Réduction: résumé

E est un K espace vectoriel.

Sous-espaces stables par un endomorphisme ou une matrice

DÉFINITION. Soient F un sev de E et $f \in \mathcal{L}(E)$.

F stable par $f \Leftrightarrow f(F) \subset F \Leftrightarrow \forall x \in E, (x \in F \Rightarrow f(x) \in F).$

F pas stable par $f \Leftrightarrow f(F) \not\subset F \Leftrightarrow \exists x \in E, (x \in F \text{ et } f(x) \notin F).$

- ullet Si F stable par f, alors f_F induit un endomorphisme de F et réciproquement.
- Une droite stable par f est une droite engendrée par un vecteur propre de f.
- Si $E = F \oplus G$ et si $\mathscr B$ est une base de E adaptée à cette décomposition, F est stable par $f \Leftrightarrow \operatorname{Mat}_{\mathscr B}(f) = \left(\begin{array}{cc} A & C \\ \emptyset & B \end{array} \right)$.

THÉORÈME. Soit $(f,g) \in (\mathcal{L}(E))^2$. Si $f \circ g = g \circ f$, alors $\mathrm{Im}(f)$, $\mathrm{Ker}(f)$ et plus généralement tous les $\mathrm{Ker}\,(f-\lambda \mathrm{Id}_E)$, $\lambda \in \mathbb{K}$, sont stables par g.

Sommes de plusieurs sous-espaces, sommes directes

DÉFINITION. La somme des sous-espaces F_1, \ldots, F_p est l'ensemble des sommes d'un vecteur de F_1 , d'un vecteur de F_2 ... et d'un vecteur de F_p ou encore $\sum_{k=1}^p F_k = F_1 + \ldots + F_p = \{x_1 + \ldots + x_p, \ (x_1, \ldots, x_p) \in F_1 \times \ldots \times F_p\}$.

Théorème. $\sum_{k=1}^{p} F_k$ est un sous-espace vectoriel de (E,+,.).

Définition. La somme $\sum_{k=1}^p \mathsf{F}_k$ est directe

 \Leftrightarrow tout vecteur x de cette somme peut s'écrire de manière unique sous la forme $x=x_1+\ldots+x_p$ où $x_1\in F_1,\ldots,x_p\in F_p$

$$\Leftrightarrow \forall \left((x_i)_{1 \leqslant i \leqslant p}, (x_i')_{1 \leqslant i \leqslant p} \right) \in \left(\prod_{i=1}^p F_i \right)^2, \left(\sum_{i=1}^p x_i = \sum_{i=1}^p x_i' \Rightarrow \forall i \in [\![1,p]\!], \ x_i = x_i' \right)$$

 $\Leftrightarrow \quad \prod_{i=1}^p F_i \quad \to \quad E \quad \text{ est injective}.$

$$(x_i)_{1 \leqslant i \leqslant p} \quad \mapsto \quad \sum_{i=1}^p x_i$$

Dans ce cas, la somme $\sum_{i=1}^p F_i$ se note $F_1 \oplus \ldots \oplus F_p$ ou aussi $\bigoplus_{1 \leqslant i \leqslant p} F_i$.

 $\text{Th\'eor\`eme. 1) La somme } \sum_{k=1}^p F_k \text{ est directe } \Leftrightarrow \forall i \in [\![1,p]\!], \ F_i \cap \sum_{j \neq i} F_j = \{0\}.$

 $\textbf{2)} \text{ La somme } \sum_{k=1}^p F_k \text{ est directe } \Leftrightarrow \forall i \in [\![2,p]\!], \ F_i \cap \sum_{j < i} F_j = \{0\}.$

Définition. Les sous-espaces F_1, \ldots, F_p sont **supplémentaires** dans E si et seulement si $\bigoplus_{1 \leqslant i \leqslant p} F_i = E$.

Il revient au même de dire que les sous-espaces F_1, \ldots, F_p sont supplémentaires dans E si et seulement si tout vecteur x de E peut s'écrire de manière unique sous la forme $x = x_1 + \ldots + x_p$ où $x_1 \in F_1, \ldots, x_p \in F_p$ ou encore si et seulement si

l'application $\prod_{i=1}^p F_i \to E$ est un isomorphisme. $(x_i)_{1\leqslant i\leqslant p} \mapsto \sum_{i=1}^p x_i$

Théorème. On suppose de plus que $\dim(E) < +\infty$.

1) dim
$$\left(\bigoplus_{1\leqslant i\leqslant p} F_i\right) = \sum_{i=1}^p \dim\left(F_i\right)$$

$$\mathbf{2)} \ \dim \left(\sum_{i=1}^p F_i\right) \leqslant \sum_{i=1}^p \dim \left(F_i\right) \ \mathrm{avec} \ \mathrm{\acute{e}galit\acute{e}} \ \mathrm{si} \ \mathrm{et} \ \mathrm{seulement} \ \mathrm{si} \ \mathrm{la} \ \mathrm{somme} \ \sum_{i=1}^p F_i \ \mathrm{est} \ \mathrm{directe}.$$

$$\textbf{3)} \ E = \bigoplus_{1 \leqslant i \leqslant p} F_i \Leftrightarrow \dim(E) = \sum_{i=1}^p \dim{(F_i)}.$$

Théorème. Pour $i \in [1,p]$, soit $\mathcal{B}_i = (e_{1,i},e_{2,i},\ldots,e_{n_i,i})$ une base de F_i puis $\mathcal{B} = (e_{1,1},e_{2,1},\ldots,e_{n_1,1},e_{1,2},e_{2,2},\ldots,e_{n_2,2},\ldots,e_{1,p},e_{2,p},\ldots,e_{n_p,p})$.

Alors, $E = \bigoplus_{1 \leqslant i \leqslant p} F_i \Leftrightarrow \mathscr{B} \ \mathrm{est} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ E.$

Quand la somme $E = \bigoplus_{1 \leqslant i \leqslant p} F_i$, on dit alors que la base \mathscr{B} est une base adaptée à la décomposition $E = \bigoplus_{1 \leqslant i \leqslant p} F_i$.

THÉORÈME. Soient F_1, \ldots, F_p, p sous-espaces supplémentaires d'un \mathbb{K} -espace vectoriel E. Soit $(f,g) \in \mathcal{L}(E)$. Alors

- 1) $f = 0 \Leftrightarrow \forall i \in [1, p], f_{/F_i} = 0.$
- 2) $f = g \Leftrightarrow \forall i \in [1, p], f_{F_i} = g_{F_i}$.

Valeurs propres, vecteurs propres, sous-espaces propres

DÉFINITION. Soient E un K-espace vectoriel non nul puis f un endomorphisme de E.

- Soit $\lambda \in \mathbb{K}$. λ est une valeur propre de f si et seulement si $\exists x \in E \setminus \{0\} / f(x) = \lambda x$.
- Soit $x \in E$. x est un vecteur propre de f si et seulement si $x \neq 0$ et $\exists \lambda \in \mathbb{K} / f(x) = \lambda x$.

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- Soit $\lambda \in \mathbb{K}$. λ est une valeur propre de A si et seulement si $\exists X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\} / AX = \lambda X$.
- Soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$. X est un vecteur propre de A si et seulement si $X \neq \emptyset$ et $\exists \lambda \in \mathbb{K} / \ AX = \lambda X$.
- \bullet Un endomorphisme peut ne pas avoir de valeur propre ou en avoir une infinité. Une matrice carrée réelle peut ne pas avoir de valeur propre dans \mathbb{R} .
- \bullet Un endomorphisme d'un espace de dimension finie $\mathfrak n$ a au plus $\mathfrak n$ valeurs propres. Une matrice carrée de format $\mathfrak n$ a au plus $\mathfrak n$ valeurs propres.
- Un endomorphisme d'un \mathbb{C} -espace de dimension finie non nulle \mathfrak{n} a au au moins une valeur propre. Une matrice carrée a au moins une valeur propre dans \mathbb{C} .
- Un vecteur propre est associé à une valeur propre et une seule.
- $0 \in \operatorname{Sp}(f) \Leftrightarrow \exists x \neq 0 / f(x) = 0 \Leftrightarrow \operatorname{Ker}(f) \neq \{0\} \Leftrightarrow f \text{ non injectif (non bijectif si de plus } 1 \leqslant \dim(E) < +\infty).$
- $\lambda \in \operatorname{Sp}(f) \Leftrightarrow \exists x \neq 0 / \ f(x) = \lambda x \Leftrightarrow \operatorname{Ker}(f \lambda Id) \neq \{0\} \Leftrightarrow f \lambda Id \ \operatorname{non injectif (non bijectif si de plus } 1 \leqslant \dim(E) < +\infty).$
- $0 \in \operatorname{Sp}(A) \Leftrightarrow \exists X \neq 0 / \ AX = 0 \Leftrightarrow \operatorname{Ker}(A) \neq \{0\} \Leftrightarrow A \notin \operatorname{GL}_n(\mathbb{K}).$
- $\lambda \in \operatorname{Sp}(A) \Leftrightarrow \exists X \neq 0 / \ AX = \lambda X \Leftrightarrow \operatorname{Ker}\left(A \lambda I_n\right) \neq \{0\} \Leftrightarrow A \lambda I_n \notin GL_n(\mathbb{K}).$
- Si $f(x) = \lambda x$. Alors, $\forall k \in \mathbb{N}$, $f^k(x) = \lambda^k x$. Si $AX = \lambda X$. Alors, $\forall k \in \mathbb{N}$, $A^k X = \lambda^k X$.

THÉORÈME. Une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est libre.

DÉFINITION. • Soit $f \in \mathcal{L}(E)$. Soit $\lambda \in \mathbb{K}$ une valeur propre éventuelle de f. Le sous-espace propre de f associé à la valeur propre λ est $E_{\lambda}(f) = \operatorname{Ker}(f - \lambda \operatorname{Id}_{E})$ • Soit $A \in \mathcal{M}_{n}(\mathbb{K})$.

• Soit $A \in \mathcal{M}_n(\mathbb{K}.$ Soit $\lambda \in \mathbb{K}$ une valeur propre éventuelle de A. Le sous-espace propre de A associé à la valeur propre λ est $E_{\lambda}(A) = \operatorname{Ker}(A - \lambda I_n)$.

Si λ n'est pas valeur propre de f (resp. de A), $Ker(f - \lambda Id) = \{0\}$ (resp. $Ker(A - \lambda I_n) = \{0\}$).

Si λ est valeur propre de f (resp. de A), $\operatorname{Ker}(f - \lambda \operatorname{Id})$ (resp. $\operatorname{Ker}(A - \lambda \operatorname{I}_n)$) est constitué du vecteur nul et des vecteurs propres de f (resp. de A) associés à la valeur propre λ .

La restriction de f à $E_{\lambda}(f)$ « est » l'homothétie de rapport λ .

THÉORÈME. Une somme d'un nombre fini de sous-espaces propres associés à des valeurs propres deux à deux distinctes est directe.

Endomorphismes ou matrices diagonalisables

DÉFINITION. Si E un espace non nul de dimension quelconque et $f \in \mathcal{L}(E)$, f est diagonalisable si et seulement si il existe une base de E constituée de vecteurs propres de f.

Si E un espace non nul de dimension finie et $f \in \mathcal{L}(E)$, f est diagonalisable si et seulement si il existe une base de E dans laquelle la matrice de f est diagonale.

Si $A \in \mathcal{M}_n(\mathbb{K})$, A est diagonalisable si et seulement si A est semblable à une matrice diagonale.

THÉORÈME. Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis f un endomorphisme de E. f est diagonalisable si et seulement si E est somme directe des sous-espaces propres de f.

Théorème. Soient E un K-espace vectoriel de dimension finie n non nulle puis f un endomorphisme de E. Soient λ_1 , ..., λ_p , les éventuelles valeurs propres deux à deux distinctes de f. Pour $i \in [1,p]$, on pose $n_i = \dim(E_{\lambda_i})$.

Alors, f est diagonalisable si et seulement si $\sum_{i=1}^p n_i = n.$

THÉORÈME. Soient E un K-espace vectoriel de dimension finie n non nulle puis $f \in \mathcal{L}(E)$.

 \mathbf{Si} f a \mathfrak{n} valeurs propres deux à deux distinctes, **alors** f est diagonalisable. De plus, dans ce cas, les sous-espaces propres sont des droites vectorielles.

Polynôme caractéristique

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

 $\mathrm{Le}\; \mathbf{polyn\^{o}me}\; \mathbf{caract\'eristique}\; \mathrm{de}\; \mathrm{la}\; \mathrm{matrice}\; A\; \mathrm{est}\; \chi_{A} = \mathrm{det}\, (XI_{\mathfrak{n}} - A)\; (\mathrm{ou}\; P_{A} = \mathrm{det}\, (XI_{\mathfrak{n}} - A)).$

 $\mathrm{Si}\ A = \mathrm{diag}\,(\lambda_1, \ldots, \lambda_n), \ \mathrm{alors}\ \chi_A = (X - \lambda_1) \ldots (X - \lambda_n).$

Théorème. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

$$\lambda \in \operatorname{Sp}(A) \Leftrightarrow \chi_A(\lambda) = 0.$$

Définition. Soient $A \in \mathscr{M}_n(\mathbb{K})$ puis $\lambda \in \mathbb{K}$ une valeur propre de A.

L'ordre de multiplicité de la valeur propre λ est son ordre de multiplicité en tant que racine du polynôme caractéristique de A.

- Si λ est racine simple de χ_A , on dit que λ est valeur propre simple de A.
- Si λ est racine double de χ_A , on dit que λ est valeur propre double de A ...
- Si λ est racine d'ordre au moins égal à 2 de χ_A , on dit que λ est valeur propre multiple de A.

Le spectre d'une matrice ou d'un endomorphisme désigne aussi la famille des valeurs propres $(\lambda, \dots, \lambda_n)$ où chaque valeur propre est écrite un nombre de fois égal à son ordre de multiplicité. On doit toujours préciser si la notation $\mathrm{Sp}(A)$ désigne l'ensemble des valeurs propres ou la famille des valeurs propres.

Théorème. Soit $A \in \mathscr{M}_n(\mathbb{K})$. $\deg{(\chi_A)} = n$ et $\dim{(\chi_A)} = 1$ $(\chi_A$ est unitaire de degré n).

Théorème. Soit $A \in \mathcal{M}_n(\mathbb{K})$. A admet au plus n valeurs propres (en tenant compte de l'ordre de multiplicité).

Si de plus $\mathbb{K}=\mathbb{C}$ ou si $\mathbb{K}=\mathbb{R}$ et si χ_A est scindé sur \mathbb{K} , alors A admet exactement \mathfrak{n} valeurs propres (en tenant compte de l'ordre de multiplicité).

Si $\mathbb{K} = \mathbb{C}$ ou bien si $\mathbb{K} = \mathbb{R}$ et si χ_A soit scindé sur \mathbb{K} , on peut écrire ou bien

$$\chi_A = (X - \lambda_1) \dots (X - \lambda_n)$$

où $\lambda_1, \ldots, \lambda_n$, sont les valeurs propres de A distinctes ou confondues, ou bien

$$\chi_{A} = (X - \lambda_{1})^{\alpha_{1}} \dots (X - \lambda_{p})^{\alpha_{p}},$$

où cette fois-ci, $\lambda_1, \ldots, \lambda_p$, sont les valeurs propres deux à deux distinctes de A et $\alpha_1, \ldots, \alpha_p$, les ordres de multiplicité respectifs de ces valeurs propres.

Théorème. Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\chi_A = X^n - (\operatorname{Tr}(A)) X^{n-1} + \ldots + (-1)^n \operatorname{det}(A)$.

En particulier, pour $A \in \mathcal{M}_2(\mathbb{K})$, $\chi_A = X^2 - (\operatorname{Tr}(A)) X + \det(A)$.

Théorème. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $(\lambda_1, \dots, \lambda_n)$ la famille des valeurs propres de A.

$$\chi_A = X^n - \sigma_1 X^{n-1} + \ldots + (-1)^k \sigma_k X^{n-k} + \ldots + (-1)^n \mathrm{det}(A) \sigma_n.$$

$$\text{où } \sigma_1 = \sum_{k=1}^n \lambda_k, \ \sigma_n = \prod_{k=1}^n \lambda_k \ \text{et plus généralement, pour } k \in [\![1,n]\!], \ \sigma_k = \sum_{1\leqslant i_1 < i_2 < \ldots < i_k \leqslant n} \lambda_{i_1} \ldots \lambda_{i_k}.$$

En particulier,

$$\mathrm{Tr}(A) = \lambda_1 + \ldots + \lambda_n \ \mathrm{et} \ \mathrm{det}(A) = \lambda_1 \times \ldots \times \lambda_n.$$

La trace (resp. le déterminant) d'une matrice est la somme (resp. le produit) de ses valeurs propres, chacune comptée un nombre de fois égal à son ordre de multiplicité.

Théorème. $\forall A \in \mathscr{M}_n(\mathbb{K}), \, \chi_{^tA} = \chi_A.$

$$\forall (A, B) \in (\mathscr{M}_n(\mathbb{K}))^2, \chi_{AB} = \chi_{BA}.$$

Deux matrices semblables ont même polynôme caractéristique.

Deux matrices qui ont le même polynôme caractéristique ne sont pas nécessairement semblables. Par exemple, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$ ont même polynôme caractéristique à savoir $(X-1)^2$ et ne sont pas semblables.

DÉFINITION. Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis f un endomorphisme de E. Le polynôme caractéristique de f est $\chi_f = \det{(XId_E - f)}$ (ou $P_f = \det{(XId_E - f)}$).

Le polynôme caractéristique de f est le déterminant de $XI_n - A$ ou encore χ_A où A est la matrice de f dans une base donnée. Le résultat ne dépend pas du choix d'une base car deux matrices semblables ont même polynôme caractéristique.

Diagonalisation

Théorème. On note $o(\lambda)$ l'ordre de multiplicité d'une valeur propre λ .

- Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie non nulle. Soit λ une (éventuelle) valeur propre de f. Alors, $1 \leq \dim (E_{\lambda}(f)) \leq o(\lambda)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit λ une (éventuelle) valeur propre de A. Alors, $1 \leq \dim(E_{\lambda}(A)) \leq o(\lambda)$.

Théorème. Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie non nulle. Soit λ une (éventuelle) valeur propre simple de f. Alors, dim $(E_{\lambda}(f)) = 1$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit λ une (éventuelle) valeur propre simple de A. Alors, dim $(E_{\lambda}(A)) = 1$.

Ainsi, le sous-espace propre associé à une valeur propre simple est toujours une droite vectorielle.

Théorème. (Une condition nécessaire et suffisante de diagonalisablité)

- \bullet Soit f un endomorphisme d'un $\mathbb{K}\text{-espace}$ vectoriel de dimension finie non nulle.
- f est diagonalisable si et seulement si χ_f est scindé sur $\mathbb K$ et l'ordre de multiplicité de chaque valeur propre est égal à la dimension du sous-espace propre correspondant.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

A est diagonalisable si et seulement si χ_A est scindé sur $\mathbb K$ et l'ordre de multiplicité de chaque valeur propre est égal à la dimension du sous-espace propre correspondant.

Théorème. (une condition suffisante de diagonalisablité)

- \bullet Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie \mathfrak{n} non nulle. Si f a \mathfrak{n} valeurs propres simples, alors f est diagonalisable. De plus, les sous-espaces propres de f sont des droites vectorielles.
- \bullet Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A a n valeurs propres simples, alors A est diagonalisable. De plus, les sous-espaces propres de A sont des droites vectorielles.

Diagonaliser la matrice diagonalisable A, c'est trouver explicitement $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n), P \in GL_n(\mathbb{K})$ et P^{-1} telles que $A = PDP^{-1}$.

Endomorphismes ou matrices trigonalisables

DÉFINITION.

- Soit E un K-espace vectoriel de dimension finie non nulle puis f un endomorphisme de E.
- f est trigonalisable (ou triangulable) si et seulement si il existe une base de E dans laquelle la matrice de f est triangulaire supérieure.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

A est trigonalisable (ou triangulable) si et seulement si A est semblable à une matrice triangulaire supérieure.

f est trigonalisable si et seulement si sa matrice dans une base donnée est trigonalisable. Dans la définition précédente, on aurait pu remplacer triangulaire supérieure par triangulaire inférieure.

$$\mathrm{Si}\;\mathsf{T} = \left(\begin{array}{cccc} \lambda_1 & \times & \ldots & \times \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \ldots & 0 & \lambda_n \end{array} \right),\;\mathrm{alors}\;\chi_\mathsf{T} = (\mathsf{X} - \lambda_1) \ldots (\mathsf{X} - \lambda_n).$$

Théorème. (une condition nécessaire et suffisante de trigonalisablité)

- Soit f un endomorphisme d'un K-espace vectoriel de dimension finie n non nulle. f est trigonalisable si et seulement si χ_f est scindé sur \mathbb{K} .
- \bullet Soit $A\in \mathcal{M}_n(\mathbb{K}).$ A est trigonalisable si et seulement si χ_A est scindé sur $\mathbb{K}.$

En particulier,

- Tout endomorphisme d'un C-espace de dimension finie non nulle est trigonalisable.
- ullet Toute matrice à coefficients dans $\mathbb C$ est trigonalisable.

Quand on a triangulé et donc écrit A sous la forme $A = PTP^{-1}$, on retrouve sur la diagonale de T la famille des valeurs propres de A.

Théorème. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si $Sp(A) = (\lambda_1, \ldots, \lambda_n)$, alors

$$\forall k \in \mathbb{N}^*, \ \operatorname{Sp}\left(A^k\right) = \left(\lambda_1^k, \dots, \lambda_n^k\right).$$

Soit $A \in GL_n(\mathbb{C})$. Si $Sp(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{Z}, \ \mathrm{Sp}\left(A^{k}\right) = \left(\lambda_{1}^{k}, \dots, \lambda_{n}^{k}\right).$$

Théorème. Soit $A \in \mathscr{M}_n(\mathbb{C})$. Si $\mathrm{Sp}(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{N}^*, \ \mathrm{Tr}\left(A^k\right) = \lambda_1^k + \ldots + \lambda_n^k.$$

Soit $A \in GL_n(\mathbb{C})$. Si $Sp(A) = (\lambda_1, \dots, \lambda_n)$, alors

$$\forall k \in \mathbb{Z}, \; \mathrm{Tr}\left(A^k\right) = \lambda_1^k + \ldots + \lambda_n^k.$$

Polynômes d'endomorphismes, polynômes de matrices

L'algèbre des polynômes en f (ou en A)

Soient
$$f \in \mathcal{L}(E)$$
 puis $P = \sum_{k=0}^{p} \alpha_k X^k \in \mathbb{K}[X]$. L'endomorphisme $P(f)$ est $P(f) = \sum_{k=0}^{p} \alpha_k f^k = a_0 I d_E + a_1 f + \ldots + a_p f^p$. De même, si $A \in \mathcal{M}_n(\mathbb{K})$, la matrice $P(A)$ est $P(A) = \sum_{k=0}^{p} \alpha_k A^k = a_0 I_n + a_1 A + \ldots + a_p A^p$.

On note $\mathbb{K}[f]$ (resp. $\mathbb{K}[A]$) l'ensemble des P(f) (resp. P(A)) où P est un élément de

Théorème.

- Soit E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. $\forall (P,Q) \in (\mathbb{K}[X])^2, (P+Q)(f) = P(f) + Q(f); \\ \forall P \in \mathbb{K}[X], \ \forall \lambda \in \mathbb{K}, \ (\lambda P)(f) = \lambda P(f); \\ \forall (P,Q) \in (\mathbb{K}[X])^2, \ (P \times Q)(f) = P(f) \circ Q(f).$
- $$\begin{split} \bullet & \operatorname{Soit} A \in \mathscr{M}_n(\mathbb{K}). \\ \forall (P,Q) \in (\mathbb{K}[X])^2, \ (P+Q)(A) = P(A) + Q(A) \, ; \\ \forall P \in \mathbb{K}[X], \ \forall \lambda \in \mathbb{K}, \ (\lambda P)(A) = \lambda P(A) \, ; \\ \forall (P,Q) \in (\mathbb{K}[X])^2, \ (P \times Q)(A) = P(A) \times Q(A). \end{split}$$

Par exemple, si $P = (X - 1)^2(X + 2) + 3X - 1$, alors $P(f) = (f - Id_E)^2 \circ (f + 2Id_E) + 3f - Id_E$.

Théorème.

- Soit $f \in \mathcal{L}(E)$. $\mathbb{K}[f]$ est une sous-algèbre commutative de l'algèbre ($\mathcal{L}(E),+,.,\circ$). De plus, l'application $\phi_f : \mathbb{K}[X] \to \mathcal{L}(E)$ est un morphisme d'algèbres. P \mapsto P(f)
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\mathbb{K}[A]$ est une sous-algèbre commutative de l'algèbre $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$. De plus, l'application $\phi_A : \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K})$ est un morphisme d'algèbres. $P \mapsto P(A)$

Deux polynômes en f commutent.

Commutant d'un endomorphisme ou d'une matrice

DÉFINITION.

 \bullet Soient E un $\mathbb{K}\text{-espace}$ vectoriel puis f
 un endomorphisme de E.

Le commutant de f, noté C(f), est l'ensemble des endomorphismes de E qui commutent avec f.

$$C(f) = \{g \in \mathcal{L}(E)/ g \circ f = f \circ g\}.$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Le commutant de A est l'ensemble des matrices carrées qui commutent avec A.

$$C(A) = \{B \in \mathcal{M}_n(\mathbb{K}) / B \times A = A \times B\}.$$

Théorème.

- Soit E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. C(f) est une sous-algèbre de l'algèbre $(\mathcal{L}(E), +, ., \circ)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. C(A) est une sous-algèbre de l'algèbre $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$.

Théorème.

- Soit E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. K[f] est une sous-algèbre commutative de l'algèbre $(C(f), +, ., \circ)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. $\mathbb{K}[A]$ est une sous-algèbre commutative de l'algèbre $(C(A), +, ., \times)$.

Polynômes annulateurs d'un endomorphisme (ou d'une matrice)

THÉORÈME

- Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. L'ensemble des polynômes $P \in \mathbb{K}[X]$ tels que P(f) = 0 est un idéal de l'anneau $(\mathbb{K}[X], +, \times)$.
- $\bullet \ \mathrm{Soit} \ A \in \mathcal{M}_n(\mathbb{K}). \ \mathrm{L'ensemble} \ \mathrm{des} \ \mathrm{polyn\^{o}mes} \ P \in \mathbb{K}[X] \ \mathrm{tels} \ \mathrm{que} \ P(A) = 0 \ \mathrm{est} \ \mathrm{un} \ \mathrm{id\'eal} \ \mathrm{de} \ \mathrm{l'anneau} \ (\mathbb{K}[X], +, \times).$

Polynôme minimal d'un endomorphisme (ou d'une matrice)

Théorème.

- Soit E un \mathbb{K} -espace vectoriel de dimension finie puis $f \in \mathcal{L}(E)$. Il existe au moins un polynôme non nul P tel que P(f) = 0.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Il existe au moins un polynôme non nul P tel que P(A) = 0.

Théorème.

 \bullet Soit E un K-espace vectoriel de dimension finie puis $f \in \mathcal{L}(E)$. Il existe un polynôme unitaire P_0 et un seul tel que

$$\operatorname{Ker}(\phi_f) = P_0 \times \mathbb{K}[X].$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Il existe un polynôme unitaire P_0 et un seul tel que

$$\operatorname{Ker}(\varphi_{A}) = P_{0} \times \mathbb{K}[X].$$

DÉFINITION.

- Soient E un \mathbb{K} -espace vectoriel de dimension finie puis f un endomorphisme de E. L'unique polynôme unitaire P_0 tel que $\operatorname{Ker}(\phi_f) = P_0 \times \mathbb{K}[X]$ s'appelle le **polynôme minimal** de f et se note μ_f (ou Q_f).
- Soit $A \in \mathscr{M}_n(\mathbb{K})$. L'unique polynôme unitaire P_0 tel que $\operatorname{Ker}(\phi_A) = P_0 \times \mathbb{K}[X]$ s'appelle le **polynôme minimal** de A et se note μ_A (ou Q_A).

Soit μ_f le polynôme minimal de f (en cas d'existence). Par construction, on a les propriétés suivantes :

- \bullet μ_f est le polynôme non nul unitaire de plus bas degré et annulateur de f.
- Si P est un polynôme annulateur de f, alors μ_f divise P ou encore, il existe un polynôme Q tel que $P = \mu_f \times Q$.

Polynôme minimal et polynôme caractéristique d'un endomorphisme induit

Théorème.

Soient E un \mathbb{K} -espace vectoriel de dimension finie puis $f \in \mathcal{L}(E)$. Soient F un sous-espace vectoriel de E stable par f puis f_F l'endomorphisme de F induit par f. Alors

- χ_{f_F} divise χ_f ;
- μ_{f_F} divise μ_f .

Le théorème de Cayley-Hamilton

Théorème de Cayley-Hamilton)

- Soient E un K-espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. Alors $\chi_f(f) = 0$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors $\chi_A(A) = 0$.

ou aussi

- Soient E un K-espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. Alors μ_f divise χ_f .
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors μ_A divise χ_A .

Polynômes annulateurs et valeurs propres

Théorème.

- Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. Soient $x \in E$ et $\lambda \in \mathbb{K}$ tels que $f(x) = \lambda x$. Alors, pour tout $P \in \mathbb{K}[X]$, $P(f)(x) = P(\lambda)x$.
- $\bullet \ \mathrm{Soit} \ A \in \mathcal{M}_n(\mathbb{K}). \ \mathrm{Soient} \ X \in \mathcal{M}_n(\mathbb{K}) \ \mathrm{et} \ \lambda \in \mathbb{K} \ \mathrm{tels} \ \mathrm{que} \ AX = \lambda X. \ \mathrm{Alors}, \ \mathrm{pour} \ \mathrm{tout} \ P \in \mathbb{K}[X], \ P(A)X = P(\lambda)X.$

Théorème.

- Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. Soit $P \in \mathbb{K}[X]$ un polynôme annulateur de f. Alors, pour toute valeur propre λ de f, on a $P(\lambda) = 0$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit $P \in \mathbb{K}[X]$ un polynôme annulateur de A. Alors, pour toute valeur propre λ de A, on a $P(\lambda) = 0$.

On retiendra

les valeurs propres d'un endomorphisme ou d'une matrice sont à choisir parmi les racines d'un polynôme annulateur.

Théorème.

• Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis $f \in \mathscr{L}(E)$. On suppose que χ_f est scindé sur \mathbb{K} et s'écrit donc

$$\chi_f = \prod_{i=1}^p \left(X - \lambda_i \right)^{\alpha_i}$$

où les λ_i sont les valeurs propres deux à deux distinctes de f et les α_i sont des entiers naturels non nuls. Alors μ_f s'écrit

$$\mu_f = \prod_{i=1}^p (X - \lambda_i)^{\beta_i}$$

où pour tout $i \in [1,p], 1 \leqslant \beta_i \leqslant \alpha_i$.

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que χ_A est scindé sur \mathbb{K} et s'écrit donc

$$\chi_{A} = \prod_{i=1}^{p} \left(X - \lambda_{i} \right)^{\alpha_{i}}$$

où les λ_i sont les valeurs propres deux à deux distinctes de A et les α_i sont des entiers naturels non nuls. Alors μ_A s'écrit

$$\mu_A = \prod_{i=1}^p (X - \lambda_i)^{\beta_i}$$

où pour tout $i \in [1,p], 1 \leqslant \beta_i \leqslant \alpha_i$.

Le théorème de décomposition des noyaux

Théorème.

• Soient E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. Soient P et Q deux polynômes **premiers entre eux**.

$$\operatorname{Ker}((P \times Q)(f)) = \operatorname{Ker}(P(f)) \oplus \operatorname{Ker}(Q(f)).$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P et Q deux polynômes **premiers entre eux**.

$$\operatorname{Ker}((P \times Q)(A)) = \operatorname{Ker}(P(A)) \oplus \operatorname{Ker}(Q(A)).$$

Plus généralement,

• Soient E un K-espace vectoriel puis $f \in \mathcal{L}(E)$. Soient P_1, \ldots, P_k des polynômes deux à deux premiers entre eux.

$$\operatorname{Ker}((P_1 \times \ldots \times P_k)(f)) = \operatorname{Ker}(P_1(f)) \oplus \ldots \oplus \operatorname{Ker}(P_k(f)).$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P_1, \ldots, P_k des polynômes deux à deux premiers entre eux.

$$\operatorname{Ker}\left((P_1\times\ldots\times P_k)(A)\right)=\operatorname{Ker}\left(P_1(A)\right)\oplus\ldots\oplus\operatorname{Ker}(P_k(A)).$$

Théorème.

• Soient E un \mathbb{K} -espace vectoriel puis $f \in \mathcal{L}(E)$. Soient P_1, \ldots, P_k des polynômes **deux à deux premiers entre eux** puis $P = P_1 \times \ldots \times P_k$. On suppose de plus que P est annulateur de f.

$$E = Ker(P_1(f)) \oplus ... \oplus Ker(P_k(f)).$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P_1, \ldots, P_k des polynômes deux à deux premiers entre eux puis $P = P_1 \times \ldots \times P_k$. On suppose de plus que P est annulateur de A.

$$\mathcal{M}_{n,1}(\mathbb{K}) = \operatorname{Ker}(P_1(A)) \oplus \ldots \oplus \operatorname{Ker}(P_k(A)).$$

Une caractérisation de la diagonalisabilité

Théorème.

- Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. f est diagonalisable si et seulement si il existe un polynôme P non nul, scindé sur \mathbb{K} à racines simples tel que P(f) = 0.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

A est diagonalisable si et seulement si il existe un polynôme P non nul, scindé sur \mathbb{K} à racines simples tel que P(A) = 0.

ou aussi

- Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle puis $f \in \mathcal{L}(E)$. f est diagonalisable si et seulement si μ_f est scindé sur \mathbb{K} à racines simples.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$.

A est diagonalisable si et seulement si il existe μ_A est scindé sur $\mathbb K$ à racines simples.

On résume les différentes conditions nécessaires et suffisantes ou simplement suffisantes de diagonalisabilité ou de trigonalisabilité pour un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie non nulle. Dans ce qui suit, \mathfrak{n} est la dimension de \mathbb{E} , les α_i sont les ordres de multiplicité des valeurs propres et les \mathfrak{n}_i sont les dimensions des sous-espaces propres associés.

f est diagonalisable

- \Leftrightarrow il existe une base ${\mathscr B}$ de E constituée de vecteurs propres de f
- \Leftrightarrow il existe une base de E telle que $Mat_{\mathscr{B}}(f)$ est diagonale
- ⇔ E est somme directe des sous-espaces propres de f

$$\Leftrightarrow n = \sum_{i=1}^p n_i$$

- $\Leftrightarrow \chi_f \text{ est scind\'e sur } \mathbb{K} \text{ et } \forall i \in [\![1,p]\!], \, n_i = \alpha_i.$
- \Leftrightarrow il existe un polynôme P non nul, scindé sur \mathbb{K} , à racines simples tel que P(f)=0
- $\Leftrightarrow \mu_f$ est scindé sur \mathbb{K} à racines simples
- \Leftarrow f a n valeurs propres simples ou encore χ_f est scindé sur \mathbb{K} à racines simples

D'autre part,

f est trigonalisable $\Leftrightarrow \chi_f$ est scindé sur \mathbb{K} .

Les sous-espaces $\operatorname{Ker}\left(\left(f - \lambda_{i} \operatorname{Id}_{F}\right)^{\alpha_{i}}\right)$

On suppose $\dim(E) = n < +\infty$. Soit $f \in \mathcal{L}(E)$ tel que χ_f est scindé sur \mathbb{K} . On pose $\chi_f = \prod_{i=1}^p \left(X - \lambda_i\right)^{\alpha_i}$, où les λ_i sont des nombres deux à deux distincts et les α_i sont des entiers naturels non nuls tels que $\sum_{i=1}^p \alpha_i = n$.

• D'après le théorème de décomposition des noyaux et le théorème de CAYLEY-HAMILTON :

$$E = \bigoplus_{1 \leqslant i \leqslant p} \operatorname{Ker} \left(f - \lambda_i Id_E \right)^{\alpha_i} \quad (*).$$

- $F_i = \text{Ker} (f \lambda_i Id_E)^{\alpha_i}$ contient le sous-espace propre $E_{\lambda_i}(f)$.
- $F_i = \operatorname{Ker}(f \lambda_i Id_E)^{\alpha_i}$ est un sous-espace vectoriel de E stable par f ou encore f induit un endomorphisme de $\operatorname{Ker}(f \lambda_i Id_E)^{\alpha_i}$ que l'on note f_i .
- Dans une base adaptée à la décomposition (*), la matrice de f est diagonale par blocs.
- Pour $i \in [\![1,p]\!]$, posons $d_i = \lambda_i Id_{F_i}$ et $n_i = f_i d_i = f_i \lambda_i Id_E$. Par définition de $F_i = \operatorname{Ker} \left(f \lambda_i Id_E \right)^{\alpha_i}$, n_i est un endomorphisme de $\operatorname{Ker} \left(f \lambda_i Id_E \right)^{\alpha_i}$, nilpotent, d'indice de nilpotence inférieur ou égal à α_i . De plus,

$$f_i = d_i + n_i$$
.

Ainsi, chaque f_i est somme d'une homothétie qui est un endomorphisme diagonalisable d_i et d'un endomorphisme nilpotent n_i . De plus, $d_i \circ n_i = n_i \circ d_i$.

• f_i admet exactement une valeur propre (éventuellement multiple) à savoir λ_i .

Applications de la réduction

Calculs de puissances de matrices (ou d'endomorphismes)

Soit $A \in \mathcal{M}_p(\mathbb{K})$ et on veut calculer les puissances positives de A. On fait ici la synthèse de quelques méthodes apparaissant en classes préparatoires.

1ère méthode. Utilisation d'un polynôme annulateur.

Si on connaît un polynôme non nul P annulateur de A et de degré d, la division euclidienne de X^n par P s'écrit :

$$X^{n} = P \times Q_{n} + a_{d-1}^{(n)} X^{d-1} + \ldots + a_{1}^{(n)} X + a_{0}^{(n)}.$$

En évaluant en A, on obtient

$$A^{n} = P(A) \times Q(A) + \alpha_{d-1}^{(n)} A^{d-1} + \ldots + \alpha_{1}^{(n)} A + \alpha_{0}^{(n)} I_{p} = \alpha_{d-1}^{(n)} A^{d-1} + \ldots + \alpha_{1}^{(n)} A + \alpha_{0}^{(n)} I_{p}.$$

Il n'y a donc qu'à calculer $A^0,\,\ldots,\,A^{d-1}$ et les coefficients $\alpha_0^{(n)},\,\ldots,\,\alpha_{d-1}^{(n)}$

2ème méthode. Utilisation d'une réduction.

Si $A = PBP^{-1}$, alors $A^n = PB^nP^{-1}$. Si le calcul des puissances de B est plus simple que celui des puissances de A, on utilise cette réduction. C'est par exemple le cas si B est diagonale. Notons que cette méthode peut fournir aussi l'inverse de A en cas d'inversibilité et plus généralement les puissances négatives de A.

3ème méthode. Utilisation d'un binôme.

On rappelle que si deux matrices A et B commutent, alors

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$$

Si le calcul des puissances de A et celui des puissances de B est faisable, on peut choisir cette méthode pour calculer les puissances C = A + B.

Calculs d'inverses de matrices inversibles (ou de réciproques d'automorphismes) 1ère méthode. Utilisation d'un polynôme annulateur.

On suppose qu'il existe un polynôme de degré $d\geqslant 1$ tel que P(A)=0. En posant $P=\sum_{k=0}^d \alpha_k X^k$, on a donc

$$\sum_{k=0}^{d} a_k A^k = 0.$$

On suppose de plus que le coefficient constant a_0 de P n'est pas nul. Alors,

$$\sum_{k=0}^d \alpha_k A^k = 0 \Rightarrow \left(-\frac{1}{\alpha_0} \left(\alpha_1 I_n + \ldots + \alpha_d A^{d-1} \right) \right) \times A = A \times \left(-\frac{1}{\alpha_0} \left(\alpha_1 I_n + \ldots + \alpha_d A^{d-1} \right) \right) = I_n.$$

On en déduit que la matrice A est inversible et que $A^{-1} = -\frac{1}{\alpha_0} \left(\alpha_1 I_n + \ldots + \alpha_d A^{d-1} \right)$.

2 ème méthode. Inversion d'une matrice de passage.

Une matrice inversible A peut toujours être interprétée comme une matrice de passage. L'inversion s'écrit alors

$$A = \mathscr{P}_{\mathscr{B}}^{\mathscr{B}'} \Leftrightarrow A^{-1} = \mathscr{P}_{\mathscr{B}'}^{\mathscr{B}}.$$

Inverser A consiste donc à exprimer les vecteurs de \mathscr{B} en fonction des vecteurs de \mathscr{B}' .

3 ème méthode. Utilisation de la définition de l'inverse.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si on découvre B telle que $A \times B = B \times A = I_n$, alors A est inversible et $B = A^{-1}$.

4 ème méthode. Utilisation d'un endomorphisme.

 $\mathrm{Si}\; A = \mathrm{Mat}_{\mathscr{B}}(f)\; \mathrm{ou}\; f \in \mathscr{L}(E) \; \mathrm{et}\; \mathscr{B} \; \mathrm{est} \; \mathrm{une} \; \mathrm{base} \; \mathrm{de}\; E, \; \mathrm{alors}\; A \; \mathrm{est} \; \mathrm{inversible} \; \Leftrightarrow f \in GL(E) \; \mathrm{et}\; \mathrm{dans}\; \mathrm{ce}\; \mathrm{cas}, \; A^{-1} = \mathrm{Mat}_{\mathscr{B}}\left(f^{-1}\right).$