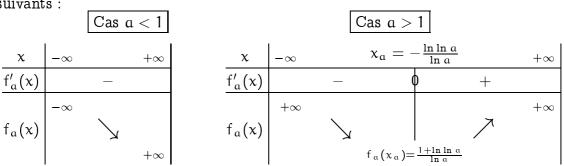
1 La fonction f_{α} a pour dérivée $f'_{\alpha}(x) = \alpha^x \ln \alpha - 1$, qui est toujours négative si $\alpha \le 1$, et qui s'annule sinon pour $\alpha^x = 1/\ln \alpha$, c'est-à-dire pour $x \ln \alpha = \ln(1/\ln \alpha)$, soit $x = x_{\alpha} = (-\ln \ln \alpha)/\ln \alpha$; α^x étant croissante pour $\alpha > 1$, on en déduit qu'alors $f'_{\alpha}(x)$ est négative jusqu'à $x = x_{\alpha}$, positive ensuite; et donc que f_{α} atteint un minimum absolu en x_{α} , valant $f_{\alpha}(x_{\alpha}) = \alpha^{x_{\alpha}} - x_{\alpha} = e^{x_{\alpha} \ln \alpha} - x_{\alpha} = 1/\ln \alpha - x_{\alpha}$. Les limites sont obtenues en utilisant les relations de comparaison, ainsi par exemple $\lim_{t \to \infty} f_{\alpha} = +\infty$ si $\alpha > 1$, car «l'exponentielle l'emporte» (c'est-à-dire que $x \ll e^x$, ou encore que $\lim_{x \to +\infty} x/e^x = 0$). On peut finalement établir les deux tableaux suivants:



Le cas a = 1 ($f_1(x) = 1 - x$) manque d'intérêt : le graphe est une droite, et f_1 s'annule pour x = 1.

2 D'après l'étude des limites de f_{α} (quand $\alpha < 1$), on voit que f_{α} passe de valeurs positives à des valeurs négatives; comme elle est continue, le théorème des valeurs intermédiaires nous dit qu'elle s'annule. Si on avait $f_{\alpha}(x_1) = f_{\alpha}(x_2) = 0$, on ne pourrait avoir $x_1 < x_2$, puisque f_{α} est strictement décroissante; on voit donc que la solution de $f_{\alpha}(x) = 0$ existe et est unique (on la notera désormais $s(\alpha)$). De plus, $f_{\alpha}(1) = \alpha - 1 < 0$, et $f_{\alpha}(\alpha) = \alpha^{\alpha} - \alpha$ est > 0, puisque α^{x} est décroissante et que donc $\alpha < 1 \Rightarrow \alpha^{\alpha} > \alpha^{1}$; on en déduit que f_{α} s'annule entre α et 1, et donc que $\alpha < s(\alpha) < 1$. Si alors $x < s(\alpha)$, f_{α} étant strictement décroissante, on aura $f_{\alpha}(x) > f_{\alpha}(s(\alpha)) = 0$, et donc $\alpha^{x} > x$; on voit de même que pour $x > s(\alpha)$, $\alpha^{x} < x$, et en définitive, la solution de l'inéquation $\alpha^{x} \ge x$ est

$$S =]-\infty, s(a)]$$

- 3 Pour a < b < 1, les fonctions f_a et f_b sont décroissantes, et de plus, pour x > 0, on a $a^x < b^x$, et par conséquent $f_a(x) < f_b(x)$. On a donc $f_a(s(a)) = 0 < f_b(s(a))$ (car s(a) > 0), et donc $f_b(s(a)) > 0 = f_b(s(b))$. Comme f_b est décroissante, on en déduit que s(a) < s(b) (pour obtenir ce résultat, il serait plus naturel en fait d'utiliser la fonction g^{-1} de la question 7).
- 4 On a vu en 1 que le minimum de f_{α} (pour $\alpha > 1$) est atteint en $x_{\alpha} = -\ln\ln\alpha/\ln\alpha$, et vaut $(1 + \ln\ln\alpha)/\ln\alpha$; on en déduit que si α est tel que ce minimum est nul, l'équation $f_{\alpha}(x) = 0$ possédera une solution unique (égale à x_{α}). Il faut donc déterminer α_0 tel que $1 + \ln\ln\alpha_0 = 0$; on voit que cela équivaut à $\alpha_0 = e^{1/e}$.

Une analyse des variations de f_{α} montre que si $\alpha \geq \alpha_0$, le minimum de f_{α} sera positif, et l'inéquation $\alpha^x \geq x$ sera vérifiée pour tout x ($\mathcal{S} = \mathbf{R}$); par contre, si $1 < \alpha < \alpha_0$, on voit que f_{α} sera négative sur un intervalle $[\alpha_{\alpha}, \beta_{\alpha}]$ (avec $\alpha_{\alpha} < x_{\alpha} < \beta_{\alpha}$); on en déduit qu'alors la solution sera

$$S =]-\infty, \alpha_{\alpha}] \cup [\beta_{\alpha}, +\infty[$$

- 5 Si $1 < \alpha < \alpha_0$, il y a à présent deux solutions $(\alpha_\alpha$ et $\beta_\alpha)$ à l'équation $\alpha^x = x$; on voit que l'on peut donc définir deux fonctions $(s_1(\alpha) = \alpha_\alpha$ et $s_2(\alpha) = \beta_\alpha)$ par des conditions telles que (par exemple) $s_1(\alpha) < x_\alpha$ et $f_\alpha(s_1(\alpha)) = 0$. Montrons que s_1 est croissante (on verrait de même que s_2 est décroissante): on a (comme en 3) $\alpha < b \Rightarrow f_\alpha(x) < f_b(x)$, et sur l'intervalle $[-\infty, x_\alpha]$, la fonction f_α est décroissante; comme $x_b > x_\alpha$, il en est de même de f_b . En supposant que $s_1(b) \le s_1(\alpha) < x_\alpha$; on aurait alors $f_b(s_1(b)) = 0 > f_\alpha(s_1(b))$ et donc $0 > f_\alpha(s_1(b)) > f_\alpha(s_1(\alpha)) = 0$, ce qui est absurde; on voit donc qu'on doit avoir $s_1(b) > s_1(\alpha)$.
- 6 Par définition de a_0 , le minimum (nul) de f_{a_0} est atteint en $x_{a_0} = \frac{-\ln \ln a_0}{\ln a_0}$, on voit que l'équation $a_0^x = x$ a pour solution unique $x_0 = (-\ln(1/e))/(1/e)) = e$; il est d'ailleurs évident en effet que $(e^{1/e})^e = a_0^e = e$!
- 7 Posant $g(x) = \ln x/x$, on a (pour x positif) $a^x \ge x \iff x \ln a \ge \ln x \iff \ln a \ge g(x)$ (et on sait que $a^x > x$ pour tout $x \le 0$). On voit donc qu'en posant $b = \ln a$, l'étude proposée se ramène à celles d'équations de la forme $g(x) \le b$; g ayant pour tableau de variation

χ	0	x_0	= e	$+\infty$
$g'(x) = (1 - \ln x)/x^2$		+ () —	
g(x)	-8	g(e):	=1/e	0

A l'aide de ce tableau, on voit par exemple que l'équation $a^x = x$ admet une solution pour $b \le 0$, c'est-à-dire pour $a \le 1$; ou encore une solution unique pour $b_0 = 1/e$, c'est-à-dire pour $a_0 = e^{1/e}$.

Définissons une fonction «réciproque» de g, notée g^{-1} , et allant de $]-\infty,0]$ vers]0,1], par la «formule» $g^{-1}(y)=x\iff g(x)=y$ (le théorème des valeurs intermédiaires en garantit l'existence). On aura donc $a^x=x\iff \ln a=g(x)\iff x=g^{-1}(\ln a)$; ainsi,

$$s(\alpha) = g^{-1}(\ln \alpha)$$

Si on définit de même une fonction h(x) (allant de $]0, e^{1/e}]$ vers]1, e]) par $h(y) = x \iff g(x) = y$ et $x \le e$, on aura

$$s_1(a) = h(\ln a)$$

8 Avec les notations précédentes, $a^x = x^a \iff x \ln a = a \ln x \iff g(x) = g(a)$; comme g est injective sur]0,1], on voit que si $a \in]0,1]$, la seule solution sera x = a. Si $a \in]1,e[$, une seconde solution apparait, car la fonction g prend deux fois chaque valeur; en notant par exemple k la fonction allant de $]0,e^{1/e}]$ vers $[e,+\infty[$ telle que $k(y) = x \iff g(x) = y$ et $x \geq e$, on aura comme seconde solution x = k(g(a)). En particulier, comme le seul entier m de l'intervalle]1,e] est 2, on voit que l'équation $m^n = n^m$ ne peut avoir qu'une solution (telle que m < n) au plus; on constate sur le graphe de g que n = 4 pourrait convenir, et en effet $2^4 = 4^2 = 16$.