I. Pratique calculatoire

Exercice 1

Résoudre dans \mathbb{R} l'inéquation $\frac{x^2 + x}{x^2 - 2} \leqslant 0$.

Exercice 2

Résoudre graphiquement le système $\left\{ \begin{array}{ll} 2x-y+1 &> 0 \\ x-2 &< 0 \\ x+2y+2 &> 0 \end{array} \right.$

Exercice 3

Résoudre dans \mathbb{R} graphiquement puis par le calcul l'équation |x-1|+|x+2|=3.

Exercice 4

Résoudre dans $\mathbb R$ l'inéquation $|x+1|+|x-1|\leqslant x+2$.

Exercice 5

Résoudre dans \mathbb{R} l'équation $5x^2 + \frac{2}{3}x - 1 = 0$.

Exercice 6

Résoudre dans $\mathbb R$ l'inéquation $x^2 < x + 2$.

Exercice 7

Déterminer l'ensemble de définition de la fonction $f: x \mapsto \ln(x^2 - x)$ puis étudier ses variations.

Exercice 8

Déterminer la valeur de $m \in \mathbb{R}$ pour que l'équation $-3x^2 + 6x - 4m = 0$ admette une unique solution et la calculer dans ce cas.

Exercice 9

Résoudre dans $\mathbb R$ l'inéquation $\frac{x^2-2x-3}{x^2+x-2}\geqslant 0.$

Exercice 10

Résoudre dans \mathbb{R} l'inéquation $\frac{x-1}{2x} > \frac{x+5}{2-x}$.

Exercice 11

Résoudre le système
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{4}{15} \\ xy = 60 \end{cases}$$

Exercice 12

Résoudre dans \mathbb{R} l'équation $9x^3 + 12x^2 + x - 2 = 0$.

Exercice 13

Résoudre dans \mathbb{R} l'inéquation $\frac{x^2 + 3x - 4}{x - 1} \leqslant \frac{77}{x}$.

Exercice 14

Déterminer
$$\lim_{\substack{x\to 0\\x<0}} \frac{\sqrt{x+1}}{\sin x}$$
, $\lim_{x\to 1} e^{-(\ln x)^2}$, $\lim_{x\to -\infty} \ln(\sqrt{x^2+1}-x)$ et $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

Exercice 15

Déterminer
$$\lim_{x \to -\infty} \frac{2x^2 - 1}{3x + 1}$$
, $\lim_{x \to +\infty} \frac{1}{x - \sqrt{x}}$, $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$ et $\lim_{x \to +\infty} (\sqrt{x^2 + 1} - \sqrt{x^2 + 2})$.

Exercice 16

Déterminer
$$\lim_{x\to 0} xe^{-\frac{1}{x^2}}$$
 et $\lim_{x\to +\infty} \frac{\ln(x^2+1)}{x}$.

Exercice 17

Déterminer
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$
 et $\lim_{x\to 0} \frac{\ln(1+x)}{x}$.

Exercice 18

Déterminer les dérivées des fonctions $f_1: x \mapsto \frac{x+2}{x^2+1}$, $f_2: x \mapsto xe^{x^2-1}$ et $f_3: x \mapsto x(x+1)^2$.

Exercice 19

Déterminer les dérivées des fonctions $f_1: x \mapsto x\sqrt{x^2+2}$, $f_2: x \mapsto \frac{\sin x}{\ln x}$ et $f_3: x \mapsto (\sin x - \cos x)e^x$.

Exercice 20

Déterminer les primitives des fonctions $f_1: x \mapsto 2x^2 - x + 7$, $f_2: x \mapsto x^2(x^3 + 1)^3$ et $f_3: x \mapsto \frac{x}{(x^2 + 3)^2}$.

Exercice 21

Déterminer les primitives des fonctions $f_1: x \mapsto x\sqrt{x}, f_2: x \mapsto \sin x \cos x$ et $f_3: x \mapsto \frac{x}{x^2+1}$.

Exercice 22

Calculer
$$\sum_{k=0}^{k=n} (2k+1)$$
 et $\prod_{k=0}^{k=n} 2^k$.

Exercice 23

Calculer
$$\prod_{k=1}^{k=n} \frac{k}{k+1}$$
.

Exercice 24

Calculer
$$\frac{15!}{7! \ 9!}$$
.

Exercice 25

Simplifier
$$\frac{(2n+1)!}{(2n-1)!} - 2\frac{(n+1)!}{(n-1)!}$$
 pour $n \in \mathbb{N}^*$.

Exercice 26

En utilisant la formule du binôme, montrer que pour tous $n \in \mathbb{N}^*$ et $x \in [0; +\infty[, (1+x)^n \geqslant 1 + nx]]$