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T.D. 3 — Compléments sur les séries numériques

1. Etudier la nature des séries dont le terme général est donné ci-dessous, en discutant éventuellement
suivant les valeurs des paramétres :
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2. Calculer les sommes des séries dont le terme général est donné ci-dessous, en montrant leur convergence.
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3. Soit (an),cy une suite de réels positifs ou nuls, ug € RT™* et (uy,),,oy la suite définie par récurrence par
a . . . L.
Upi1 = Up + —=. Montrer que la suite (Un),eny converge si et seulement si la série ) | a, converge.
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4. Soit (uy), ¢y une suite réelle décroissante qui converge vers 0. Montrer que les séries de termes généraux
Up €t vy =1 (Up — Upt1) sont de méme nature.

En cas de convergence, comparer leurs sommes.
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5. a > 0 étant donné, étudier la suite (F,) définie par: Vn >2 P, = [] <1 - ﬁ)
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6. (© Soit >_ z, une série a termes dans R**, o € R et Y v, une série absolument convergente vérifiant
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Montrer quil existe K € R** tel que z,, ~ —.
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(On pourra étudier la série de terme général ani1 — an , 04 ap = In(n%xy) .)
Etudier les exemples :
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7. © Test de condensation de Cauchy : soit (u,) une suite de réels positifs, décroissante.

Montrer que les séries Y u, et > 2"ug~ sont de méme nature.

Que donne le résultat précédent pour les séries de Riemann ?
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Et pour les séries de Bertrand de la forme Z 7

= n(n n)?



