction continue, positive non identiquement nulle.

Donc, pour tout $p\geq 2,$ j'obtiens à partir de $I_p\leq I_{p-1}\leq I_{p-2}$:

$$1 \le \frac{I_{p-1}}{I_p} \le \frac{I_{p-2}}{I_p} = \frac{p}{p-1}.$$

La suite (I_{p-1}/I_p) converge donc vers 1, d'après le théorème des gendarmes ; autrement dit :

$$I_{p-1} \sim I_p$$
.

3) En multipliant par I_{p-1} la relation obtenue au 1), j'obtiens :

$$\forall p \geq 2 \quad pI_{p-1}I_p = (p-1)I_{p-2}I_{p-1}.$$

La suite $(pI_{p-1}I_p)$ est donc constante, or $1I_0I_1=\frac{\pi}{2}$; ainsi, grâce au **2**):

$$\forall p \ge 2 \quad \frac{\pi}{2} = pI_{p-1}I_p \sim pI_p^2.$$

D'où

$$I_p \sim \sqrt{\frac{\pi}{2p}}.$$

Par ailleurs, I_{2n} se calcule aisément par récurrence à partir du 1); il vient :

$$\forall n \in \mathbb{N} \quad I_{2n} = \frac{(2n-1)(2n-3)\dots 1}{(2n)(2n-2)\dots 2}.I_0 = \frac{(2n)!}{2^{2n}(n!)^2}.\frac{\pi}{2}$$

en combinant cela avec l'équivalent obtenu au **I-6)**, j'obtiens tous calculs faits $e^{1-\beta} = \sqrt{2\pi}$, soit finalement :

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Troisième partie

Comme $k \geq 2$, toutes les fonctions considérées sont de classe C^1 sur [k-1,k].

1) Je peux donc intégrer par parties :

$$\int_{k-1}^{k} \frac{1}{t} \cdot (t - k + 1) \, \mathrm{d}t = \left[\ln t \cdot (t - k + 1) \, \right]_{k-1}^{k} - \int_{k-1}^{k} \ln t \, \mathrm{d}t = \ln k - \int_{k-1}^{k} \ln t \, \mathrm{d}t.$$

Ainsi,

$$w_k = \ln k - \int_{k-1}^k \ln t \, \mathrm{d}t.$$

2) De même,

$$\int_{k-1}^{k} \frac{1}{t^2} \cdot \left[(t-k+1)(k-t) \right] dt = \left[-\frac{1}{t} \cdot \left[(t-k+1)(k-t) \right] \right]_{k-1}^{k} - \int_{k-1}^{k} \left(-\frac{1}{t} \right) (2k-1-2t) dt$$
$$= \int_{k-1}^{k} \frac{1}{t} (2k-2-2t) dt + \int_{k-1}^{k} \frac{1}{t} dt = -2w_k + \ln k - \ln (k-1).$$

Soit:

$$I_k = \ln k - \ln (k-1) - 2w_k.$$

Les sommes partielles de $\sum I_k$ vont donc se simplifier :

$$\forall p \ge 2 \quad \sum_{k=2}^{n} I_k = \ln n - 2 \sum_{k=2}^{n} \ln k + 2 \int_{1}^{n} \ln t dt = \ln n - 2 \ln (n!) + 2 \left[t \ln t - t \right]_{1}^{n}$$
$$= 2 \left(\ln \sqrt{n} - \ln (n!) + n \ln n - n + 1 \right) = 2 \ln \left(\frac{\sqrt{n} n^n}{n! e^n} \right) + 2$$

Or, d'après la formule de Stirling, $\frac{\sqrt{n}n^n}{n!e^n} \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}}$. Il en résulte, par continuité de la fonction ln, que :

$$\sum_{k\geq 2} I_k \text{ converge et } \sum_{k=2}^{\infty} I_k = 2 - \ln(2\pi).$$

3) La remarque de l'énoncé me permet d'écrire, avec $\varphi: x \mapsto \frac{x^2}{2} - \frac{x^3}{3}$:

$$I_{k} = \int_{k-1}^{k} \varphi'(t-k+1) \cdot \frac{1}{t^{2}} dt = \left[\varphi(t-k+1) \cdot \frac{1}{t^{2}} \right]_{k-1}^{k} - \int_{k-1}^{k} \varphi(t-k+1) \cdot \left(-\frac{2}{t^{3}} \right) dt$$
$$= \frac{\varphi(1)}{k^{2}} + 2 \int_{k-1}^{k} \varphi(t-k+1) \cdot \frac{1}{t^{3}} dt$$

Or φ est croissante sur [0,1] (cf. $\varphi'(x) = x - x^2 = x(1-x)$) et $\varphi(1) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$. D'où

$$\left| I_k - \frac{1}{6k^2} \right| \le 2 \cdot \int_{k-1}^k \frac{1}{6} \cdot \frac{1}{t^3} dt,$$

c'est-à-dire:

$$\left| I_k - \frac{1}{6k^2} \right| \le \frac{1}{3} \int_{k-1}^k \frac{\mathrm{d}t}{t^3}.$$

Enfin.

$$\int_{k-1}^{k} \frac{\mathrm{d}t}{t^2} = \frac{1}{k-1} - \frac{1}{k} = \frac{1}{k(k-1)} \quad \text{et} \quad \int_{k-1}^{k} \frac{2\mathrm{d}t}{t^3} = \frac{1}{(k-1)^2} - \frac{1}{k^2} = \frac{2k-1}{k^2(k-1)^2}$$

d'où

$$0 \le \int_{k-1}^{k} \frac{\mathrm{d}t}{t^2} - \frac{1}{k^2} = \frac{1}{k(k-1)} - \frac{1}{k^2} = \frac{1}{k^2(k-1)} = \frac{k-1}{k^2(k-1)^2} \le \frac{2k-1}{k^2(k-1)^2}.$$

Finalement:

$$\left| \frac{1}{k^2} - \int_{k-1}^k \frac{\mathrm{d}t}{t^2} \right| \le 2 \int_{k-1}^k \frac{\mathrm{d}t}{t^3}.$$

Un petit coup d'inégalité triangulaire :

$$\left| I_k - \frac{1}{6} \int_{k-1}^k \frac{\mathrm{d}t}{t^2} \right| \le \left| I_k - \frac{1}{6k^2} \right| + \frac{1}{6} \left| \frac{1}{k^2} - \int_{k-1}^k \frac{\mathrm{d}t}{t^2} \right| \le \frac{2}{3} \int_{k-1}^k \frac{\mathrm{d}t}{t^3}.$$

Rebelote, avec en outre la relation de Chasles:

$$\left| \sum_{k=p+1}^{p} \left(I_k - \frac{1}{6} \int_{k-1}^{k} \frac{dt}{t^2} \right) \right| \le \frac{2}{3} \int_{n}^{p} \frac{dt}{t^3}.$$

Or,

$$\sum_{k=1}^{p} \int_{k-1}^{k} \frac{\mathrm{d}t}{t^2} = \int_{n}^{p} \frac{\mathrm{d}t}{t^2} = \frac{1}{n} - \frac{1}{p} \quad \text{et} \quad \int_{n}^{p} \frac{2\mathrm{d}t}{t^3} = \frac{1}{n^2} - \frac{1}{p^2}.$$

Par conséquent :

$$\left| \left| \sum_{k=n+1}^{p} I_k - \frac{1}{6n} + \frac{1}{6p} \right| \le \frac{1}{3n^2} - \frac{1}{3p^2}. \right|$$

4) D'après 2), je peux passer à la limite, pour $p \to \infty$, et je divise par 2

$$\left| \frac{1}{2} \sum_{k=n+1}^{\infty} I_k - \frac{1}{12n} \right| \le \frac{1}{6n^2}.$$

Or, d'après le calcul du 2) in fine :

$$\sum_{k=n+1}^{\infty} I_k = 2 - \ln(2\pi) - \sum_{k=2}^{n} I_k = 2 \ln\left(\frac{n!e^n}{\sqrt{n}n^n}\right) - \ln(2\pi)$$

donc

$$\frac{1}{2} \sum_{k=n+1}^{\infty} I_k = \ln u_n \quad \text{où} \quad u_n = \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}.$$

Je viens donc d'établir que

$$\ln u_n - \frac{1}{12n} = o\left(\frac{1}{n}\right) \quad \text{donc} \quad \ln u_n \sim \frac{1}{12n}.$$

Or, comme $u_n \underset{n \to \infty}{\longrightarrow} 1$ (c'est la formule de Stirling!), j'ai $\ln u_n \sim u_n - 1$, d'où

$$u_n - 1 = \frac{1}{12n} + o\left(\frac{1}{n}\right).$$

Autrement dit,

$$\boxed{n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot \left[1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right].}$$

Loi des idées révolutionnaires de Clarke

Toute idée révolutionnaire

- en science, politique, art, ou n'importe quoi d'autre provoque une réaction en trois étapes :
 - $\ll C'$ est complètement impossible. »
 - − « C'est possible, mais ça n'en vaut pas la peine. »
 - « J'ai toujours dit que c'était une bonne idée. »

Deuxième loi de Clarke

Le seul moyen de découvrir les limites du possible est d'aller au delà dans l'impossible.

Troisième loi de Clarke

Toute technologie suffisamment avancée est indiscernable de la magie.

Corollaire de Hargreave

Toute technologie qu'on peut distinguer de la magie n'est pas sufisamment avancée.

Corollaire de Pratchett

Toute magie suffisamment avancée est indiscernable de la technologie.