Familles sommables

Ensemble dénombrable

Exercice 1 [00245] [Correction]

Existe-t-il une fonction continue f de \mathbb{R} dans \mathbb{R} envoyant les rationnels dans les irrationnels et les irrationnels dans les rationnels?

Exercice 2 [04005] [Correction]

On souhaite établir que l'ensemble $\wp(\mathbb{N})$ des parties de \mathbb{N} n'est pas dénombrable. Pour cela on raisonne par l'absurde et l'on suppose qu'il existe une bijection φ de \mathbb{N} vers $\wp(\mathbb{N})$.

Établir une absurdité en introduisant l'ensemble

$$A = \{ n \in \mathbb{N} \mid n \notin \varphi(n) \}.$$

Exercice 3 [04063] [Correction]

On appelle nombre algébrique, tout nombre complexe \boldsymbol{x} solution d'une équation de la forme

$$a_n x^n + \dots + a_1 x + a_0 = 0$$
 avec $a_0, a_1, \dots, a_n \in \mathbb{Z}$ et $a_n \neq 0$.

On appelle degré d'un nombre algébrique x, le plus petit $n \in \mathbb{N}$ tel que x soit solution d'une équation comme ci-dessus.

- (a) Quels sont les nombres algébriques de degré 1?
- (b) Montrer que l'ensemble des nombres algébriques de degré au plus n est dénombrable.
- (c) L'ensemble de tous les nombres algébriques est-il dénombrable?

Exercice 4 [04064] [Correction]

(a) Calculer

$$\sum_{n=0}^{+\infty} \frac{1}{2^{n+1}}.$$

(b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de [0;1]. Montrer

$$\forall n \in \mathbb{N}, [0;1] \setminus \bigcup_{k=0}^{n} [u_k - \frac{1}{2^{k+2}}; u_k + \frac{1}{2^{k+2}}] \neq \emptyset.$$

(c) On peut alors construire une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de [0;1] vérifiant

$$\forall n \in \mathbb{N}, x_n \notin \bigcup_{k=0}^n \left[u_k - \frac{1}{2^{k+2}}; u_k + \frac{1}{2^{k+2}} \right].$$

Justifier qu'on peut extraire la suite $(x_n)_{n\in\mathbb{N}}$ une suite convergeant vers un élément ℓ de [0;1].

(d) Exploiter les idées précédentes pour établir que [0;1] n'est pas dénombrable.

Exercice 5 [04140] [Correction]

Montrer que l'ensemble des parties finies de $\mathbb N$ est dénombrable.

Étude de sommabilité

Exercice 6 [03896] [Correction]

Pour quels $\alpha > 0$, la famille suivante est-elle sommable?

$$\left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^{*2}}.$$

Sommation par paquets

Exercice 7 [02424] [Correction]

Convergence et calcul, pour z complexe tel que |z| < 1, de

$$\sum_{n=0}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}}.$$

Exercice 8 [02636] [Correction]

On note $\ell^1(\mathbb{Z})$ l'ensemble des suites complexes $u=(u_n)_{n\in\mathbb{Z}}$ sommables.

- (a) Soit $u, v \in \ell^1(\mathbb{Z})$. Montrer que pour tout $n \in \mathbb{Z}$, la famille $(u_k v_{n-k})_{k \in \mathbb{Z}}$ est sommable.
- (b) Pour $u, v \in \ell^1(\mathbb{Z})$, on pose $(u * v)_n = \sum_{k \in \mathbb{Z}} u_k v_{n-k}$. Montrer que $u * v \in \ell^1(\mathbb{Z})$ et que

$$\sum_{n\in\mathbb{Z}} (u*v)_n = \sum_{n\in\mathbb{Z}} u_n \sum_{n\in\mathbb{Z}} v_n.$$

- (c) Montrer que la loi \ast ainsi définie est commutative, associative et possède un neutre.
- (d) La structure $(\ell^1(\mathbb{Z}), *)$ est-elle un groupe?

Exercice 9 [04065] [Correction]

Soit $q \in \mathbb{C}$ avec |q| < 1.

Montrer que la famille $(q^{|n|})_{n\in\mathbb{Z}}$ est sommable et calculer sa somme.

Exercice 10 [04066] [Correction]

Soit $r \in [0; 1[$ et $\theta \in \mathbb{R}$.

Justifier l'existence et calculer

$$\sum_{n\in\mathbb{Z}} r^{|n|} \mathrm{e}^{\mathrm{i}n\theta}.$$

Permutation des termes

Exercice 11 [01030] [Correction]

Soient $\sum_{n\geq 0} u_n$ une série absolument convergente et $v_n=u_{\sigma(n)}$ avec $\sigma\in\mathcal{S}_{\mathbb{N}}$. Montrer que la série $\sum_{n\geq 0} v_n$ est absolument convergente de même somme de $\sum u_n$.

Exercice 12 [01031] [Correction]

Soit $\sigma \colon \mathbb{N}^* \to \mathbb{N}^*$ une application bijective.

(a) Déterminer la nature de

$$\sum_{n\geq 1} \frac{1}{\sigma(n)^2}.$$

(b) Même question pour

$$\sum_{n\geq 1} \frac{1}{\sigma(n)}$$

Exercice 13 [02963] [Correction]

Si σ est une bijection de \mathbb{N}^* sur \mathbb{N}^* , montrer la divergence de la série

$$\sum \frac{\sigma(n)}{n^2}.$$

Exercice 14 [03678] [Correction]

Soit σ une permutation de \mathbb{N}^* .

Quelle est la nature de

$$\sum \frac{\sigma(n)}{n^2 \ln n}?$$

Exercice 15 [03426] [Correction]

Soit (u_n) une suite réelle telle qu'il y ait convergence de la série $\sum u_n^2$. Soient σ une bijection de \mathbb{N} et (v_n) la suite déterminée par

$$v_n = u_{\sigma(n)}$$
 pour tout $n \in \mathbb{N}$.

- (a) Montrer la convergence et calculer la somme de la série $\sum v_n^2$.
- (b) Quelle est la nature de la série $\sum |u_n v_n|$?
- (c) Déterminer les bornes supérieure et inférieure de

$$\sum_{n=0}^{+\infty} |u_n v_n|$$

pour σ parcourant l'ensemble des bijections de \mathbb{N} .

Exercice 16 [03412] [Correction]

Soit (z_n) une suite de complexes non nuls telles que

$$n \neq m \implies |z_n - z_m| \ge 1.$$

Montrer la convergence de la série de terme général $1/z_n^3$

Sommes doubles

Exercice 17 [01093] [Correction]

(a) Soit $\alpha > 1$. Déterminer un équivalent à

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}.$$

(b) Pour quels $\alpha \in \mathbb{R}$, la somme $\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ a-t-elle un sens?

(c) Montrer qu'alors

$$\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = \sum_{p=1}^{+\infty} \frac{1}{p^{\alpha-1}}.$$

Exercice 18 [01095] [Correction]

Soit a un complexe de module strictement inférieur à 1. En introduisant la famille des nombres $u_{p,q}=a^{p(2q-1)}$ (pour $p,q\geq 1$), établir l'identité

$$\sum_{p=1}^{+\infty} \frac{a^p}{1 - a^{2p}} = \sum_{p=1}^{+\infty} \frac{a^{2p-1}}{1 - a^{2p-1}}.$$

Exercice 19 [01096] [Correction]

On pose

$$a_{p,q} = \frac{2p+1}{p+q+2} - \frac{p}{p+q+1} - \frac{p+1}{p+q+3}.$$

Calculer

$$\sum_{q=0}^{+\infty} \sum_{p=0}^{+\infty} a_{p,q} \text{ et } \sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} a_{p,q}.$$

Qu'en déduire?

Exercice 20 [03447] [Correction]

Existence et valeur de

$$\sum_{(p,q)\in\mathbb{N}\times\mathbb{N}^*} \frac{1}{(p+q^2)(p+q^2+1)}.$$

Exercice 21 [01094] [Correction]

Justifier

$$\sum_{n=1, n \neq p}^{+\infty} \frac{1}{n^2 - p^2} = \frac{3}{4p^2}.$$

En déduire

$$\sum_{p=1}^{+\infty} \sum_{n=1, n \neq p}^{+\infty} \frac{1}{n^2 - p^2} \neq \sum_{n=1}^{+\infty} \sum_{p=1, p \neq n}^{+\infty} \frac{1}{n^2 - p^2}.$$

Qu'en déduire?

Exercice 22 [05011] [Correction]

Soient $(u_n)_{n\geq 1}$ une suite réelle et $(v_n)_{n\geq 1}$ la suite de ses moyennes de Cesàro :

$$v_n = \frac{1}{n}(u_1 + \dots + u_n)$$
 pour tout $n \ge 1$

(a) Montrer que $(n+1)v_n^2 - (n-1)v_{n-1}^2 \le 2u_nv_n$ pour tout $n \ge 2$.

On suppose désormais que la série de terme général u_n^2 converge.

(a) Montrer que la série de terme général v_n^2 converge et vérifier

$$\sum_{n=1}^{+\infty} v_n^2 \le 4 \sum_{n=1}^{+\infty} u_n^2$$

(b) En déduire la sommabilité de la famille

$$\left(\frac{u_n u_m}{n+m}\right)_{m,n\geq 1}$$

Produit de Cauchy

Exercice 23 [03445] [Correction]

Existence et calcul de

$$\sum_{n=0}^{+\infty} (n+1)3^{-n}.$$

Exercice 24 [03446] [Correction]

Soit (u_n) une suite numérique. Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{2^n} \sum_{k=0}^n 2^k u_k.$$

- (a) On suppose dans cette question la série $\sum u_n$ absolument convergente. En observant un produit de Cauchy, montrer que la série $\sum v_n$ converge et exprimer sa somme en fonction de celle de $\sum u_n$.
- (b) On suppose dans cette question que la suite (u_n) tend vers 0. Déterminer la limite de (v_n)
- (c) On suppose dans cette dernière question la série $\sum u_n$ convergente. Montrer la convergence de $\sum v_n$ et déterminer sa somme en fonction de celle de $\sum u_n$.

Exercice 25 [03637] [Correction]

Établir

$$e\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot n!} = \sum_{n=1}^{+\infty} \frac{H_n}{n!}$$

avec

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

Exercice 26 [04135] [Correction]

Soit $(u_n)_{n\in\mathbb{N}}$ une famille sommable. Pour tout $n\in\mathbb{N}$, on pose

$$v_n = \frac{1}{2^n} \sum_{k=0}^n 2^k u_k.$$

Montrer que la famille $(v_n)_{n\in\mathbb{N}}$ est sommable et exprimer sa somme en fonction de celle de la famille $(u_n)_{n\in\mathbb{N}}$.

Exercice 27 [04201] [Correction]

Pour $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose

$$u_n = \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}(n-k)^{\alpha}}.$$

Pour quels α la série de terme général u_n converge?

Exercice 28 [04998] [Correction]

Pour $x \in \mathbb{R}$, on pose

$$f(x) = \sum_{n=0}^{+\infty} \frac{1}{n!} x^n.$$

- (a) Montrer que la fonction f est bien définie sur \mathbb{R} .
- (b) Établir

$$f(x)f(y) = f(x+y)$$
 pour tout $x, y \in \mathbb{R}$

La fonction f est en fait la fonction exponentielle.