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T.D. 3 — Compléments sur les séries numériques

1. Étudier la nature des séries dont le terme général est donné ci-dessous, en discutant éventuellement
suivant les valeurs des paramètres :
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2. Calculer les sommes des séries dont le terme général est donné ci-dessous, en montrant leur convergence.
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3. Soit (an)n∈N une suite de réels positifs ou nuls, u0 ∈ R+∗ et (un)n∈N la suite définie par récurrence par
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. Montrer que la suite (un)n∈N converge si et seulement si la série
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4. Soit (un)n∈N une suite réelle décroissante qui converge vers 0. Montrer que les séries de termes généraux
un et vn = n (un − un+1) sont de même nature.

En cas de convergence, comparer leurs sommes.

5. α > 0 étant donné, étudier la suite (Pn) définie par : ∀n ≥ 2 Pn =
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6. c	 Soit
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xn une série à termes dans R+∗, α ∈ R et

�
vn une série absolument convergente vérifiant
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Montrer qu’il existe K ∈ R+∗ tel que xn ∼
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(On pourra étudier la série de terme général an+1 − an , où an = ln (nαxn) .)
Étudier les exemples :
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7. c	 Test de condensation de Cauchy : soit (un) une suite de réels positifs, décroissante.

Montrer que les séries
�
un et
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Que donne le résultat précédent pour les séries de Riemann ?

Et pour les séries de Bertrand de la forme
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